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0. Preface 

This document provides an overview of mathematical and statistical results useful in 
molecular evolution, phylogenetics, and population genetics.  It is prepared for two purposes.  
First it is to be used as the pre-course reading material for the Computational Molecular 
Evolution (CoME) Workshop organized by Nick Goldman, Aidan Budd, Alexandros 
Stamatakis, and me that runs annually in Hinxton, Cambridge or Heraklion, Crete 
(http://abacus.gene.ucl.ac.uk/CoME/).  Second it is used as reading material for biologist 
readers of my books Computational Molecular Evolution (Yang 2006, OUP) and Molecular 
Evolution: A Statistical Approach (Yang 2014, OUP). 
 
The notes are not comprehensive and are mostly for review.  I have added R code for the 
graphs.  You may install R, and copy the R code to reproduce the graphs.  Comments and 
suggestions are welcome.  In particular, please let me know which parts are too hard, and I 
will try to add more examples. 
 
I would like to thank the following colleagues for providing assistance, making comments, 
correcting mistakes or helping with the translation of the glossary: Aidan Budd, Hiro 
Kishino, Fengrong Ren, Alexandros Stamatakis, Veronika Boskova and Tianqi Zhu. 

 
 
 

Ziheng Yang 
September 2011, updated March 2013 

Last updated, May 2014 
 



 4

 

1. Mathematical preliminaries  

1.1. A few words about notation 
Journal publishers are increasingly leaving it to authors to do the typesetting, so it is useful to 
know how to write professional-looking mathematical equations using Microsoft Word. 

Mathematical variables are by convention written using italic English letters, such as a, b, 
x, or y.  It is also common to use x, y, z, w for unknowns, a, b, c for constants, i, j, k for 
integers or indexes, and m and n for counts.   

An vector may be written in bold letters, such as x = {xi}, and a matrix in bold capital 
letters, such as P(t) = {pij(t)}.  Alternatively one may write a vector using an italic English 
letter and a matrix using an italic capital English letter, such as x = {xi}, and A = {aij}, and Q 
= {qij}.  Either is fine but you should be consistent.   

There should be a small space on both sides of operators +, −, ×, and =.  Arabic numerals 
should be written in Roman font and not italic.  For example write y = a0 – x2 instead of y = 
a0 - x2 or y=a0-x2.  Note the difference between ‘–‘ (minus sign) and a dash.  (If you type “1 - 
2” with spaces around the dash, MS Word will “auto-correct” the dash into minus.) 

In statistics, small Greek letters are often used to represent parameters while English 
letters are for random variables.  Both should ideally be written in italic.  For example, the 
mean and variance of the normal distribution are μ and σ2, while the shape and scale 
parameters of the gamma distribution are α and β.  The collection (vector) of parameters in 
the model is often written as θ or Θ.  For example, if the data are a sample from the normal 
distribution with mean μ and variance σ2, we may write θ = {μ, σ2} as the parameters in the 
model.  Whether θ is a scalar or a vector is typically clear from the context. 

We may write x ~ N(μ, σ2) to mean that the random variable x follows the normal 
distribution with mean μ and variance σ2.  Statistical books use capital English letters (e.g., X 
and Y) to represent random variables, and the corresponding small letters (e.g., x and y) for 
their realized values.  Thus Pr{X < 3} is the probability that random variable X is less than 3 
and Pr{X < x} is the probability that random variable X is less than x.  In non-statistical 
publications, we rarely bother with this distinction.  Thus we write x ~ N(μ, σ2) and Pr{x < 
3}, and try to avoid using Pr{X < x}. 

