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Studies of evolution at the molecular level have experienced phenomenal growth in the  
last few decades, due to rapid accumulation of genetic sequence data, improved computer  
hardware and software, and the development of sophisticated analytical methods. The flood  
of genomic data has generated an acute need for powerful statistical methods and efficient  
computational algorithms to enable their effective analysis and interpretation.

Molecular Evolution: A Statistical Approach presents and explains modern statistical  
methods and computational algorithms for the comparative analysis of genetic sequence  
data in the fields of molecular evolution, molecular phylogenetics, statistical phylogeography,  
and comparative genomics. Written by an expert in the field, the book emphasizes conceptual 
understanding rather than mathematical proofs. The text is enlivened with numerous examples  
of real data analysis and numerical calculations to illustrate the theory, in addition to the  
working problems at the end of each chapter. The coverage of maximum likelihood and  
Bayesian methods are in particular up-to-date, comprehensive, and authoritative. 

This advanced textbook is aimed at graduate level students and professional researchers  
(both empiricists and theoreticians) in the fields of bioinformatics and computational biology,  
statistical genomics, evolutionary biology, molecular systematics, and population genetics.  
It will also be of relevance and use to a wider audience of applied statisticians, mathematicians, 
and computer scientists working in computational biology.
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Foreword

Over the last two decades, Ziheng Yang has been a leading architect of the emergent field
of computational molecular evolution. His first book, Computational Molecular Evolution,
was published in 2006 and became an instant classic. The book broke new ground both
in terms of its subject matter and expository style. It presented an up-to-date, detailed,
and comprehensive account of computational and statistical aspects of molecular evolu-
tionary analysis, while retaining an informal style and pragmatic perspective that made it
highly accessible. The book targeted a readership that included both biologists and applied
mathematicians, yet it did not oversimplify in catering to biologists by avoiding advanced
calculus or linear algebra, or pandering to mathematicians with the usual theorem-proof
format. Somehow, this middle-of-the-road approach seems to have worked. Furthermore,
despite the book’s graduate textbook flavour the chapters were peppered with Yang’s
original interpretations and suggestions making it part textbook and part research mono-
graph. Even individuals who were already experienced in computational evolutionary
analysis will have gained new insights.
Yang’s knowledge and practical experience are evident on every page of his new book,

Molecular Evolution: A Statistical Approach. What is particularly remarkable is his abil-
ity to translate for non-specialists the key developments of this rapidly changing field
so effectively. The content represents a significant expansion of his previous book; in
particular, the treatment of Bayesian inference is much more extensive. Bayesian infer-
ence has become a cornerstone of phylogenetic inference over the last decade, as many
programs such as MRBAYES and BEAST are now available which implement Markov
chain Monte Carlo (MCMC) simulation methods for this purpose. The book devotes
new chapters to the fundamentals of Bayesian inference and MCMC methodologies.
Biologists using MCMC programs for molecular evolutionary analyses will benefit from
the ground-up approach of these chapters, which introduce the basic principles using
motivating examples based on evolutionary processes of obvious practical importance
that will be familiar to molecular evolutionists. In this way, remarkably clear explan-
ations are provided for such notoriously difficult concepts as reversible-jump MCMC,
Dirichlet processes, Bayes factor calculations for model comparison, and so on. Several
excellent books exist on phylogenetic inference, written from either an applied statist-
ical perspective (Felsenstein 2004) or a more rigorous mathematical one (Semple and
Steel 2003). However, I am unaware of any book that contains the extensive details
found in Yang’s book concerning the MCMC implementations (proposal moves, prior
distributions, etc.) underlying currently available programs for Bayesian phylogenetic
inference.
In this era of cheap next-generation sequencing, multi-locus genomic data are the new

norm and therefore the distinction between inference of locus-specific gene trees and
multi-locus species trees has become key. Molecular Evolution: A Statistical Approach thus
contains a new chapter that covers the multi-species coalescent, species tree inference,
and species delimitation methods. Yang has been a key contributor to the development
of this theory during the last decade and provides one of the clearest explanations of the
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multi-species coalescent that I have read. For persons whose research interests include
computational molecular evolution and molecular phylogenetics this new book from
Ziheng Yang is essential reading.

