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0. Preface

This document provides an overview of mathematical and statistical results useful in
molecular evolution, phylogenetics, and population genetics. It is prepared for two purposes.
First it is to be used as the pre-course reading material for the Computational Molecular
Evolution (CoME) Workshop organized by Nick Goldman, Aidan Budd, Alexandros
Stamatakis, and me that runs annually in Hinxton, Cambridge or Heraklion, Crete
(http://abacus.gene.ucl.ac.uk/CoME/). Second it is used as reading material for biologist
readers of my books Computational Molecular Evolution (Yang 2006, OUP) and Molecular
Evolution: A Statistical Approach (Yang 2014, OUP).

The notes are not comprehensive and are mostly for review. I have added R code for the
graphs. You may install R, and copy the R code to reproduce the graphs. Comments and
suggestions are welcome. In particular, please let me know which parts are too hard, and I
will try to add more examples.

I would like to thank the following colleagues for providing assistance, making comments,
correcting mistakes or helping with the translation of the glossary: Aidan Budd, Hiro
Kishino, Fengrong Ren, Alexandros Stamatakis, Veronika Boskova and Tianqi Zhu.

Ziheng Yang
September 2011, updated March 2013
Last updated, May 2014



1. Mathematical preliminaries

1.1. A few words about notation

Journal publishers are increasingly leaving it to authors to do the typesetting, so it is useful to
know how to write professional-looking mathematical equations using Microsoft Word.

Mathematical variables are by convention written using italic English letters, such as a, b,
X, ory. It is also common to use X, Y, Z W for unknowns, a, b, ¢ for constants, i, J, k for
integers or indexes, and mand n for counts.

An vector may be written in bold letters, such as x = {Xi}, and a matrix in bold capital
letters, such as P(t) = {pij(t)}. Alternatively one may write a vector using an italic English
letter and a matrix using an italic capital English letter, such as X = {Xi}, and A= {aij}, and Q
= {qjj}. Either is fine but you should be consistent.

There should be a small space on both sides of operators +, —, X, and =. Arabic numerals
should be written in Roman font and not italic. For example write y = ap — X’ instead of y =
a0 - x* or y=ao-x2. Note the difference between ‘—* (minus sign) and a dash. (If you type “I -
2” with spaces around the dash, MS Word will “auto-correct” the dash into minus.)

In statistics, small Greek letters are often used to represent parameters while English
letters are for random variables. Both should ideally be written in italic. For example, the
mean and variance of the normal distribution are # and ¢, while the shape and scale
parameters of the gamma distribution are zand . The collection (vector) of parameters in
the model is often written as for ©. For example, if the data are a sample from the normal
distribution with mean # and variance ¢°, we may write = {1, 0°} as the parameters in the
model. Whether @is a scalar or a vector is typically clear from the context.

We may write X~ N(#, 0°) to mean that the random variable X follows the normal
distribution with mean  and variance o°. Statistical books use capital English letters (e.g., X
and Y) to represent random variables, and the corresponding small letters (e.g., X and y) for
their realized values. Thus Pr{X <3} is the probability that random variable X is less than 3
and Pr{X < x} is the probability that random variable X is less than X. In non-statistical
publications, we rarely bother with this distinction. Thus we write X ~ N(#, ¢%) and Pr{x <
3}, and try to avoid using Pr{X < x}.

Hotkeys for MSWord. Press Ctrl-i for italic, Ctrl-b for bold, Ctrl-+ (Ctrl-Shift-=) for
superseript and Ctrl-= for subscript. All these hotkeys are switches, so you press the same key
again to remove the formatting. Try Ctrl-i (a) when some text is highlighted, (b) when the
cursor is inside a word but nothing is highlighted, and (c) when the cursor is at a space and
nothing is highlighted (and start typing). Use Insert-Symbol to insert Greek and
mathematical symbols such as ¢, X, and . The symbol 7 (for log likelihood) is in the font
set MT Extra. Do not write a and then change its font to Symbol to get &. You will see the
difference when you change the font for the whole paragraph from Times New Roman to
Arial, say. Use Insert-Object-Microsoft Equation Editor to write equations. Do not write a
symbol as an equation.

1.2. Summation and product symbols

DX =XAX e F X (1.1)

i=1



Zn:cx =CX, +CX, +-- +CX, =czn:>g :
i=1 i=1

X=X X X (1.2)

[Te"" =5 =exp{—$(i>¢—2ﬂi>ﬁ +nﬂ2j}~
i i=1 i=1

N N
log{H pi)S } = log( plxl ;2 pl>\(lN): X log(p,) + X%, log(p,) +---+ X log(py) :ZX log(p)-
i=1

i=1

Note that the logarithm in this note is the natural logarithm, with base e.

Summing up N positive numbers X as in equation (1.1) when they are too small or too
large may run into numerical problems called overflows or underflows. On most computer
systems we use today, the smallest nonzero double-precision floating number is 2.25x 103%,
so any number smaller than this will become 0 on the computer, causing an underflow.
Similarly the largest double number is 1.79 x 10?7, so any number greater than this will not
be possible to represent on the computer (Inf or Nan), causing an overflow. One solution is
to store the logarithms of the numbers. The question is then how to calculate the logarithm of

the sum given the logarithms of the numbers? In other words, given yi = log{xi},i=1,2, ...,
n, how do we calculate log{zin:l )g} ?

The following table illustrates the procedure, with the Xi to be 107'°, 107'%, 1072°, 1072°
(these numbers are not that small and are used for illustration here). In the computer we store
the logarithms (Yi) (row 2). We find the largest of the yi to be y* = —23.02585. This is used
for scaling: it does not have to be equal to but should be similar to the largest among the Vi.
Subtract y* from each yi (row 3). Take the exponential and sum up (row 4). The final result

is log{zin: 1 &} =y + log(s) = —23.02584.

(1) xi 10710 10 10720 1072

Q)yi= —23.02585 —34.53878 —46.05170 —57.56463 Largesty =
log{xi} —23.02585

B z=yi-y 0 —11.51283 —23.02575 —34.53868

(4) exp{z} 1 10°° 10710 1071 Sum s=1.000010

Exercise 1 (Summing up large numbers). Use the above procedure to calculate the
logarithm of the sum e!%% + 1200 + ¢!215 + ¢1216 [ The answer is 1216.31326.]



1.3. Linear algebra

An mX nmatrix is written as A= {aj}. A column vector is an N X 1 matrix while a row
vector is a 1 X N matrix. For example,

Xl
X= (X1, X2, ..., Xn)T = X2 ,
X,
where the superscript T stands for transpose, is a column vector, and

Y=Yz ..., ¥n)
is a row vector. If vectors X and y are of the same size, their inner-product is defined as

xy= Y xy. (13)

If both matrices A and B are of the same size (that is, if they have the same number of
rows and the same number of columns), one can define their sum C = A + B, where C = {Gij}
with ¢ij = ajj + bjj.

1 0 00 a 00 o0 g, a b ¢ 0
01 00 0 b 0O a d e 0
|4 = D = Q = q22 0 =
0 010 0 0coO b d qg; f 0
0 0 0 1 0 0 0 d c e f q, 0
Identity matrix l4 Diagonal matrix Symmetrical matrix Q, A null vector

D =diag{a, b, c,d} in which gjj = gji.

If Ais mx nand B is n x k, then their product exists, C = AB, which is of size mx k. The
ijth element of C is the inner product of the ith row in A and the jth column in B:

Gy =D e A (1.4)

Exercise 2 (matrix addition and multiplication). Suppose

a b c 1 00 d 0 0
A=|d e f| I=|0 1 0| D=0 d, 0
g h i 0 0 1 0 0 d

Confirm that IA= Al = A. Calculate DA and AD. What pattern did you see? Calculate D?,
and D", for any natural number n.

Let A be a square matrix of size n x n. If there exists an N X N matrix B such that
AB=BA= I, (1.5)

where In is the identity matrix of size n X n, then A is said to be non-singular, and B is the
inverse of A, also written as B= A"!. The inverse of a matrix, if it exists, is unique. A square
matrix that does not have an inverse is said to be singular or degenerate. A square matrix is
singular if and only if its determinant |A] = 0.

The system of linear equations



& X X+ X, =b,
3, % +a,X + o+ ay, X, =h,

(1.6)
a, X +a,X +-t+a,X, =h,
1s written in matrix form as
AX=Db, (1.7)
where X and b are column vectors of size n. The solution, if it exists, is given as
x=A"b. (1.8)
Matrix diagonalization or spectral decomposition. Let A be an nx n matrix. If there
exists a non-singular N X N matrix U and a diagonal matrix A= diag{/Ai, A2, ..., An} such that
A=UAU", (1.9)

then A is said to be diagonalizable, A1, A2, ..., /n are called the eigenvalues, eigenroots, latent
roots or characteristic roots of A, and column vectors of U are called the right eigenvectors
of A, and rows of U™! are the left eigenvectors. Equation (1.9) is called the spectral
decomposition of matrix A. Note that not all square matrices can be diagonalized.