Hotkeys for MS Word.  Press Ctrl-i for italic, Ctrl-b for bold, Ctrl-+ (Ctrl-Shift-=) for 
superscript, and Ctrl-= for subscript.  All these hotkeys are switches, so you press the same key 
again to remove the formatting.  Try Ctrl-i (a) when some text is highlighted, (b) when the 
cursor is inside a word but nothing is highlighted, and (c) when the cursor is at a space and 
nothing is highlighted (and start typing).  Use Insert-Symbol to insert Greek and 
mathematical symbols such as α, ×, and ∞.  The symbol  (for log likelihood) is in the font 
set MT Extra.  Do not write a and then change its font to Symbol to get α.  You will see the 
difference when you change the font for the whole paragraph from Times New Roman to 
Arial, say.  Use Insert-Object-Microsoft Equation Editor to write equations.  Do not write a 
symbol as an equation. 
 

1.2. Summation and product symbols 

 1 2
1

n

i n
i

x x x x
=

= + + +  . (1.1) 
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 1 2
1 1

n n

i n i
i i

cx cx cx cx c x
= =

= + + + =  .  

 
1 1 1 1

m n m n

i j i j
i j i j

x x x x
= = = =

  =   
  

   .  

 1 2
1

n

i n
i

x x x x
=

= ⋅ ⋅ ⋅∏  . (1.2) 

 
1

1 2 !
n

i

i n n
=

= ⋅ ⋅ ⋅ =∏  .  

 ( ) ( ) ( )1 2
1 1

n n
n

i n i
i i

ax ax ax ax a x
= =

= ⋅ ⋅ ⋅ =∏ ∏ .  

2121 2222 1
2

( )( ) 2 21
2

1 1 1
e e exp 2

n

ii i

n n nxx

i i
i i i

x x nσσ
μμ

σ
μ μ=

− −− −

= = =

   = = − − +  
  

∏   . 

1 2
1 2 1 1 2 2

11
log log( ) log( ) log( ) log( ) log( )i N

N N
x xx x
i N N N i i

ii

p p p p x p x p x p x p
==

  = = + + + = 
 

∏   . 

 
Note that the logarithm in this note is the natural logarithm, with base e. 
Summing up n positive numbers xi as in equation (1.1) when they are too small or too 

large may run into numerical problems called overflows or underflows.  On most computer 
systems we use today, the smallest nonzero double-precision floating number is 2.25 × 10–308, 
so any number smaller than this will become 0 on the computer, causing an underflow.  
Similarly the largest double number is 1.79 × 10307, so any number greater than this will not 
be possible to represent on the computer (Inf or Nan), causing an overflow.  One solution is 
to store the logarithms of the numbers.  The question is then how to calculate the logarithm of 
the sum given the logarithms of the numbers?  In other words, given yi = log{xi}, i = 1, 2, …, 
n, how do we calculate { }1

log n
ii

x
= ? 

The following table illustrates the procedure, with the xi to be 10–10, 10–15, 10–20, 10–25 
(these numbers are not that small and are used for illustration here).  In the computer we store 
the logarithms (yi) (row 2).  We find the largest of the yi to be y* = −23.02585.  This is used 
for scaling: it does not have to be equal to but should be similar to the largest among the yi.  
Subtract y* from each yi (row 3).  Take the exponential and sum up (row 4).  The final result 
is { }1

log n
ii

x
=  = y* + log(s) = −23.02584. 

(1) xi 10–10 10–15 10–20 10–25  
(2) yi = 
log{xi} 

−23.02585 −34.53878 −46.05170 −57.56463 Largest y* = 
−23.02585 

(3) zi = yi – y* 0 −11.51283 −23.02575 −34.53868  
(4) exp{zi} 1 10–5 10–10 10–15 Sum s = 1.000010 

 
Exercise 1 (Summing up large numbers).  Use the above procedure to calculate the 

logarithm of the sum  e1000 + e1200 + e1215 + e1216.  [The answer is 1216.31326.] 
 