Bruce Rannala

Davis, California
September 2013
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Preface

The main objective of this book is to present and explain the statistical methods and
computational algorithms developed in molecular evolution, phylogenetics, and phylo-
geography for the comparative analysis of genetic sequence data. Reconstruction of
molecular phylogeny and inference of the molecular evolutionary process are considered
problems of statistical inference, and likelihood and Bayesian methods are treated in
depth as standard methods of data analysis. Heuristic and approximate methods are dis-
cussed from such a viewpoint as well and are often used to introduce the central concepts,
because of their simplicity and intuitive appeal. However, the book does not dwell on
proofs or mathematical niceties; it emphasizes care but not rigour.
Molecular Evolution: A Statistical Approach represents an expanded and updated treat-

ment of my earlier research monograph Computational Molecular Evolution, published by
Oxford University Press in 2006. The major change has been the far more comprehensive
and extensive coverage of Bayesian methods, while the target audience has been expan-
ded to include upper level undergraduate as well as graduate students. It can also be read
by researchers working in such diverse fields as evolutionary biology, molecular system-
atics, population genetics, statistical phylogeography, bioinformatics and computational
biology, computer science, and computational statistics. It is hoped that biologists who
have used software programs to analyse their own data will find the book particularly
useful in helping them understand the principles of the methods. For applied math-
ematicians, molecular studies of evolution are ‘a source of novel statistical problems’
(Neyman 1971), and this book will provide an accessible summary of the exciting and
often unconventional inference problems in the field, some of which are yet unsolved.
Although this new book is written at a similar level of mathematical sophistication as

my 2006 work, I have taken care to assist the biologist readers who may find the math-
ematical arguments challenging. First, every important mathematical result is followed
by a verbal rendering, and it is reportedly possible to read the book while skipping the
equations, at least at first reading. Second, I have included numerous examples of real
data analysis and numerical calculations to illustrate the theory, in addition to the work-
ing problems at the end of each chapter. Many biologists find numerical calculations
less intimidating than abstract formulae. Example datasets and small C and R programs
that implement computational algorithms discussed in the book are posted on the web
site for the book: http://abacus.gene.ucl.ac.uk/MESA/. Third, I have prepared a primer on
probability and statistics, with an overview of mathematical results used in this book, for
biologists who would like to grapple with the mathematical details in the book. This has
been used as the pre-course reading material for an advanced workshop on Computational
Molecular Evolution (CoME) that runs annually in Hinxton, Cambridge, and Heraklion,
Crete, co-organized by Aidan Budd, Nick Goldman, Alexandros Stamatakis, and me. It is
available at: http://abacus.gene.ucl.ac.uk/PPS/PrimerProbabilityStatistics.pdf.
The 2006 book was used as a textbook for graduate courses on bioinformatics and com-

putational genomics in Peking University (2010) and in ETH Zurich (2011). I thank the
students in those courses for their useful feedback. For instructors, I have found an early
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coverage of the simulation chapter to be useful, as afterwards simulation projects can be
assigned as homework when other chapters are taught.
I am grateful to a number of colleagues who read earlier drafts of chapters of this

book and provided constructive comments and criticisms: Konstantinos Angelis, Mario
dos Reis, Ed Susko, Chi Zhang, and Tianqi Zhu. The following colleagues read and com-
mented on Chapter 9: Daniel Dalquen, Adam Leaché, Liang Liu, and Jim Mallet. Needless
to say, all errors that remain are mine. (Please report errors and typos you discover to me
at z.yang@ucl.ac.uk. Errata will be posted on the book’s web site.) Thanks are also due to
Helen Eaton, Lucy Nash, and Ian Sherman at Oxford University Press for their support
and patience throughout the project.

Ziheng Yang

London
September 2013
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