To find the eigenvalues and eigenvectors, we solve the system of linear equations

AX = X, (1.10)
or

(A— Ax=0. (1.11)

Note here A is a scalar, A and | are n x n matrices, and X is a non-null column vector. First we
find the eigenvalues by solving the nth-order polynomial equation

|A— Al =0. (1.12)
There should be n roots, but some of them may be identical. Then use each of the n roots to
find the corresponding right eigenvector X from equation (1.11), which will be a column in U.
Note that if 4 and X satisfy equation (1.10), so will 4 and cx for any ¢ # 0, so the eigenvectors
are not unique.
Example (eigensolution for Kimura’'s 2-parameter model of nucleotide substitution).
Find the eigensolution (spectral decomposition) of

~(a+2f) @ p B
ol| @ ev2p) P B

B B —@+2h) o«

B B a  —(a+2p)

One can use equation (1.12) to find the four eigenvalues to be A1 = 0 (the first one is
always 0), &2 =—4p, and A3 = la =-2(a+ f). Then equation (1.10) can be used with each of
the eigenvalues to find the corresponding right eigenvector X, which should be the
corresponding column in U. The solution is

1 1 0 170 o 0 0 1 1 1 1
1 1 0 -1l[0 —4 0 0 L1 _1 _1

Q= p ot 3)
1 -1 1 0f[0 0 =2a+p 0 0o 0 L -1
1 -1 -1 0|0 0 0 2@@+p) ||t -+ 0 0



Exercise 3 (matrix inversion). Find A where
A= )
c d
S
}. Find r, S, t, W by solving the equations AA =1. ]

u

Exercise 4 (eigensolution for the Jukes & Cantor model). Find the eigensolution of
=34 A A A

A =34 1 A

A A =34 A

A A A =34
Hint: Use the result from the example for the K80 model.

r
[Hint. Let Al = [t

Algebraic functionsof amatrix. It is easy to see that the nth power of a diagonal matrix
A=diag{di, A2, ..., An} is also a diagonal matrix: A"= diag{A",A),---, A"} . With the
spectral decomposition of A (equation 1.9), it is easy to calculate the nth power of A:

A'=UAU")" = UAU )Y UAU™)---«(UAU ) =UAU", (1.14)

An algebraic function of a matrix is typically defined as a limit. Here we are interested in
the exponential of a square matrix, which is useful in Markov chain models of nucleotide or
amino acid substitution. Following the Taylor expansion of the exponential function of a
scalar X

=1+ X+L X +Lx 0 +.... (1.15)

the exponential of an N X N matrix A is defined as

=l +A+ LA +L A+ (1.16)
Now if the spectral decomposition of A is available (equation 1.9), we have
ef=Ue'U, (1.17)

where e/ = diag{e’,e”,---,e™}.
Exercise 5* (Transition probability matrix under Kimura’'s 2-parameter model). Use the
result of the Example (equation 1.13) to calculate e, where t is a scalar.

1.4. Differentiation

Unless stated otherwise, we assume that all functions discussed in this note are continuous
and smooth. When we calculate the derivative of a function, the derivative is assumed to
exist (or the function is differentiable). Our emphasis is on intuitive understanding rather
than mathematical rigor.

Suppose y = f(x) is a function of X. When X changes by AX, y changes by Ay. Then the
ratio Ay/Ax measures the slope. For a straight line y = a + bx, the slope is b. For a curve, the
slope may differ at different parts of the curve (that is, it may depend on X), and is defined as

Y i Y (1.18)
dx ax-0 AX



dy/dx is also written as y' or f'(X). The function y = f(X) is increasing if y' > 0 and
decreasing if y <0. When a smooth function f(X) reaches a minimum or maximum inside its
domain, y' = 0. Nevertheless, the inverse is not true: y' = 0 does not necessarily mean a
minimum or maximum (see figure). Also if the function is defined over the interval a< x< b
and if the minimum or maximum occurs at the boundary a or b, then y' may not be 0.

Suppose Y = X>. When X increases from X to X + AX, Y increases from X* to (X + AX)?, with

2
Ay = (X + AX)? — X2 = 2XAX + (AX)?, so that Ay/AX = 2X + AX — 2X when AX — 0. Thus % =
X
2X. Here are a few more examples.
: d -
—C =0 where Cis a constant. —X ==X
dx dx
d d d . 1 1
—e*=¢". —Ix=—x =ixx" =——.
dx dx dx~ 2Jx
d 1 d
_10 Xy =—. —a¥=a*
x g{x} x & =a log{a}.
iXa=axa_1. isinX=cosx.
dx dx
Note that log means the natural logarithm, with base e.
The product rule. If both uand v are functions of X, then
(uv)'=uv'+u'y, d(w) =uy+v%. (1.19)
dx dx  dx
The chain rule. IfYy is a function of U, and U a function of X, then
ay_dy du (120
dx du dx

Here are a few examples.

d _1y2 1
—e 2 =e 2
dx dx

X2 ) d( —%Xz) _ e—%xz (_X) '

If y=x*"e?, then

—px -1
y _ e de s dx
dx dx dx

=Xl () re (@ - X =X P (xBra-T). (121



)

Suppose y = X “'e#*. Calculate
dy _
dx
Since f'(X) is a function of X, we can take its derivative, to get the second derivative
df '(x)

. The nth derivative is written as Y™ or f (V(x).

H:fHX —
y () ==

Taylor expansion. One can use a polynomial to approximate an arbitrary function f(X). The
Taylor expansion of the function f(X) around X = a is

f(x)=f@+f'@x-a)+if"@x-a)y+L fV@x-a)y+-. (1.22)
Here f(a) is the function f(X) evaluated at Xx=a, f'(a) is the first derivative evaluated at X =
a: thatis, f'(a)=f '(X)|X=a, and so on. Two examples are
e =1+xX+ix*+Lx+Lx +.... (1.23)

log(l+Xx)=x—1x*+4x* —4x*+ ... (1.24)

One can use the first two or three terms of the Taylor expansion to approximate the
function f(X) in the neighbourhood of X = a, giving

f(x)= f(a)+ f'(a)(x—a). (1.25)
f(x)= f(a)+ f'(@(x-a)+L f"(@)(x-a). (1.26)
For example, when X is close to 0 (if |x| [] 1)
e“=1+xX (1.27)
Similarly if X is close to 0
log(1 + X) = X. (1.28)

In statistics, the Taylor expansion is sometimes used to approximate the log likelihood
function /(6) =log{L(6)}. Suppose /(6) has a mode (maximum) at @, at which the gradient
l '(é) =0. Then equation (1.26) gives the approximate value of /() in the neighbourhood of

0 as
0(0) = () +L10"(B)(O-6). (1.29)
This means that the likelihood L(6) is approximated by the density of a normal distribution
L(§) = = /@eH"ON-07 (1.30)
where the variance of the normal distribution is —1/ l "(é) . The density function of the

normal distribution is given later in eq. (2.21).

1.5. Integration

Integration is the inverse of differentiation.
dF(x)

The indefinite integral. If F'(x)= = f(X), then

10



jf(x)dx =F(X) + C, (1.31)
where C is a constant. The function f(X) is called the integrand. Thus

Iexdx =eX+C.
1
j;dx =log(x) + C.

.[x”dx:ﬁx““ +C, nz—1.
Integration by parts .[ udv=uv-— J-Vdu . (1.32)
For example,
j x* log(X) dx = j log(x)d(+x%)

= 1’ log(X) - j% x* dlog(X)

=1 x’log(x) —%J‘ x*Ldx =1x" log(x) —%J' x> dx

=1x’log(x)-1x’+C.
Change of variables
Calculate J.Xe_xz/ 2dx.
Let u= —x*/2. Then du=-xdx. Thus

[xe7Pdx=-[e"du=—-¢"+C=—e""+C.

Or one can write

[ xe P2dx = — [ e ¥ lPd(=L) =— [ de™ =—e*" +C.

b
The definite integral. | = j f (x)dx is the area under the curve f(X) between X =a and X =
b, but the area below the X axis is negative. Here f(X) is known as the integrand, and a and b
. T . . dF(x
are the integration limits. Some integrals can be calculated analytically. If F'(X)= FX _

f(X), then
jb f(x)dx = F(b) - F(a). (1.33)
For example,

.[:%e_x/”dx =—¢ V¥

S=(meT) - (") =1.

11



y fx <- function(x) (x+1)* (x-2)* (x-4)
A xstart=-1; xend=4.5; by=0.01;

x = seqg(xstart, xend, by)
y = fx(x);

plot(x, y, type="n", xlab="", ylab="", frame.plot=0,
tck=-.02, xaxp=c(0,xend, 1)) ;

X
Y
polygon (c (xstart,x,2),c(0,y,0), col='lightblue') ;
x = seq(4, xend, by)

seq(xstart, 2, by)
fx(x);

> y = f£x(x);
a b X polygon(c(4,x,xend),c(0,y,0), col='lightblue');
x = seq(2, 4, by)
y = £x(x);

polygon(c(2,x,4),c(0,y,0), col='lightgray');

A definite integral of a function f(x) over (a, b) represents
the signed area of the region bounded by the curve of
the function and the x axis. In most of our applications,
f(x) > 0, so the integral represents the area above the x-
axis under the curve between a and b.