 6

1.3. Linear algebra 
An m × n matrix is written as A = {aij}.  A column vector is an n × 1 matrix while a row 
vector is a 1 × n matrix.  For example, 

x = (x1, x2, …, xn)T = 

1

2

n

x
x

x

 
 
 
 
 
 


, 

where the superscript T stands for transpose, is a column vector, and  
y = (y1, y2, …, yn) 

is a row vector.  If vectors x and y are of the same size, their inner-product is defined as  

 x⋅y = 
1

n

i i
i

x y
=
 . (1.3) 

If both matrices A and B are of the same size (that is, if they have the same number of 
rows and the same number of columns), one can define their sum C = A + B, where C = {cij} 
with cij = aij + bij. 

I4 = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
 
 

 D = 

0 0 0
0 0 0
0 0 0
0 0 0

a
b

c
d

 
 
 
 
 
 

Q = 

11

22

33

44

q a b c
a q d e
b d q f
c e f q

 
 
 
 
 
 

 0 = 

0
0
0
0

 
 
 
 
 
 

 

Identity matrix I4 Diagonal matrix 

D = diag{a, b, c, d}

Symmetrical matrix Q,  

in which qij = qji. 

A null vector

 
If A is m × n and B is n × k, then their product exists, C = AB, which is of size m × k.  The 

ijth element of C is the inner product of the ith row in A and the jth column in B: 

 
1

n
ij ik kjk

c a b
=

= . (1.4) 

Exercise 2 (matrix addition and multiplication).  Suppose 

A = 
a b c
d e f
g h i

 
 
 
  

 I = 
1 0 0
0 1 0
0 0 1

 
 
 
  

D = 
1

2

3

0 0
0 0
0 0

d
d

d

 
 
 
  

 

Confirm that IA = AI = A.  Calculate DA and AD.  What pattern did you see?  Calculate D2, 
and Dn, for any natural number n.   

 
Let A be a square matrix of size n × n.  If there exists an n × n matrix B such that  

 AB = BA = In, (1.5) 
where In is the identity matrix of size n × n, then A is said to be non-singular, and B is the 
inverse of A, also written as B = A–1.  The inverse of a matrix, if it exists, is unique.  A square 
matrix that does not have an inverse is said to be singular or degenerate.  A square matrix is 
singular if and only if its determinant |A| = 0. 

The system of linear equations  
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11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =







 (1.6) 

is written in matrix form as 
 Ax = b, (1.7) 
where x and b are column vectors of size n.  The solution, if it exists, is given as  
 x = A–1b. (1.8) 

Matrix diagonalization or spectral decomposition.  Let A be an n × n matrix.  If there 
exists a non-singular n × n matrix U and a diagonal matrix Λ = diag{λ1, λ2, …, λn} such that  

 A = UΛU–1, (1.9) 
then A is said to be diagonalizable, λ1, λ2, …, λn are called the eigenvalues, eigenroots, latent 
roots or characteristic roots of A, and column vectors of U are called the right eigenvectors 
of A, and rows of U–1 are the left eigenvectors.  Equation (1.9) is called the spectral 
decomposition of matrix A.  Note that not all square matrices can be diagonalized. 

To find the eigenvalues and eigenvectors, we solve the system of linear equations  

 Ax = λx, (1.10) 
or  

 (A – λI)x = 0. (1.11) 
Note here λ is a scalar, A and I are n × n matrices, and x is a non-null column vector.  First we 
find the eigenvalues by solving the nth-order polynomial equation  

 |A – λI| = 0. (1.12) 
There should be n roots, but some of them may be identical.  Then use each of the n roots to 
find the corresponding right eigenvector x from equation (1.11), which will be a column in U.  
Note that if λ and x satisfy equation (1.10), so will λ and cx for any c ≠ 0, so the eigenvectors 
are not unique. 

Example (eigensolution for Kimura’s 2-parameter model of nucleotide substitution).  
Find the eigensolution (spectral decomposition) of  

Q = 

( 2 )
( 2 )

( 2 )
( 2 )

α β α β β
α α β β β
β β α β α
β β α α β

− + 
 − + 

− + 
 − + 

. 

