Errata II

Yang 2006 Computational Molecular Evolution

(This applies to the 2006 edition and the 2007 reprint. Those corrections are incorporated in the 2008 reprint, which shows "Reprinted 2007 (with corrections), 2008")

Page	Incorrect	Correct	Notes
p. 15 line -9	$\hat{\kappa}_{1}=21.789$	$\hat{\kappa}_{2}=21.789$	
p. 18 equation (1.30)	HKY	HKY85	
p. 41 line 14	$i=j$	$i \neq j$	
p. 78 line -10	using a binary tree	using an unrooted binary tree	
p. 78 line -2	$n=3$	$n=4$	
p. 102 line 9	matchmaker	watchmaker	
p. 104 fig. 4.2 line 2 box 4	0.0004344	0.004344	
p. 114 line -16	variable-rates	continuous-rates	
p. 147 lines 2-3	probability that B occurs given that A occurs	probability that A occurs given that B occurs	
p. 147 equation (5.3)	$=0.2097$	$=0.02097$	change 0.2097 to 0.02097
p. 147 equation (5.4)	$\frac{0.001 \times 0.99}{0.2097}$	$\frac{0.001 \times 0.99}{0.02097}$	change 0.2097 to 0.02097
p. 169 line 11	found analytically	found numerically	
p. 176 line17	the trees of Fig. 3.7	the trees of Fig. 3.8a	
p. 181 line -15	()	\{ \}	
p. 182 line 16	t is $(n-1)$-dimensional	\mathbf{t} is $(n-1)$-dimensional	t is bold font
p. 182 line -2	Proposal	Propose	
p. 183 line 12	be fixing	by fixing	
p. 187 line -11	$E_{12}=n_{2} / n_{1}$	$E_{21}=n_{1} / n_{2}$	
p. 187 line -8	$E_{12}=V_{2} / V_{1}$	$E_{21}=V_{1} / V_{2}$	
p. 188 equation (6.4)	$E_{12}=n_{2}(P) / n_{1}(P)$	$E_{21}=n_{1}(P) / n_{2}(P)$	
p. 188 equation (6.5)	$E_{12}^{*}=\left(1-P_{2}(n)\right) /\left(1-P_{1}(n)\right)$	$E_{21}^{*}=\left(1-P_{1}(n)\right) /\left(1-P_{2}(n)\right)$	
p. 191 line -6	tree k	tree τ_{k}	
p. 191 line -5	tree k	tree τ_{k}	
p. 217 line 19	MLE of t	MLE of t_{0}	
p. 219 line 3	only one node	only one internal node	
p. 219 line 9	at most $s-k$ changes	at most $k-s$ changes	

p. 219 line 10	we have $s-k \geq l$,	we have $k-s \geq l$,	
p. 225 line - 12	sequences are determined	viruses were isolated	
p. 234 line 7	$\mathrm{HKY}+\mathrm{T}_{5}$	HKY85+ T_{5}	
p. 238 line 1	$U(0.5,1)$	$U(0.5,1.5)$	
p. 244 equation 7.17	$\left(t_{0}, t_{1}\right)$	$\left(b_{1}, b_{2}\right)$	five (5) times
p. 244 line -8	as on the prior on t_{1}	as a prior on t_{1}	
p. 245 line 14	$C_{X}=\int \phi(x \mid \mathbf{b}) \mathrm{d} \mathbf{b}$	$C_{x}=1 / \int \phi(x \mid \mathbf{b}) \mathrm{d} \mathbf{b}$	
p. 252 line -9	CI intervals	credibility intervals (CIs)	
p. 254 line -5	(13-21)	$(13,21)$	
p. 254 line -4	(13-36)	$(13,36)$	
p. 301 Box 9.2 line 3	two vectors F_{i} and $L_{i} i=1$, $2, \ldots, n$	two vectors $F=\left\{F_{i}\right\}$ and $L=$ $\left\{L_{i}\right\}, i=1,2, \ldots, n$	
p. 303 line 17	$q_{i}=-q_{i i}=-\sum_{j \neq i} q_{i j}$	$q_{i}=-q_{i i}=\sum_{j \neq i} q_{i j}$	delete '-' before the summation sign
p. 326 line 6	On the use of the parsimony criterion for inferring evolutionary trees	A probability model for inferring evolutionary trees	

Thanks to Professor Hiroyuki Toh of Kyushu University for discovering most of the mistakes in this set.