Integrals involving the probability density function of a continuous distribution.
We will describe the probability density functions for continuous distributions in section 2.3
but one thing to note here about them is that they integrate to 1, or the area under the
probability density curve is 1. This result is very useful in calculating integrals involving
continuous random variables. Here we give two examples.

The first involves the gamma distribution, which has density

90 @, ) =%e/’w1 . x>0, (1.34)

with J: g(x e, B)dx = 1. Suppose now we want to calculate the following integral

| = jo“ e *g(x, B)dx = j: e ™ Le X dx. (1.35)

This integral arrives in the so-called gamma distances. We rearrange the integrand so that it
becomes a gamma density

| = (%)—a J—:[%e—(ﬁm)xxaq }dX=<%)“”. (1.36)

Note that now the integrand in brackets is the gamma density g(x; &, B+ C) so the integral is
L.
A second example involves the normal distribution, which has density

1 x—u)?
zUZ(X Hy

AX; 1, o) = e , —o0<X< oo, (1.37)
with J: #(X; 1,07 )dx = 1. Suppose we want to calculate the integral

M = [ 0t Dot o0 ) = [~ e e . (1.38)
Here M is the marginal likelihood in Bayesian analysis of the normal model, in which the
parameter is the population mean 4, and we assign a prior & ~ N(0, 1), while the data are a
sample of size N from the population. The variance of the population is given as 1. In
attacking this integral, treat nand X as given constants and  as the only unknown variable
or parameter. The exponent in the integrand of equation (1.38) is a quadratic form of £, so

12



we “complete the square” and have

N(X—u)* +u1* =(n+1)( —§—§)2+%72. (1.39)

f oo ] du

X[ J " g ) o ™ d,u} < The red part is independent of u

X o L) (- : . :
= zz/nxﬁx 27/(n+1)xe ™ x[j_wme (=3%) d,u} <« Integrand is normal density.
><2

1 ¥

i

2

€

= 4(%;0,L+1).

)

2r(E+1)
(1.40)

Many integrals in statistical applications cannot be calculated analytically. We mention
two important ones here.

The first is the cumulative distribution function (CDF) of the standard normal distribution
(see below for the definition of CDF)

d(z) = I;ﬁe‘tz/zdt . (1.41)

-x2/2

The integrand @(X) = ﬁe is the probability density function (PDF) of the standard

normal distribution. The CDF is ®(2) = Pr{Z <z} where Z~ N(0, 1). Here are a few familiar
values: ©(1.96) = 0.975, and ®(2.58) = 0.995.
The second integral is called the gamma function

()= j: X* e ¥dX . (1.42)

Only the case of &> 0 concerns us here. When « is a whole number,
I'(ny=(n-1n!, (1.43)

so the gamma function is a generalization of the factorial to non-integer numbers. When «is
not an integer, numerical methods are used to calculate I'(@).

INoa+1)=al(o),
r)=r.

Numerical algorithms exist for calculating ®(2) and I'( ).
= . - #### Normal CDF function
y ¢(X) y = Xa le X a=-3; b=3; threshold=0.5;
curve (dnorm(x, 0,1), xlim=c(a,b),
frame.plot=0) ;
x=seq(a, threshold, 0.01) ;
~ ®(0.5) y=dnorm(x,0,1) ;
o polygon (c(a,x, threshold), c(0,y,0),
') col='lightblue') ;

<
o
™
o

02 03

#### Gamma function

gammaf <- function(x, a, b) x"(a-1)*exp(-b*x)

a=2; b=1; range=8;

curve (gammaf (x, a, b), from=0, to=range,
frame.plot=0) ;

x=seq (0, range, 0.01) ;

y=gammaf (x,a,b) ;

polygon(c(0,x,range), c(0,y,0)

00 041

1
w
V)

1
—
o
—
N
w |

o
N
X A
(o)
oo
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The CDF ®(x) of the standard normal distribution and the T'(x) col="lightblue');

function are the shaded areas in the plots. plot(x,y, type='h', frame.plot=0,
col='lightblue') ;

Numerical integration. We break the interval (&, b) into n pieces, each of width h= (b —
a)/n. We approximate the area of each piece by the area of the rectangle, with the height
given by the function value at the mid-point of the interval. Label the n mid-points as X1 = a
+h2,xx=a+3n2,..,xn=a+(2n—1)h/2,and letyi =f(xi),i=1,2, ...,n. Then

b
. (b-a) _ b-a n i1\ (b-a)
[ f0dx=C2(y 4y, +ty) =223 f@+r(-HED.  (144)
#### Numerical integration, midpoint method
fx <- function(x) 0.5*x™3 - 3*x™2 + x + 20
a0=0.5; b0=6.5; ymax=35;
a=1; b=6;

xmid = seqg(a+0.5, b-0.5, 1);
ymid = fx(xmid) ;
- plot (xmid, ymid, type='h', lwd=2, col="blue", xlim=c(a0,bo0),
ylim=c(0,ymax), xaxs='i', yaxs='1i')
for(i in 1:5) {
xb = c(a+i-1, a+i-1, a+i, a+i);
mid = fx(a+i-0.5);
yb = c¢(0, mid, mid, 0);
polygon(xb, yb, density=15, col="blue");
}
a b curve (fx, from=a0, to=b0, lwd=3, col="red", add=T);
x = seqg(a, b, 1);

Midpoint method y = £x(x);

lines(x,y, type='h');

fx <- function(x) 0.5*x™3 - 3*x™2 + x + 20

a0=0.5; b0=6.5; ymax=35;

a=1; b=6;

x = seqg(a, b, 1);

y = £x(x);

plot(x, y, type="h", lwd=2, col="blue", xlim=c(a0,b0),
ylim=c(0,ymax), xaxs='i', yaxs='i');

lines(x, y, lwd=2, col="blue"

curve (fx, from=a0, to=b0, lwd=3, col="red", add=T);
polygon(c(a,x,b),c(0,y,0), density=15, col="blue");

// #### Numerical integration, trapezoid method

Trapezoid method

The trapezoid method. We break the interval (a, b) into n pieces, each of width h=(b—
a)/n. We label the (n+ 1) points as xo=a, x1=a+h,xx=a+ 2h, ..., xn=Db, and let yi = f(x),
i=0,]1,2,...,n. Then we approximate the area of each picce by the area of the trapezoid, to
get

b
[ FOOMXD 50+ YD+ 5+ Y0) 4B (Yot + Vi)

=3V +2Y, +2Y, + 2V, + ).
More sophisticated methods may use a curve (polynomial) to approximate the function
f(X). Note that a polynomial p(X) = @ + aiX + ax* + ... + anx" = ZZ & x™ is integrable,

(1.45)

with j p(X)dx = ZZ ! x™! . If f(X) is a straight line, f(X) = @ + aiX, two points will be

enough to achieve a perfect fit. In general, one can fit a polynomial of order n with n+ 1
points. A class of numerical integration methods known as Gaussian quadrature try to
approximate the integrand using those forms. Similarly if the integrand can be written in the
forms f(X) = p(X)e®, f(X) = p(X)sin X, etc., with p(X) to be a polynomial, one can calculate the
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integral analytically.
The integral ij.d f (X, y)dydx is the volume between the X-y plane and the surface f(X, y)

over the rectangle defined by a<x<band c<y<d. [[Add a graph to show volume.]]

Higher-dimensional integrals can be calculated numerically as well, just like the 1-D
integrals. While the amount of computation for 1-D integrals is proportional to the number of
points n, the amount of computation for integrals of k dimensions is proportional to nK, which
becomes quickly unmanageable with the increase of the dimension k. Calculation of high-
dimensional integrals is a major problem in many applications in physics and statistics. This
difficulty has motivated the development of modern computational algorithms such as
Markov chain Monte Carlo.

1.6. Analytical and numerical methods

We use the example of finding the maximum of the following function to illustrate the
difference between an analytical method and a numerical method (iterative algorithm).

L(6)= 6X(1 - " k=821 -6, 0<0<1,
with n= 100, k= 10. When 6 changes, L will change as well. We want to find the value of 8
that makes L achieve its maximum.
As will be explained later around equation 3.2, L is the likelihood function for binomial

data while @1s the probability parameter, and the value of #that maximizes L is called the
maximum likelihood estimate (MLE). You can use the following R code to plot the curve.
L=function (x) x"10%*(1-x)"90
curve (L(x), xlim=c(0,1))

Analytical solution. When L achieves its maximum, the slope of the curve is 0, so we set
the first derivative to 0: L'(6) = 0 and solve the resulting equation. In our case this means

L'= k@ '1-6)" -6 (n-K)1-6)" "=6""1-0)"*"[k(1-8)—(n-k)B]=0. (1.46)

We get three roots: #=0, 1, and k/n=0.1. The root 8= 0.1 maximizes L and is the solution
we seek. (In theory we should also check that the second derivative L" <0.)