One can use equation (1.12) to find the four eigenvalues to be λ1 = 0 (the first one is 
always 0), λ2 = –4β, and λ3 = λ4 = –2(α + β).  Then equation (1.10) can be used with each of 
the eigenvalues to find the corresponding right eigenvector x, which should be the 
corresponding column in U.  The solution is  

 

1 1 1 1
4 4 4 4
1 1 1 1
4 4 4 4

1 1
2 2

1 1
2 2

1 1 0 1 0 0 0 0
1 1 0 1 0 4 0 0

0 01 1 1 0 0 0 2( ) 0
0 01 1 1 0 0 0 0 2( )

Q
β

α β
α β

    
     − −− −     =

− − − +   
     −− − − +     

. (1.13) 
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Exercise 3 (matrix inversion).  Find A–1 where 

A = 
a b
c d
 
 
 

. 

[Hint.  Let A–1 = 
r s
t u
 
 
 

.  Find r, s, t, w by solving the equations AA–1 = I. ] 

Exercise 4 (eigensolution for the Jukes & Cantor model).  Find the eigensolution of  

Q = 

3
3

3
3

λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ

− 
 − 

− 
 − 

. 

Hint: Use the result from the example for the K80 model. 
 
Algebraic functions of  a matrix.  It is easy to see that the nth power of a diagonal matrix 

Λ = diag{λ1, λ2, …, λn} is also a diagonal matrix: Λn = 1 2diag{ , , , }n n n
nλ λ λ .  With the 

spectral decomposition of A (equation 1.9), it is easy to calculate the nth power of A: 

 1 1 1 1 1( ) ( )( ) ( )n n nA U U U U U U U U U U− − − − −= Λ = Λ Λ Λ = Λ , (1.14) 
An algebraic function of a matrix is typically defined as a limit.  Here we are interested in 

the exponential of a square matrix, which is useful in Markov chain models of nucleotide or 
amino acid substitution.  Following the Taylor expansion of the exponential function of a 
scalar x 

 2 31 1
2! 3!e 1 ...x x x x= + + + + . (1.15) 

the exponential of an n × n matrix A is defined as  

 2 31 1
2! 3!e ...A I A A A= + + + + . (1.16) 

Now if the spectral decomposition of A is available (equation 1.9), we have  

 eA = U eΛ U–1, (1.17) 
where eΛ = 1 2diag{e ,e , ,e }nλλ λ  . 

Exercise 5* (Transition probability matrix under Kimura’s 2-parameter model).  Use the 
result of the Example (equation 1.13) to calculate eQt, where t is a scalar. 

 

1.4. Differentiation 
Unless stated otherwise, we assume that all functions discussed in this note are continuous 
and smooth.  When we calculate the derivative of a function, the derivative is assumed to 
exist (or the function is differentiable).  Our emphasis is on intuitive understanding rather 
than mathematical rigor. 

Suppose y = f(x) is a function of x.  When x changes by Δx, y changes by Δy.  Then the 
ratio Δy/Δx measures the slope.  For a straight line y = a + bx, the slope is b.  For a curve, the 
slope may differ at different parts of the curve (that is, it may depend on x), and is defined as  

 
0

d lim
d x

y y
x xΔ →

Δ=
Δ

. (1.18) 
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dy/dx is also written as y' or '( )f x .  The function y = f(x) is increasing if y' > 0 and 
decreasing if y' <0.  When a smooth function f(x) reaches a minimum or maximum inside its 
domain, y' = 0.  Nevertheless, the inverse is not true: y' = 0 does not necessarily mean a 
minimum or maximum (see figure).  Also if the function is defined over the interval a ≤ x ≤ b 
and if the minimum or maximum occurs at the boundary a or b, then y' may not be 0.  

