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Answers to selected exercises in Yang (2006) 

 
Many of the questions in the book ask you to confirm certain results so that the answers are 
written in the questions.  Most of such questions are not dealt with here.  The answers below 
are possibilities, as the answers may not be unique.  As in the book, I added verbal 
explanations around the mathematical derivations, so please excuse the verbosity. 

 

Chapter 2 
Equation 2.19 (page 56) 

 
This equation states that dS is the average mutation/substitution rate before selection acts on 
the protein, averaged over the three codon positions.  This equation underlies my claim that 
the often made statement that the use of dN/dS to detect selection on the protein requires the 
assumption of neutral evolution of synonymous mutations is incorrect.  For some discussions 
of this issue, see Yang and Nielsen (2008 Mol. Biol. Evol. 25: 568-579: right column on page 
576) and a post at the PAML discussion page: 
http://gsf.gc.ucdavis.edu/viewtopic.php?f=1&t=201&hilit=neutral+synonymous&sid=403aef
5fd1dac0c6abedd0afb777b63d 
 
The reader is invited to confirm the equation in the book.  Below is a possible proof.  All the 
symbols are defined in the book. 
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Note that 1

S  and 1
N  are the proportions of synonymous and nonsynonymous sites and the 

scaling above is to ensure that they sum to 1.  (The proportions of substitutions S and N in 
eq 2.14 sum to 1, by construction of the codon model.) 
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Chapter 4 
 
4.3  Calculate the probabilities of sites with data xxyy, xyyx, and xyxy in four species for the 
unrooted tree of figure 4.13, using two branch lengths p and q under a symmetrical 
substitution model for binary characters (Exercise 1.3).  Here it is more convenient to define 
the branch length as the proportion of different sites at the two ends of the branch.  Show that 
Pr(xxyy) < Pr(xyxy) if and only if q(1 – q) < p2.  With such branch lengths, parsimony for tree 
reconstruction is inconsistent (Felsenstein 1978a). 
 
Solution.  The calculation of the probability of a site pattern is described in §4.2.1.  In this 
simple example the tree is small so that there is no need to apply the pruning algorithm of 
§4.2.2.  Note that with the JC69-like symmetrical substitution model for binary characters 
(see equation 1.72), the matrix of transitions probabilities for a branch of length q (where q is 
the proportion of different sites) is  
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Similarly, the transition probability for a branch of length p is p for a difference or 1 – p for 
an identity.  Also when the number of changes per site goes from 0 to , the proportion of 
differences goes from 0 to ½, so that 0 < p, q < ½ (see equation 1.72). 

For four species, there are 24 = 16 site patterns, and some of them have identical 
probabilities of occurrence due to the symmetry of the problem.  Thus  

 
Pr(xxyy) = Pr(0011) + Pr(1100) = 2  Pr(0011). 
Pr(xyxy) = Pr(0101) + Pr(1010) = 2  Pr(0101). 

 
Consider Pr(0011).  We have to average over four possible character configurations at the 
two ancestors (or ancestral reconstructions): 00, 01, 10, and 11, as shown in the figure below.   
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Place the root at the left ancestral node, say.  The character at the root is 0 or 1, each with 
probability ½.  Given the state at the root, the evolutionary process of the character on the 
tree is described by five transition probabilities along the five branches.  Thus 
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The probability is a sum of four terms, corresponding to the four trees above.  Each term is 
the product of ½, the prior probability for the root state, times five transition probabilities for 
the five branches.  I have written them in the order top left, middle, top right, bottom left, and 
bottom right.   

Similarly, the probability for the site pattern 0101 is a sum over four ancestral 
reconstructions: 00, 01, 10, and 11, as shown in the figure below.   
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Thus 
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We now have, after some simplifications (which I was lazy enough to use Mathematica to do) 
 
 Pr(xxyy) – Pr(xyxy) = 2 Pr(0011) – 2 Pr(0101) = (2q – 1)(p2 – q + q2). (4) 

Because q < ½, we have Pr(xxyy) < Pr(xyxy) if and only if q(1 – q) < p2. 
 

Notes 
 You can use the same strategy to calculate Pr(xyyx) = 2 Pr(0110), but it is < Pr(xyxy) 

and so won’t affect our analysis of the performance of parsimony. 
 Felsenstein (1978 Syst. Zool. 27:401-410, equation 11) used the following reasoning 

to calculate Pr(xxyy).  Having 0 or 1 at the root won’t affect Pr(xxyy) = Pr(0011) + 
Pr(1100) although it affects the relative contributions of the two terms.  Thus one may 
fix the root state (at the left ancestor) at 0 and consider the two possible states (0 and 
1) at the right ancestor, with two terms for Pr(0011) and two terms for Pr(1100), and 
four terms in total.  The result is of course the same. 
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Chapter 5 
 
*5.3  Suppose the target density is N(, 1), and the MCMC uses the sliding-window proposal 
with normal proposals, with the jump kernel x* ~  N(x, 2).  Show that the acceptance 
proportion (the proportion at which the proposals are accepted) is (Gelman et al. 1996)  

  12
jump tanP 2

 
 . (5.48) 

 
Solution.  The true value of the location parameter  is arbitrary, so without loss of generality 
we fix it at 0, and the target density is 

 

 
2 21

2
( ) e xx


  . (5) 