Numerical solution. If we cannot calculate the derivatives or solve the equation, we may
use a numerical algorithm to find the #that maximizes L iteratively. One such algorithm is
Newton’s method, which uses a second-order polynomial (a parabola) to approximate the
curve

L =aé +bb+c. (1.47)

Ifa<0, [ has a maximum at § = —b/(2a). We use the first three terms of the Taylor
expansion to approximate L(6) around the current value &

L(6)=L(6)+L'(E)O~6)+1L"(E)NE0-6,) . (1.48)

This is a quadratic function in 6, in the form of equation (1.47), with a=L"(6k)/2 and
b=L'(6) - L"(6) & IfL"(6k) <0, the quadratic (1.48) achieves its maximum at
b L)
0 =——=6 — ) 1.49
k+1 2a k L "(Hk) ( )

In our problem, the first and second derivatives are given as
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L'= kekfl X (1 _ e)n—k _ ek X (n _ k)(l _ e)n—k—I,
L"=k(k—1)6“7 x(1-6)"* = 2k(n—K)6* ' (1-6)"*" + (n—k)n—k - )x*(1- )"~

We apply this algorithm to our problem, with the initial value & = 0.08. The iteration is
shown in the table below. The algorithm converges to the correct value very quickly, with L'
approaching 0 very fast.

Two drawbacks of Newton’s method are (i) that it requires the calculation of the first and
second derivatives which may be expensive or impossible to calculate; and (i1) it may diverge
so that good initial values are very important: in our example, the algorithm converges only if
the initial value is in the neighbourhood of the MLE, in the narrow range (0.08, 0.11).

Iteration & L'(6) L"(6&) G+ 1 L(&)
0 0.08 1.607x10°"%  -5.501x10'>  0.1092  5913x10°"°
1 0.1092  -6.894x10"* -6.282x1072  0.0982  7.285x10°"
2 0.0982 1.518x107"  -8.692x107"2 0.1000 7.604x 1071
3 0.1000 1.849x 10716 —8.467x1071 0.1000 7.618x10°1
4
5

0.1000 3.579x10%°  -8.464x10712 0.1000 7.618x 10715
0.1000 1.414x10%"  -8.464x10°"? 0.1000 7.618x10°1°

L <- function(x, n, k) (x"k)*((1-x)”(n-k))

dL <- function(x, n, k) k*((1-x)”"(n-k))*(x"(k-1)) - (n-k)*((1-x)"(n-k-1))*(x"k)

ddL <- function(x, n, k) k*(k-1)*((1-x)"(n-k))*(x"(k-2)) - 2*k*(n-k)*((1-x)"(n-k-1))*(x" (k-
1)) + (n-k)*(n-k-1)*((1-x)"(n-k-2))*(x"k)

n = 100

k = 10

x = 0.08

for(i in 1:9){
d = dL(x, n, k)
dd = ddL(x, n, k)
xnew = x - d/dd
cat (i-1, sprintf("%.4f",x), sprintf("%.3e", d), sprintf("%.3e", dd),
sprintf ("%.4£f",xnew), sprintf("%.3e", L(x, n, k)), sep = " ", "\n")
X = Xnew

}

2. Probability

2.1. Two probability concepts

In classical (also called Frequentist) statistics, probability is defined as the limit of a
frequency in a long-running experiment. For example, the frequency of heads in many tosses
of a “fair” coin is believed to approach %2 when the number of coin tosses approaches infinity.
The value ' is thus the probability of heads for the coin.

In Bayesian statistics, probability is an expression of one’s degree of belief. According to
the Bayesian view (from the time of Laplace), the physical world is fully deterministic and
the only uncertainty is our knowledge of it. Bayesian statistics attempts to use probability
distributions to represent our uncertain knowledge of the world.

2.2. Discrete random variables

A random variable is a variable whose value is a measurement or observation of a random
process. It may represent the possible outcome of an experiment to be performed, or the
potential value of a quantity whose value is fixed but uncertain, due to incomplete
information or imprecise measurement. For example, the random variable X may represent
the result of a coin toss, with 0 for heads and 1 for tails, or X may represent the outcome of
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the throw of a die: 1, 2, ..., 6.

A random variable can be discrete or continuous. A discrete random variable may take a
finite number of values or a countably infinite many values (such as all the natural numbers).
A continuous random variable may assume any numerical value in an interval or a collection
of intervals.

A probability distribution describes the probabilities of different values that a random
variable may take. For a discrete random variable X, we list the probabilities for the
individual values that X may take. Suppose X can take K possible values: X fori=1,2, ..., k,
where K can be «. The distribution is then specified by the probabilities pi for those values,

with " p =1.

Pi Pt P2 ... Pk

For a continuous random variable, its distribution is characterized using the probability
density function, to be explained later.

The average value of the random variable is known as the (mathematical) expectation.
For a discrete variable X, it is defined as

k
H=EX) =Y px. 2.1
i=1
The variance is defined as

V=E(x-up = Y p (% - ) = E(X) ~(E(X)’. 22)

i=1

For example, the number of points in a throw of a fair dice has the following distribution

—

2

w
o
)
(@)

X
P

o=
N
o=
o~
o=
o~

The expectation is thus E(X) = I1x£+2x1+3x1+4xL+5xL+6x+ = 3.5, and the variance is

Ex) = i%(i -3.5)° =2.

2.3. Continuous random variables

Histogram. A histogram is an estimate of the probability distribution of a continuous random
variable. We break the range of the variable into many equal-sized bins and plot the
frequency of observations falling in each bin against the mid-value of the bin.

=] #### histogram
x=rgamma (100000, 5, 2)
™| hist (x, xlim=c(0,6.9), ylim=c(0,0.45), freg=F, xaxs="i",
o yaxs="1i", bty='1l")
~ lines (density(x), col='blue',6 lwd=2)
pe
-
=]
o
P T T | R

+
01 2 3 45 6 7

A histogram

Probability density function (PDF). Imagine now that we take a very large sample from a
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continuous distribution, with billions of points, and construct a histogram with many small
bins. A typical bin may be (X, X + AX). As AXis very small, the mid value is nearly X. When
the sample size increases and the bin size AX decreases, the histogram will look more and
more smooth. Furthermore we require that the total area under the curve is 1. This resulting
curve is known as the probability density function or PDF and is written f(X). The PDF has
the following interpretation: f(X)AX, for small AX, is the proportion of the sample that lies in
the bin (X, X + AX).

The (cumulative) distribution function (CDF), written as F(X), is the proportion of points
in all bins left of X. More formally, it is defined as

FOO=Pr(X<x)= [ f(t)dt. (2.3)

Note that F(—eo) = 0 and F(e0) = 1.
For a continuous random variable X, its mean and variance are defined as

u=EX)= I_ixf(x)dx. (2.4)
V=E(x-?= [ (x=u) f(x)dx. (2.5)

2.4. Conditional, joint, and marginal probabilities
We consider the discrete case first, and then the continuous case.

Discrete variables

Set operations. ae A means an item a belongs to the set A. € is the
whole set, @ is the empty set. M means the intersection, U means b
the union, and — means negation.

Suppose A is the event that it will rain tomorrow, and B the event
that it will not rain tomorrow. Then A N B = since both A and B cannot occur, while A U
B = Q since one of A and B must occur. Here B= A.

Let A and B be two events. Then P(A U B) is the probability that at least one of A and B
occurs, and P(A n B) is the probability that both A and B occur.

P(AU B) = P(A)+ P(B)— P(ANB). (2.6)

This should be obvious from the Venn diagram.
The conditional probability of A given B, written as P(A|B) and read “probability of A
given B”, is defined as

P(ANB)
P(B)
under the assumption that P(B) > 0. Again for a proof, look at the Venn diagram.

For two discrete random variables X and Y, pij = P(X=1, Y =) is called the joint
probability, while

P(AB) = , (2.7)

P(X=X)=> P(X=xX,Y=Y,)
= (2.8)

PY=y)=3P(X=x,Y=y)

i=1
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are the marginal probabilities of X and Y, respectively.
Suppose UA =AUAU---UA =Qand AN A = foreveryiand]. In other words,

i=1
one and only one of A1, Ao, ..., Anmust occur. Then A1, Ao, ..., Anare said to form a
mutually exclusive partition of the sample space. Then z P(A) = 1. The probability of any

i=1
event B is then given as

PB)= Y. P(A.B) =3 P(A)P(BIA). 2.9)

This is called the law of total probability. The conditional probability of Ai given that B has
occurred is given by the Bayes theorem or the inverse-probability theorem:

pA|B) =" AB) _ PAPBIA) iy, (2.10)
D WCSLCIRS

Example (False positives of a test) (from Yang 2006: page 147). Suppose a new clinical
test has been developed to screen for an infection in the population. If a person has the
infection, the test accurately reports a positive 99% of the time, and if a person does not have
the infection, the test falsely reports a positive only 2% of the time. Suppose that 0.1% of the
population have the infection. What is the probability that a person who has tested positive
actually has the infection?