 

 
Suppose y = x2.  When x increases from x to x + Δx, y increases from x2 to (x + Δx)2, with 

Δy = (x + Δx)2 – x2 = 2xΔx + (Δx)2, so that Δy/Δx = 2x + Δx → 2x when Δx → 0.  Thus 
2d

d
x
x

 = 

2x.  Here are a few more examples. 

d 0
d

c
x

=  where c is a constant. 

d e e
d

x x

x
= . 

d 1log{ }
d

x
x x

= . 

1d
d

a ax ax
x

−= . 

1 2d
d

x x
x

− −= − . 

1 1
2 21

2
d d 1
d d 2

x x x
x x x

−= = × = . 

d log{ }
d

x xa a a
x

= . 

d sin cos
d

x x
x

= . 

Note that log means the natural logarithm, with base e. 
The product rule.  If both u and v are functions of x, then 

 d( ) d d( ) ' ' ' ,      or    
d d d
uv v uuv uv u v u v
x x x

= + = + . (1.19) 

The chain rule.  If y is a function of u, and u a function of x, then 

 d d d
d d d
y y u
x u x

= ⋅ . (1.20) 

Here are a few examples. 

 
2 2 21 1 1

2 2 2

21
2d d( )e e e ( )

d d
x x xx x

x x
− − −−= ⋅ = − . 

If 1e xy xα β− −= , then 

 
1

1 1 2 2d de de e ( ) e ( 1) e ( 1)
d d d

x
x x x xy xx x x x x

x x x

β α
α β α β β α α ββ α β α

− −
− − − − − − − −= + = − + − = − + − . (1.21

 

y’ = 0

x

y

y’ = 0

x

y
y’ = 0

y’ > 0y’
< 

0

x

y

y’ = 0

y’ > 0y’
< 

0

x

y

Δx

Δy

x

y

y

y +Δy

x x+Δx 

Δx

Δy

x

y

y

y +Δy

x x+Δx 
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) 
Suppose 1e xy x α β− − −= .  Calculate 

 d
d
y
x

=   

Since '( )f x  is a function of x, we can take its derivative, to get the second derivative 
d '( )'' ''( )

d
f xy f x

x
= = .  The nth derivative is written as y(n) or f ( n)(x). 

Taylor expansion.  One can use a polynomial to approximate an arbitrary function f(x).  The 
Taylor expansion of the function f(x) around x = a is 

 2 (3) 21 1
2 3!( ) ( ) '( )( ) ''( )( ) ( )( )f x f a f a x a f a x a f a x a= + − + − + − + . (1.22) 

Here f(a) is the function f(x) evaluated at x = a, '( )f a  is the first derivative evaluated at x = 
a: that is, '( ) '( )

x a
f a f x

=
= , and so on.  Two examples are 

 2 3 41 1 1
2 3! 4!e 1 ...x x x x x= + + + + + . (1.23) 

 2 3 41 1 1
2 3 4log(1 ) ...x x x x x+ = − + − + . (1.24) 

One can use the first two or three terms of the Taylor expansion to approximate the 
function f(x) in the neighbourhood of x = a, giving  
 ( ) ( ) '( )( )f x f a f a x a≈ + − . (1.25) 

 21
2( ) ( ) '( )( ) ''( )( )f x f a f a x a f a x a≈ + − + − . (1.26) 

For example, when x is close to 0 (if |x|  1) 

 ex ≈ 1 + x. (1.27) 
Similarly if x is close to 0 

 log(1 + x) ≈ x. (1.28) 
In statistics, the Taylor expansion is sometimes used to approximate the log likelihood 

function (θ) = log{L(θ)}.  Suppose (θ) has a mode (maximum) at θ̂ , at which the gradient 
ˆ'( ) 0θ = .  Then equation (1.26) gives the approximate value of (θ) in the neighbourhood of 

θ̂  as  

 21
2

ˆ ˆ ˆ( ) ( ) ''( )( )θ θ θ θ θ≈ + −   . (1.29) 

This means that the likelihood L(θ) is approximated by the density of a normal distribution  

 
21

2
ˆ ˆˆ ''( )( )( ) ( )( ) e e e ,L θ θ θθ θθ −= ≈    (1.30) 

where the variance of the normal distribution is – ˆ1 ''( )θ .  The density function of the 
normal distribution is given later in eq. (2.21). 