 
Suppose the current value is x, and the new proposed value is y.  The proposal density is  
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There are two ways by which a proposal y is accepted.  First, if y has a greater height, (y) > 
(x), it is accepted straightaway.  Second, if y has a smaller height, it is accepted with 
probability (y)/(x).  The acceptance proportion is a sum over those two situations 
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Here the indicator IA = 1 if A is true and 0 otherwise.  The first integral I1 is the probability of 
accepting the proposal when (y) > (x) and I2 is the probability when (y)/(x) < 1.  By 
switching symbols x and y in I2, it is clear that I2 = I1.  (This equality is due to the fact that the 
Markov chain generated by the MCMC algorithm is time-reversible and holds for any target 
density and for any Metropolis-Hastings algorithm.) 
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Note that the integrand is the density of a bivariate normal distribution centered at the origin.  
Because of the symmetry of the density, the volume (or integral) left of the y axis is the same 
as that on the right, so the integral is twice that on the right (where x goes from 0 to ).  
Furthermore the region of integration (y) > (x) is equivalent to |y| < |x| or –x < y < x when x 
> 0. 

Change variables from y to z = (y – x)/, with dz = dy/. 
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Here the integrand is the density of a standard bivariate normal 
distribution, so that the volume over the whole x-z plane is 1.  The 
region of integration is shown in the graph on the right.  The line 
y = –2x/ has slope –2/ and forms an angle tan–1(2/) with the x 
axis.  The integral in (9) is thus equal to the angle in the graph 
divided by 2 (the angle for the whole plane).  
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Alternatively changing variables from the x-z Cartisian system in equation (9) to the polar 
system (x = r cos, z = r sin) gives the same result. 
 

 
 
5.4  Write a program to implement the MCMC algorithm of subsection §5.3.2 to estimate the 
distance between the human and orangtutan 12S rRNA genes under the JC69 model.  Use any 
programming language of your choice, such as BASIC, Fortran, C/C++, Java, or 
Mathematica.  Investigate how the acceptance proportion changes with the window size w.  
Also implement the proposal of equation (5.34). (Hint: use the logarithms of the likelihood 
and prior in the algorithm to avoid numerical problems.) 

 

A C program named MCMCJC2s.c is in the data archive, posted at the book web site. 
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Chapter 9 
 
9.1  Write a small simulation program to study the birthday problem.  Suppose that there are 
365 days in a year and that one’s birthday falls on any day at random.  Calculate the 
probability that at least two people out of a group of k = 30 people have the same birthday 
(that is, they were born on the same day and month but not necessarily in the same year).  
Use the following algorithm.  (The answer is 0.706.) 

1. Generate k = 30 birthdays, by taking 30 random draws from 1, 2, …, 365. 
2. Check whether any two birthdays are the same. 
3. Repeat the process 106 times and calculate the proportion of times in which two 

out of 30 people have the same birthday. 
 
A C program named birthday.c is in the data archive, posted at the book web site. 

 
9.1.  Long-branch attraction by parsimony.  Use the JC69 model to simulate data sets on a 
tree of four species (fig. 9.3a), with two different branch lengths a = 0.1 and b = 0.5.  
Simulate 1000 replicate data sets.  For each data set, count the sites with the three site 
patterns xxyy, xyxy, xyyx, and determine the most parsimonious tree.  To simulate a data set, 
reroot the tree at an interior node, as in, say, figure 9.3b.  Generate a sequence for the root 
(node 0) by random sampling of the four nucleotides, and then evolve the sequence along the 
five branches of the tree.  You may also use the approach of multinomial sampling.  Consider 
a few sequence lengths, such as 100, 1000, and 10,000 sites. 
 
If you don’t want to write your own simulation program, you can use an existing program 
such as evolver in paml or seq-gen to generate datasets. 

 
9.2.  Write a small simulation program to study the optimal sequence divergence when two 
sequences are compared to estimate the transition/transversion rate ratio  under the K80 
model.  Assume  = 2 and use a sequence length of 500 sites.  Consider several sequence 
distances, say, d = 0.01, 0.02, …, 2.  For each d, simulate 1000 replicate data sets under the 
K80 model and analyze it under the same model to estimate d and  using equation (1.11).  
Calculate the mean and variance of the estimate ̂  across replicate data sets.  Each data set 
consists of a pair of sequences, which can be generated using any of the three approaches 
discussed in subsection §9.5.1. 
 
The results should be like those in the graph.  The 
MSE is large for both large and small ds, 
indicating that it is hard to estimate  reliably 
with both very divergent and very similar 
sequences.  For all three sequence lengths 
examined here, the optimal sequence divergence 
is at about 0.6, although the MSE is small for the 
range 0.3 < d < 1.  Such optimal distances seem 
to be larger than most biologists think.  Also note 
that when the sequence length (n) is large and the 
datasets informative, the MSE is approximately 
proportional to 1/n, so that the MSE for L = 1000 
is about 10 times as large as that for n = 10000.  
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In large datasets, the bias is nearly 0, and the variance is proportional to 1/n. 
 
There are a variety of ways of conducting this simulation.  The method of using the 
exponential waiting times is time-consuming for long sequences and large distances.  The 
method of generating one sequence and then using the transition probability matrix to evolve 
the other is faster.  An even faster method is to sample from the trinomial distribution with 
the three categories corresponding to the following three site patterns: sites that are identical 
between the sequences, sites with a transitional difference, and sites with a transversional 
difference.   
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