Let A be the event that a person has the infection, and A no infection. Let B stand for
test-positive. Then P(A) =0.001, P(A) = 0.999, P(B|A) = 0.99, P(B| A) =0.02. The
probability that a random person from the population tests positive is, according to equation
(2.10),

P(B) = P(A)P(B|A)+P(A)P(B|A) =0.001 x 0.99 +0.999 x 0.02 = 0.02097.
This is close to the proportion among the noninfected individuals of the population. Equation
(2.10) then gives the probability that a person who has tested positive has the infection as
P(A)P(B|A) _ 0.001x0.99
P(B) 0.02097

This indicates a perhaps surprisingly poor test. Because the infection is rare and most
individuals are healthy, most of the people testing positive are actually healthy.

=0.0420.

P(AB) =

Exercise 6 The Monty Hall problemis a probability puzzle based on the US television game
show Let’s Make a Deal, originally hosted by Monty Hall. It is also called the Monty Hall
paradox. Suppose you are given the choice of three doors: Behind one door is a car; behind
the other two, goats. You pick a door, say No. 1, and the host, who knows what’s behind the
doors, opens another door, say No. 3, which has a goat. He then says to you, “Do you want
to pick door No. 2?” Calculate the probability of winning if you do not switch and if you
switch.

Hint: Define Ai: behind door 1 is a car; Ao: behind door 1 is a goat. Define B: winning. Then
apply the law of total probability (eq. 2.9) for each of the two options (switching and no
switching).
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Continuous variables

For continuous random variables X and Y, f(X, y) is called the joint probability density function
of (X, Y), while

F(X,Y) =Ui f (u,v)dudv 2.11)

is the cumulative distribution function. The marginal density functions of X and Y are

f0=[" f(xyady,

o (2.12)
fy=]_ feydx
The conditional probability density function
fxy _ fOOf(ylx)
f(x]y)= = . (2.13)
F(y) f(y)

The joint probability density is thus written as

fxy)= (W TxIy) =T f(ylx). (2.14)

Distributions of more than two variables are defined similarly.

Similar to the discrete case, we also have the law of total probability and the Bayes
theorem, except that the results are stated using the probability density functions (PDFs)
instead of probabilities, and the summations are replaced by integrals.

Law of total probability:  f(y)= ji f(y|x)f(x)dx. (2.15)

Bayes theorem: f(x|y)= f(yf| Z())/; - r :c((y ||X))1;:((X))d - (2.16)
Ty f(x)dx

[[Add examples to illustrate the use of conditioning to derive probabilities.]]

2.5. Common discrete distributions

Below we illustrate a few commonly used discrete distributions. For each we give the
probability distribution as well as the mean (expectation) and variance.

Binomial distribution. Suppose a coin is biased with the probability of heads to be p.
The number of heads X in n tosses of the coin has the binomial distribution

n
px:(xj p‘d-p"", x=0,1--n, (2.17)
n |
where S . We write X ~ bino(n, p). The expectation and variance are
X))  x!(n—x)!
E(X) =np, Var(X) =np(1 —p). (2.18)

Note that the proportion X/n has mean p and variance p(1 — p)/n.
Poisson distribution. The Poisson distribution has a parameter 4> 0, which is the
expected number of a particular event. The number of such events has the probability
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X
p,=—e*, x=0,1,--. (2.19)
x!
Both the expectation and variance are E(X) = Var(X) = /4.

Another common formulation is based on the Poisson process. Suppose a particular
event (earthquake, lightening, arrival of a customer at McDonald’s, a mutation in a gene etc.)
occurs at the rate 4, so that the expected number of events over time t is At. Then the number
of events over time t is a random variable from the Poisson distribution with parameter At:

p, = —(};:') e, x=0,1,--. (2.20)

Note that the number of events (X) is a random variable, and its mean is At.

2.6. Common continuous distributions

We give the PDF of a few commonly-used continuous distributions, together with their
expectation (mean) and variance.
Normal distribution: X ~ N(x, ¢?).

_ f
1

f(X)=———=e 29, —oo<X<+oo, (2.21)
270’

The expectation and variance are E(X) = ¢ and Var(X) = ¢°.
If #=0and 0> =1, X~ N(0, 1) is said to follow the standard normal distribution. The
PDF and CDF for the standard normal distribution are often written as ¢ and ®.

o) =—e",
e (2.22)
O(x) = [ e Pt

#### Normal distributions

a=-5; b=5;

curve (dnorm(x, 0, 1), xlim=c(a,b), xaxs="i"
anS:“i“, bty:"l");

curve (dnorm(x, 0, 2), xlim=c(a,b), add=T);

curve (dnorm(x, 1, 1), xlim=c(a,b), add=T);

The probability density functions of normal

distribution with different parameters.

Exponential distribution. The density function is
f(xX)=4de™, x>0. (2.23)

This is sometimes written as X ~ Exp(4). The mean and variance are E(X) = 1/4 and
Var(X) = 1/2.
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The probability density function of the exponential

Exp(0.5)

distribution

#### exponential distributions

a=0; b=5;

curve (dexp (x, 1), xlim=c(a,b), xaxs="i", yaxs="i",
th=u1u) ;

curve (dexp (x, 2), xlim=c(a,b), add=T);

One reason that the exponential distribution is important is that the waiting time of a
Poisson processis an exponential random variable. Suppose bus N arrives according to a
Poisson process, with rate 4 =0.1 per minute. The probability that the bus will arrive in the
next half minute (we think a half minute is a small time interval) is AAt= 0.1 x 0.5 = 0.05.
The number of bus arrivals over the time interval (to, to + t) has a Poisson distribution with
mean At: if t = 60 minutes, the average number of bus arrivals in one hour is 6. The waiting
time or inter-arrival time has the exponential distribution with mean 1/4 = 10 minutes. The
Poisson process has no memory. The probability that the bus will arrive in the next 2 minutes
is independent of the amount of time that we have waited for the bus; the waiting time until
the bus arrives has the same exponential distribution with mean 10 minutes, whether we have

waited for 1 minute or 30 minutes.

Uniformdistribution: X ~ U(a, b). The density function is

f(x):L, a<x<h. (2.24)
b-a

The mean and variance are E(X) = (a+ b)/2 and Var(x) = (b — a)?/2.

The probability density function for U(a, b)

#### uniform distribution

a=0; b=5;

curve (dunif (x,2,4), xlim=c(a,b), type='l', xaxs="i",
yaxs="i", bty="1");

The U(0, 1) random variable is fundamental to computer simulation, and is known as a
random number. A random number generator is a mathematical algorithm that generates a
sequence of numbers that look like random variables from the U(0, 1) distribution.

Log-normal distribution. Ify is a random variable with a normal distribution, Y ~ N(#,
0%), then X = e" has a log-normal distribution. The density function is
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_ 1 _(log{x} -4’
f(x)= oy exp{ = }, x>0. (2.25)

The mean and variance are E(X) = ¢” %% and V(X)=(e” —1)e***” . Note that while the
mean of Y is £, the mean of X = e is not e~

#### Log-normal distribution

| LN(O, 1) a=0; b=5;
curve (dlnorm(x,0,1), xlim=c(a,b), type='l',
L) | xaxs="1i", yaxs="i", bty="1");
© curve (dlnorm(x,1,2), xlim=c(a,b), add=T);
|
o
LN(1, 2)
v
S
T T T T 1

The probability density function of the log-normal
distribution

Gamma distribution. X~ G(¢, f). The density function is

f(x)= % X*“eP* x>0, (2.26)

where I'(@) = J:Q x*"'e *dx is the gamma function (equation 1.42). The mean and variance

are E(X) = o/ and Var(X) = o//F. Here «is the shape parameter and [3is the rate parameter.
When o < 1, the density has a L shape. If &> 1, it has a mode in the middle. When « s
large, the gamma distribution is approximated by the normal distribution.

Some authors use an alternative notation in which the scale parameter (also written as f)
instead of the rate parameter is used: note that the scale parameter is the reciprocal of the rate
parameter. Check the mean to make sure which notation is used.

#### Gamma distribution

Sf a=0; b=5;
curve (dgamma (x,1,1), xlim=c(a,b), type='1l"',
© | xaxs="i", yaxs="i", bty="1");
o Q curve (dgamma (x,2,2), xlim=c(a,b), add=T);
© (X
S v
©

<
s @

Z
N Z
o

o 1 2 3 4 5

The probability density function for the gamma
distribution X ~ G(e, p)

When o= 1, the gamma distribution reduces to the exponential distribution: G(1, f) =
Exp(f). Also when = /2 and 3= Y4, the gamma distribution is known as the »*
distribution with n degrees of freedom, written as y; : that is, G(2,1)= z;.