1.5. Integration 
Integration is the inverse of differentiation.   

The indefinite integral.  If d ( )'( )
d
F xF x

x
=  = f(x), then 
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 ( )df x x  = F(x) + C, (1.31) 

where C is a constant.  The function f(x) is called the integrand.  Thus 

 e dx x  = ex + C.  

 1 dx
x  = log(x) + C.  

 11
1dn n

nx x x C+
+= + ,  n ≠ −1.  

   

Integration by parts d du v uv v u= −  . (1.32) 

For example, 

 

2 31
3

3 31 1
3 3

3 3 3 21 1 1 1 1
3 3 3 3

3 31 1
3 9

log( )d log( )d( )

log( ) d log( )

log( ) d log( ) d

log( ) .
x

x x x x x

x x x x

x x x x x x x x

x x x C

=

= −

= − = −

= − +

 

 

  

Change of variables 
Calculate 

2 2e dxx x− .  

Let u = 2 2x− .  Then du = –x dx.  Thus  

 
2 22 2e d e d e ex u u xx x u C C− −= − = − + = − +  .  

 or one can write  

 
2 2 2 222 2 2 2

2e d e d( ) de ex x x xxx x C− − − −−= − = − = − +   .  

 
The definite integral.  I = ( )d

b

a
f x x  is the area under the curve f(x) between x = a and x = 

b, but the area below the x axis is negative.  Here f(x) is known as the integrand, and a and b 

are the integration limits.  Some integrals can be calculated analytically.  If d ( )'( )
d
F xF x

x
=  = 

f(x), then 

 ( )d
b

a
f x x  = F(b) – F(a). (1.33) 

For example, 

 01
00

e d e ( e ) ( e ) 1.x xxμ μ
μ

∞ ∞− − −∞= − = − − − =   
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A definite integral of a function f(x) over (a, b) represents

the signed area of the region bounded by the curve of 
the function and the x axis.  In most of our applications, 
f(x) > 0, so the integral represents the area above the x-

axis under the curve between a and b. 

 
fx <- function(x) (x+1)*(x-2)*(x-4) 
xstart=-1;  xend=4.5;  by=0.01; 
x = seq(xstart, xend, by) 
y = fx(x); 
plot(x, y, type="n", xlab="", ylab="", frame.plot=0, 

tck=-.02, xaxp=c(0,xend,1)); 
 
x = seq(xstart, 2, by) 
y = fx(x); 
polygon(c(xstart,x,2),c(0,y,0), col='lightblue'); 
x = seq(4, xend, by) 
y = fx(x); 
polygon(c(4,x,xend),c(0,y,0), col='lightblue'); 
x = seq(2, 4, by) 
y = fx(x); 
polygon(c(2,x,4),c(0,y,0), col='lightgray'); 
 

 
Integrals involving the probability density function of a continuous distribution.  
We will describe the probability density functions for continuous distributions in section 2.3 
but one thing to note here about them is that they integrate to 1, or the area under the 
probability density curve is 1.  This result is very useful in calculating integrals involving 
continuous random variables.  Here we give two examples.   

The first involves the gamma distribution, which has density  

 g(x; α, β) = 1e
( )

x x
α

β αβ
α

− −

Γ
,    x > 0, (1.34) 

with ( ; , )dg x xα β
∞

−∞  = 1.  Suppose now we want to calculate the following integral  

 I = 1
( )0 0

e ( ; , )d e e dcx cx xg x x x x
αβ β α
αα β

∞ ∞− − − −
Γ=  . (1.35) 

This integral arrives in the so-called gamma distances.  We rearrange the integrand so that it 
becomes a gamma density 

 I = ( ) ( )( ) ( ) 1
( )0

e dc c xc cx x
αα αβ

α β
β

β
α ββ∞ +− −+− + −

Γ
+   =  . (1.36) 

Note that now the integrand in brackets is the gamma density g(x; α, β + c) so the integral is 
1. 

A second example involves the normal distribution, which has density 

 φ(x; μ, σ2) = 
21

22
2

( )1
2

e
x

σ
μ

πσ

− − ,    –∞ < x < ∞, (1.37) 

with 2( ; , )dx xφ μ σ
∞

−∞  = 1.  Suppose we want to calculate the integral  

 M = 
212 0222

2

( )( )21 1 1
0 2 2

( ; , ) ( ; , )d e e d
n x

n n
x σ

μ μμ
π πσ

φ μ φ μ μ σ μ μ
∞ ∞ − −− −

−∞ −∞
= ×  . (1.38) 

Here M is the marginal likelihood in Bayesian analysis of the normal model, in which the 
parameter is the population mean μ, and we assign a prior μ ~ N(0, 1), while the data are a 
sample of size n from the population.  The variance of the population is given as 1.  In 
attacking this integral, treat n and x  as given constants and μ as the only unknown variable 
or parameter.  The exponent in the integrand of equation (1.38) is a quadratic form of μ, so 

x

y

+
+

–a b x

y

+
+

–a b
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we “complete the square” and have  

 ( )22 2 2
1 1( ) ( 1) nx n

n nn x n xμ μ μ + +− + = + − + . (1.39) 

Thus  

( )

( )

2
2( 1)

2

21
2 1

2

21
2

21

1

1

2( )

2

( )1 1
2 2

( 1)1 1
2 2

1 ( 1)1
22 (2 )

1
1

e The red part is

e

e d

e d

2 (

 independent 

d Integrand is n1)

of 

e

nnx
n n

n
nn
nx

n x

n

n

n

x

x

nn

n

M

n

μ μ

π π

μ
π π

π π
μ

π μ

μ

μ

π

μ+

+ +

+

∞ −

−

−

∞  − − + 

−∞

+ −

+−∞

∞ − + −

−∞

= ×

 = × × × 
  ← 



= × ×

←


×


+ × 





( )
21

12 1 1
1

1 e ( ;0, 1).
2 ( 1)

ormal density.

n
x

n
n

xφ
π

+
−

= = +
+

 (1.40) 
 
Many integrals in statistical applications cannot be calculated analytically.  We mention 

two important ones here. 
The first is the cumulative distribution function (CDF) of the standard normal distribution 

(see below for the definition of CDF) 

 
2 21

2
( ) e d

z tz tπ
−

−∞
Φ =  . (1.41) 

The integrand 
2 21

2
( ) e xx πφ −=  is the probability density function (PDF) of the standard 

normal distribution.  The CDF is Φ(z) = Pr{Z < z} where Z ~ N(0, 1).  Here are a few familiar 
values: Φ(1.96) = 0.975, and Φ(2.58) = 0.995. 

The second integral is called the gamma function 

 1

0
( ) e dxx xαα

∞ − −Γ =  . (1.42) 

Only the case of α > 0 concerns us here.  When α is a whole number,  
 ( ) ( 1)!n nΓ = − , (1.43) 
so the gamma function is a generalization of the factorial to non-integer numbers.  When α is 
not an integer, numerical methods are used to calculate Γ(α). 

 Γ(α + 1) = α Γ(α),   

 1
2( ) πΓ = .  

Numerical algorithms exist for calculating Φ(z) and Γ(α). 