Beta distribution. X ~ beta(a, b). The density function is
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F(x) = I'(a+b) !
T'(@)I'(b)

In particular, beta(1, 1) is the U(0, 1) distribution.
The mean and variance are E(X) = a/(a+ b) and V(X) = ab/[(a+ b)> (a+ b+ 1)].

(1-x)"", 0<x<l1 (2.27)

4 #### Beta distributions
beta(1, 1) a=0; b=1;
3 Lt beta(0_5, 05) i curve (dbeta(x,1,1), xlim=c(a,b), ylim=c(0,4),
[ 1 type='1l', xaxs="1i", yaxs="i");
'. y beta(0.5, 2) |I curve (dbeta(x,0.5,0.5), xlim=c(a,b), col='red',
' beta(2, 0.5) I lty=2, lwd=2, add=T);
271 ,' curve (dbeta(x,0.5,2), xlim=c(a+0.04,b), col='blue',
\ ! lty=3, 1lwd=2, add=T);
Voo / curve (dbeta(x,2,0.5), xlim=c(a,b-0.04), col='gray',
\ “ / lty=4, lwd=2, add=T);
1 S — curve (dbeta(x,2,2), xlim=c(a,b), col='green',6 1lty=5,
RS lwd=2, add=T);
0 T T T (—

00 02 04 06 08 10
X

The probability density function for the beta
distribution x ~ beta(a, b).

2.7. Functions of random variables

Suppose the random variable X has the probability density function fx(X) and y = y(X) is a one-
to-one transform of X, with the inverse transform X = X(y). Then Y is a random variable with

density

fy (y)= f,(X(Y) x| (2.28)

dx
d

Here fy(y) is the PDF of Y evaluated at Y =y and fx(X) is the PDF of X evaluated at X = x.

To appreciate how this formula works, imagine we have a huge number of X values and a
histogram for X. We then apply the transform y = y(X) to calculate the corresponding y values
and construct a histogram for y. In the histogram for X, the proportion of points in the bin (X,
X+ AX) is fx(X)AX. The transform converts X into y = y(X) and X + AX into Y + Ay = y(X + AX),
with Ay = Ax-<. In other words, after the transform all points in the (X, X + AX) bin, which

has width Ax, will be in the (Y, y + Ay) bin, which has width Ay. Since those points constitute
the same proportion of the whole sample, we have

x(X)AX = f¥(y)Ay, (2.29)
which means f\(y) = fx(X)AX/Ay = fx(X)dx/dy. If the transform y = y(X) is monotonically
decreasing, we have fv(y) = fx(X)|dx/dy| since only the width of the bin matters in the

argument.
Example (Normal distribution). Suppose z has a standard normal distribution with

density

p(2)=-e (2.30)
Let X=u+ o0z, so that z= (X — y)/oand dzZZdx = 1/0. Then X has the density
e 1
F() = 92 x b = ——=exp{— 7= (X— 1)’} (2.31)
2o
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Thus X has a normal distribution with mean x and variance o°.
Example (Log-normal distribution). Suppose y ~ N(z, 0%), and X = ¢V.

1 7(%/«2)2
f(y):me 20 , —oo ] Y < oo (232)

We have y = log(X) and dy/dx = 1/X. Thus the density function of X is

f(x)= ﬁexp {—W}x% - ﬁexp{—W}, (2.33)

which is equation (2.25).

Example (Exponential distribution). Suppose u~ U(0, 1), and x=—log(u). Then X has an
exponential distribution with mean 1. To see this, note that f(u) = 1 for 0 <u <1, and dw/dx =
—e X so that

fX)=1xe™*, 0<X<oco, (2.34)
Thus if U is a random number, which follows the U(0, 1) distribution, then X = —log(u) will
have an exponential distribution with mean 1. Thus to simulate an exponential random
variable with parameter A (and mean 1/4), we first generate a random number U, and then
apply the transform X=—log(u)/A.

Exercise 7 (inverse gamma distribution) Suppose
f(x):Lx”’"e’ﬁx, 0< X<oo.
I

Let y = 1/x. Derive the density of y.

Exercise 8 Suppose
f(x)=Le™, 0<x<eo.

Lety= 1—e“. Show that y has the uniform distribution by deriving the density of y.
[Hint. F(X)=1—¢* is the C.D.F. of x. First determine the range of y.]
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3. Statistics

Statistics is a science that aims to make inference about the population based on a sample.
The sample is assumed to involve random errors, generated under a probabilistic model. For
example, we may assume that our data are a sample taken from a normal distribution and we
are interested in estimating the mean 4 and variance ¢® of the normal distribution or in testing
the hypothesis that ¢ = 0.

3.1. Estimation

A parameter is a constant that describes the population we are interested in, for example, the
mean 4 and variance o® of the normal distribution. A statistic is a quantity we can calculate
. 1< . ..
using the observed data. For example the sample mean X = —Z)g 1s a statistic. We use a
i=1
statistic to estimate the parameter, and it is called an estimator. For example, the sample
mean X is an estimator of parameter £, sometimes written as Z=X.

The statistic or estimator is a random variable. It fluctuates among datasets if we take
many different samples (datasets) from the population. If the average of the estimator over
datasets equals the parameter value,

E(@)=u, (3.1
the estimator is said to be unbiased. Otherwise it is said to be biased and the difference
E(4&)— u is called the bias.
Note that unbiased estimators are in general not invariant to different parametrizations,
except that the transform h(6) is linear. In other words, if E(é) = 6, then E(a+ bé) =a-+

bé. However, if E(6) = 6, then E(8°) # &

Likelihood function and MLE
The probability of observing the data given the parameters, viewed as a function of the
parameters, is called the likelihood function. Values of parameters that maximize the
likelihood function are called maximum likelihood estimates (MLES)

Maximum likelihood (ML) is a methodology for estimating parameters and testing statistical
hypotheses. Suppose we have an unknown parameter 6in the model. The probability of
observing the data D is considered a function of €, and is called the likelihood function.
According to the likelihood principle, the likelihood function contains all information from
the data about 6. We use two simple examples to introduce the methodology.

Example. Binomial model (red fish and blue fish). There are a lot of red and blue fish in
a pond. Suppose we take a sample of n= 100 fish and found k= 10 red and n— k= 90 blue.
What is our best estimate of the proportion of red fish (p)?

With this simple case, we know the answer: the estimate is k/n=0.1. To use ML, note

100
Pr(kln, p) = [E] p‘(l-p)™* =( 10 j p(1-p)”. (3.2)

Since the data are observed, we view this probability as a function of p; let it be L(p). L is
usually very small, so it is more convenient to work with the log likelihood ¢ = log{L}.
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() = log {L(p)} = 1og(11000] 110 log(p) + 90 log(1 — p).

This is plotted against p below. /(p) and L(p) reach their maxima when p=k/n,so p =k/n=
0.1 is the MLE.

1001 . . .. .
The constant [ 0 J is often ignored. Note that dropping it does not affect our evaluation

of different values of p. The likelihood function is then p'°(1 — p)*°, given by multiplying 10
ps (corresponding to the 10 red fish, each of which has probability p of occurrence) and 90 (1
—p)’s (corresponding to the 90 blue fish, each of which has probability 1 — p of occurrence).

log {L}
0

-10
-20

-30

P
0.1 0.2 0.3 0.4 0.5

Example. Estimation of sequence distance under JC69. Suppose we want to estimate the
sequence distance d under the JC69 model using a pair of sequences with n= 100 sites and k
= 10 differences. The unknown parameter is d. Consider any site in the sequence. The
probability that this site is different between the two sequences separated by distance d is

p=={1-¢™). (3.3)

The likelihood function L(d) or the probability of observing k differences out of n sites is
given by the binomial probability

100 e )" )"
L(d):@ pk(l—p)“k=(10j(%—%e3 j (%Jr%es j . 34

The log likelihood function is

100 . s
#(d) = log{L(d)} = 10g( 0 J+101og(%—%exdj+901og&+%es"j. (3.5)

These are plotted below. They achieve their highest values at the same parameter value d =
0.1073, corresponding to P =k/n=10/100. Thus the MLE of d is given by the Jukes-Cantor

formula.
d=—3log(1-%p), (3.6)
where the base of the logarithm is the constant e. You can also obtain this analytically by
solving the likelihood equation
dsl

=" (3.7)
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L log {L}
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Likelihood function (L) Log-likelihood function (¢)

Again note that after the constant is dropped, the likelihood is given by multiplying the
probabilities across all sites: 10 differences and 90 identities.

Theinvariance of the MLES. Note that if the MLE of parameter 8is 6, and h(6) is a
monotonic function, then the MLE of h(6) is h(é) . For example, if @is the side of a square

and its MLE is 10 m. Then the MLE of the area of the square h(8) = & is simply 100 m>.
Suppose we are building a model, in which we can measure the size of the square by either its
side or its area. These two options will be different parametrizations. ML is invariant to
different parametrizations: no matter what parameters you choose to use, you will obtain the
same conclusions. In this regard, one may view the proportion of different sites p as a
different parametrization in the Jukes-Cantor model, and its MLE is p =k/n. Then d= h(p)

is considered a one-to-one mapping from p to d through equation (3.3), which can be used to
derive the MLE of d as

d=h(p)=—3log(1-4p). (3.8)

Thus in general MLEs may have a bias in small datasets, which is tolerated. When the
dataset is large, MLEs are asymptotically unbiased. They are also asymptotically normally
distributed and asymptotically most efficient (they have the smallest variance).

Under these simple models, analytical solutions are available, and the MLEs agree with
our intuition. In more complicated models, our intuition may fail. Then ML provides a
general methodology to allow us to proceed. When analytical solutions are not possible,
numerical optimisation algorithms are used to obtain the MLEs.

Example. Estimation of allele frequencies for the ABO blood groups. The A, B, and O
blood groups were discovered in 1900 and 1901 at the University of Vienna by Karl
Landsteiner in the process of trying to learn why blood transfusions sometimes caused death
and at other times saved a patient. In 1930, he received the Nobel Prize for this discovery.
Two alleles A and B code for two antigens that bind with two antibodies. We will use the
following table to estimate the frequencies of the two alleles pand g, withr=1—-p— (.

Phenotypes Genotypes Probability Sample  Frequency

A AA+AO p+2pr  ma=44  0.269939
B BB+BO @ +2qr me=27 0.165644
AB AB 2pq ne=4  0.024540
0 00 r2 no=838  0.539877

Sum n=163 1

Here we have two parameters p and  in the model. Write down the likelihood, that is, the
probability of observing the counts of people with different blood groups as a function of p
and g. In this case it is not possible to obtain the MLEs analytically, and numerical methods
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have to be used. The solutionis p =0.1605, q =0.1004, f =1—p—q =0.7392, with / =—
175.448. [[Insert some R code here for the optimization.]]

3.2. Hypothesis testing

Consider a sample from the normal distribution. Suppose we know the variance from past
data and are interested in whether the population mean  deviates from a specific value wo =
0. Here o = 0 may represent a lack of treatment effect. Thus Ho: £ = 0 is the null
hypothesis. If the observed data are seriously at odds with the predictions of Ho, we will be
forced to reject Ho and accept the more general hypothesis: Hi: ¢£> . Here Hi is the
alternative hypothesis. Note that the two hypotheses Ho and Hi do not have the same role. If
they both fit the data nearly equally well, we will prefer Ho. Only when Ho does not fit the
data and H fits the data much better are we prepared to reject Ho. The error of rejecting Ho
when it is true is called the type-1 error or false positive error. The error of accepting Ho
when Ho is false (and H1 is true) is the type-Il error or false negative error. Type-I errors are
considered to be more serious than type-II errors.

We use X as the test statistic. Suppose the data indicates a positive effect, with X > 0.
To determine whether this result could have arisen by chance even if Ho is true, we derive the
distribution of the test statistic under Ho and calculate the probability that the test statistic is
even greater than the observed statistic (the sample mean). This will be the p value. A small
p value (say, <5% or 1%) means rejection of Ho. The p value may be the most confusing
concept in statistics. All the following statements are incorrect:

(a) The p value is the probability that the null hypothesis is correct.

(b) The p value is the probability of the data given the null hypothesis.

(©) ...

Likelihood ratio test. We are interested in comparing two parametric models Ho and Hi,
with Ho to be a special case of Hi. The two models are said to be nested. Suppose the null
model Ho has q parameters and its optimized log likelihood is /o, and the alternative model
Hi has p parameters and its optimized log likelihood is /1. Then twice the log likelihood
difference 2A¢ = 2(/1 — o) can be compared with the 3 distribution with p — q degrees of
freedom to decide whether H fits the data significantly better than Ho. The null distribution
here is reliable when the dataset is large. This test is known as the likelihood ratio test, as

2A0 =2(f1 — lo) = 2log .
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4. Markov chains

4.1. Discrete-time Markov chains

Suppose there are three kinds of weather: sunny (S %¥), cloudy (C) and raining (R). We write
the probability for tomorrow’s weather given today’s weather in the form of a matrix, as
follows

0.7 02 0.1
P={pj}=]0.1 0.8 0.1, 4.1)
03 03 04

where pij is the probability that tomorrow’s weather will be j given that today’s is i. For
example, pss = 0.7 means that given it is sunny today, the probability that it will be sunny
tomorrow is 0.7. Note that each row sums to 1. There is a tendency for tomorrow’s weather
to stay the same as today’s.

Let Xn be the weather on the nth day, which takes values of S, C or R. We assume that
given today’s weather, the probabilities for tomorrow’s weather do not depend on the weather
yesterday or earlier. In words, given the present, the future does not depend on the past. This
memory-less property is known as the Markovian property. More formally

P(Xn+1 | XO, XI, cees Xn) = P(Xn+1 | Xn) (42)

Then Xo, Xi, Xz, ... form a Markov chain.
Back to the weather, we assume no seasons, so that the transition probability matrix P is
independent of time; that is

P(X,, = 11X, =1)=P(X, = ][ X, =D =p;. (4.3)

Markov chains satisfying this condition are said to be time-homogeneous.

The dynamics of a time-homogeneous Markov chain is characterized by the (one-step)
transition matrix P. We now try to calculate the two-step transition probability, for example,
the probability that it will be sunny the day after tomorrow given that it is sunny today. We
have to average (sum) over all possible states for tomorrow’s weather

PSE = pss pss + PscPes + Psr Prs = 0.7 X 0.7+ 0.2 X 0.1 + 0.1 X 0.3 =0.54. (4.4)

Note that this is a straightforward application of the law of total probabilities (2.9),
conditioning on tomorrow’s weather.

Other two-step transition probabilities can be calculated similarly. If we let P® = {psz)}
be the two-step transition matrix. Equation (4.4) implies
P® =p.P =P~ 4.5)
By induction, the n-step transition probability matrix P™ = {pl(j“)} is

P =ph-D.p =pn (4.6)
A generalization of equation (4.4) is the Chapman-Kolmogorov equation:

pmm = Z pi’py” foranyi,j, and for any m n>0. 4.7)

keS

This can also be written in matrix form as
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pm+n — pm . p© (4.8)
forany m,n= 0.

Exercise 9. Calculate P? using equation (4.1).

The n-step transition matrix P" can be calculated through the diagonalization of P
(equation 1.14).

Exercise 10* (Jukes & Cantor model of DNA sequence evolution). The evolution of a
nucleotide site in a DNA sequence is described by a Markov chain. The four states are the
nucleotides T, C, A, G. In every generation the nucleotide changes to one of the three other
nucleotides with probability 4. The transition matrix is thus

1-34 A A A
A 1-34 A A
P= : (4.9)
A A 1-34 A
A A A 1-34

The nucleotides are ordered T, C, A, and G. Calculate P". To be specific, consider the
evolution of a site in a DNA sequence in the human-chimpanzee ancestor down to the

modern human. Let A= 1x107® per generation, with 500,000 generations from the common

ancestor to the present (assuming 10 years in one generation).

Certain Markov chains may have states with Pii = 1, so that the chain will remain in those
states as soon as it enters them. Such states are called absorbing states. Some population
genetics models involve absorbing states, but they are not often used in models in molecular
evolution. Some Markov chains are periodic. For example, a Markov chain with three states
1, 2, 3, and with transitions 1 — 2 — 3 — 1 has the period 3. If we start in state 1, it is
possible to get back to state 1 in 3 steps, 6 steps etc., but not in 5 steps. Please convince
yourself that the Markov chain illustrated below has a period of 2. In some Markov chains, it
is impossible (with probability 0) to go from some states to some other states. Those states
are said to be non-commutative. For example, in the Markov chain represented by the graph
below, the states T and C are commutative, as are A and G, but T and A are not commutative.
We do not consider those types of chains. Instead we try to avoid them when we build
models in molecular evolution.

»

A Markov chain with period 2 A Markov chain with non-commutative states

I

A —(G

|

Markov chains that we will use have a finite number of states. All states are “connected”
or commutative, and every state is visited an infinite number of times and is said to be
recurrent. The chain is said to be irreducible. Furthermore, the chain does not have a period
and is aperiodic. In Markov chain Monte Carlo (MCMC) algorithms in Bayesian
computation, we should make sure that the Markov chain we generate is aperiodic and
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irreducible.

Limiting and stationary distributions. When n — oo, all elements in the same column of
the matrix P" will be identical: that is, pl(j“) — 7; when N — oo, irrespective of the starting
state i. The vector {m, m, ..., 7k}, where K is the number of states, is called the limiting
distribution. When the number of transitions n is large, the chain will have lost the memory
of the initial state so that the probability that the chain is in state j after n transitions is close
to 7, independent of the initial state i.

The row vector 7= {m, m, ..., 7} is called the stationary distribution if the 7’s are > 0
and sum to 1, and if they satisfy

m= 2P (4.10)
or in matrix notation

7= 7P. (4.11)

Exercise 11: Calculate the stationary distribution of the Markov chain specified by
equation (4.1). Use equation (4.11) to form two linear equations. Use them together with
+ m + /3 = 1 to solve the three unknowns m, m, 73. The stationary distribution gives us the
proportions of sunny, cloudy and raining days.

4.2. Continuous-time Markov chains

There are several ways of characterizing the continuous-time Markov chain. First we can
view it as the limit or approximation of a discrete-time Markov chain. We consider a small
time interval At as one step in the discrete-time chain, and let At — 0. The state at any time t
is then represented by X(t).

With the Jukes-Cantor mutation model, we can write the one-step transition matrix as

1-3At At AAt AAt
At 1-3JAt At AAt

P(At) = =1 +QAt, (4.12)
AAt At 1-3JAt At

AAt AAt AAt  1-34At
where | is the identity matrix and

34 A 4 A
ol A =34 4 A @.13)
A A =34 A '

A A A 34

We are interested in the transition probability matrix over time t, P(t) = {pij(t)}, where pij(t) is
the probability that given the chain is in state | now, it will be in state | time t later. We
calculate P(t) as the transition probability matrix over n = t/At steps.

P(t) = [P(AH]" = (I + QUn)" = e, (4.14)

The last approximation should look familiar if you remember lim (1 + %)n =e¢ and

N—o0

lim (1+%)" =¢* for a scalar X. (4.15)

N—oc0
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For most models of nucleotide substitution, the matrix exponential e can be calculated
by diagonalizing the matrix Q.

Q = {gij} in equation (4.13) is known as the generator for the continuous-time Markov
chain. In the molecular evolution literature, it is commonly known as the rate matrix, since
g, I #], is the rate at which nucleotide i mutates (changes) into nucleotide j. More precisely,
the probability that given the current state i, the chain will be in state j a small time interval At
later is qijAt: Pr(X(t + At) = j| X(t) = i)= gijAt. The Q matrix has the following properties: (1)
the off-diagonal elements are nonnegative, and (2) each row sums to 0, so that —gji is the total
rate of change for state i. Sometimes we write ¢ = —Gji.

Here is the Q matrix for the so-called HKY or HKY85 model

—(or + fry) a7 Br, Br.
B o, —(or; + fry) B, B,
Q - ﬂ”T ﬁﬂ'c _(Om'e +137[Y) Tt ’ (4.16)
B, pr. or, —(ar,+ pr,)

where 7y = 7zt + 7w and 7R = 7a + ;6. Again the nucleotides are ordered T, C, A, and G. And
here is the most general Q matrix for 4 states.

—0r O Gra O

qCT _QC qCA qCG
Q= , 4.17)
qAT ch - qA qAG

Oor Goc Uon U

where the diagonals are given by the requirement that each row sums to 0.

A second characterization of the Markov chain views the continuous-time Markov chain
as a “waiting game”. Given the current state i, the waiting time until the next event
(transition) is an exponential variable with rate parameter ¢ = —(ji or with mean 1/gi. When a
transition occurs, the chain moves to the alternative states with probabilities proportional to
their rates. In other words, given that a transition occurs, the moves are described by a
discrete-time Markov chain with transition matrix (still using the transitions between the
nucleotides as an example)

0 ¢ OGrn G
® & &

G ) Gea S

M=| % oo | (4.18)

Gar Yac 0 Aac
QA QA da
Gor Ge G

L % G ] B

For the Jukes-Cantor model, all the off-diagonal elements of M are 1/3.

In other words, if we ignore the waiting times between transitions, the sequence of states
visited by the process constitutes a discrete-time Markov chain. This is called the jump chain
or the embedded Markov chain.

The limiting and stationary distributions of the continuous-time Markov chain are defined
similarly to the discrete case. To get the stationary distribution, we can solve the equation

=0, (4.19)
together with the constraint that the sum of the wts should be 1.
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Glossary

English Deutsch H A H 3L
alternative hypothesis  Alternative Hypothese / Hipotesis alternativa Evallaktikn vmoOeon SRR e e (587
Alternativhypothese
aperiodic chain Aperiodische/unperiodische Cadena aperidodica Mn meprodikn alvcida 3k E A a5 Ik HA%sE
Kette
Bayes’s theorem Satz von Bayes/Bayes-Regel Teorema de Bayes Mmreboiavo Bempnua NAADETE U3 DL 2
H
chain rule Kettenregel Regla de la cadena Kavéovag alvcidog sEsH A Bl A
commutative states Kommutative Zustdnde Estados conmutativos AR BE HiE
conditional distribution Bedingte Verteilung Distribucion condicional Y7o 6povg (deGUELUEVT EHEOENT P il
KOTOVOUT)
cumulative distribution =~ Kumulative Verteilungsfunktion Funcién de distribucion afpoloTiky cuvapTnon RIS (Bih)r A R
function (CDF) acumulada KOTOVOUNG
definite integral Bestimmtes Integral Integral definida Op1ouévo OAOKANP®LLOL ERES ER
derivative Ableitung Derivada Hoapdywyog EEEH S5
determinant Determinante Determinante Opilovoa T il
diagonal matrix Diagonalmatrix Matriz diagonal Alory®viog mivokog 8175 XoF A o o
diagonalization Diagonalisierung Diagonalizacion Awyovionoinon 1L CFERE)XT 1k
embedded chain Eingebettete Kette Cadena embebida Evoopotopévn ahvoide  ymgysainisamsy  IRAEE (BHREE)
ergodic chain ergodische (Markov)-Kette Cadena ergodica (regular)  Epyodwkr oAvcioa T I-RigvILa i 7
generator Generator Generador yevviTpLoL ERERE AR TT
gradient (slope) Gradient/Steigung Gradiente KAion R T (%)
Hessian matrix Die Hesse-Matrix Matriz Hessiana Ecclovo Mntpdo 1 NITIFTF Hessian %%
Eocuovog [ivakag
identity matrix Identitdtsmatrix/Einheitsmatrix =~ Matriz identidad [Tivokog tavtdtTog vl PR R
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initial distribution
integral

irreducible chain

joint distribution

jump chain

likelihood
likelihood function

likelihood ratio test

marginal distribution

Markov chain

Markov chain Monte
Carlo

matrix

null hypothesis

off-diagonal elements

period
polynomial

posterior distribution

prior distribution

probability density
function (PDF)

Anfangsverteilung
Integral
Nicht-reduzierbare Kette

Gemeinsame Verteilung

Springende Markov-Kette/
Sprungkette
Likelihood

Likelihood-Funktion
Likelihood-Quotienten Test

Die Randverteilung
Markov-Kette
Markov-Chain Monte Carlo
Verfahren

Matrix

Nullhypothese

Die nicht auf der Diagonale
einer Matrix liegenden
Elemente

Periode

Das Polynom/ polynomial (adj.)

A posteriori Verteilung

A priori Verteilung

Wahrscheinlichkeitsdichtefunkti

on/Dichtefunktion

Distribucion inicial
Integral

Cadena irreducible

Distribucion conjunta

Verosilimilitud
Funcion de verosimilitud

Test de cociente de
verosimilitud
Distribucion marginal

Cadena Markov

MCMC

Matriz
Hipotesis nula

Elementos no-diagonales

Periodo
polindémico

Distribucion a-posteriori

Distribucion a-priori

Funcién de densidad de
probabilidad
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recurrent states

Simpson’s method

scalar
slope
state space

stationary distribution

Taylor expansion

time-homogeneous

transition matrix
transition probability

trapezoid method

type-I error
type-II error
vector

Venn diagram

Wiederkehrende Zustinde

Simpsonregel (auch Keplersche
Fassregel) zur numerischen
Berechnung von Integralen
Skalar

Steigung
Zustandsraum

Stationére/gleichbleibende
Verteilung
Taylorreihenentwicklung

Zeitlich homogen/

zeitlich homogener Prozess
Ubergangsmatrix
Ubergangswahrscheinlichkeit

Trapezregel-Methode zur
Berechnung von Integralen
Fehler erster Art

Fehler zweiter Art
Vektor

Venn-
Diagramm/Mengendiagramm

Estado recurrentes

Método de Simpson

escalar
Gradiente / Pendiente
Espacio de estados

Distribucion estacionaria

Expansion de Taylor

Homogéneo en el tiempo

Matriz de transicion

Probabilidad de transicion

Regla del trapecio

Error tipo I
Error tipo 11
Vector

Diagrama de Venn

M¢éBodoc Xipcov
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