 

#### Normal CDF function 
a=-3; b=3; threshold=0.5; 
curve(dnorm(x, 0,1), xlim=c(a,b), 

frame.plot=0); 
x=seq(a,threshold,0.01); 
y=dnorm(x,0,1); 
polygon(c(a,x,threshold), c(0,y,0), 

col='lightblue'); 
 
#### Gamma function 
gammaf <- function(x, a, b)  x^(a-1)*exp(-b*x) 
a=2; b=1; range=8; 
curve(gammaf(x, a, b), from=0, to=range, 

frame.plot=0); 
x=seq(0,range,0.01); 
y=gammaf(x,a,b); 
polygon(c(0,x,range), c(0,y,0), 
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The CDF Φ(x) of the standard normal distribution and the Γ(x) 

function are the shaded areas in the plots. 

col='lightblue'); 
 
plot(x,y,  type='h', frame.plot=0, 

col='lightblue'); 
 

 
Numerical integration.  We break the interval (a, b) into n pieces, each of width h = (b – 

a)/n.  We approximate the area of each piece by the area of the rectangle, with the height 
given by the function value at the mid-point of the interval.  Label the n mid-points as x1 = a 
+ h/2, x2 = a + 3h/2, …, xn = a + (2n – 1)h/2, and let yi = f(xi), i = 1, 2, …, n.  Then  

 ( ) ( )1
1 2 21

( )d ( ) ( ( ) ).
b nb a b ab a

nn n nia
f x x y y y f a i− −−

=
≈ + + + = + −   (1.44) 

 

a b a b a b  
Midpoint method 

#### Numerical integration, midpoint method 
fx <- function(x) 0.5*x^3  - 3*x^2 + x + 20 
a0=0.5; b0=6.5; ymax=35; 
a=1; b=6; 
xmid = seq(a+0.5, b-0.5, 1); 
ymid = fx(xmid); 
plot(xmid, ymid, type='h', lwd=2, col="blue", xlim=c(a0,b0), 

ylim=c(0,ymax), xaxs='i', yaxs='i') 
for(i in 1:5) { 
   xb = c(a+i-1, a+i-1, a+i, a+i); 
   mid = fx(a+i-0.5); 
   yb = c(0, mid, mid, 0); 
   polygon(xb, yb, density=15, col="blue"); 
} 
curve(fx, from=a0, to=b0, lwd=3, col="red", add=T); 
x = seq(a, b, 1); 
y = fx(x); 
lines(x,y, type='h'); 

 

 
Trapezoid method 

#### Numerical integration, trapezoid method 
fx <- function(x) 0.5*x^3  - 3*x^2 + x + 20 
a0=0.5; b0=6.5; ymax=35; 
a=1; b=6; 
x = seq(a, b, 1); 
y = fx(x); 
plot(x, y, type="h", lwd=2, col="blue", xlim=c(a0,b0), 

ylim=c(0,ymax), xaxs='i', yaxs='i'); 
lines(x, y, lwd=2, col="blue") 
curve(fx, from=a0, to=b0, lwd=3, col="red", add=T); 
polygon(c(a,x,b),c(0,y,0), density=15, col="blue"); 

 
The trapezoid method.  We break the interval (a, b) into n pieces, each of width h = (b – 

a)/n.  We label the (n + 1) points as x0 = a, x1 = a + h, x2 = a + 2h, …, xn = b, and let yi = f(xi), 
i = 0, 1, 2, …, n.  Then we approximate the area of each piece by the area of the trapezoid, to 
get  

 0 1 1 2 12 2 2

0 1 2 12

( )d ( ) ( ) ( )

( 2 2 2 ).

b
h h h

n na
h

n n

f x x y y y y y y

y y y y y
−

−

+ + + + +

= + + + +
  

 (1.45) 

More sophisticated methods may use a curve (polynomial) to approximate the function 
f(x).  Note that a polynomial p(x) = a0 + a1x + a2x2 + … + amxm = 

0

m m
ii

a x
=  is integrable, 

with 11
10

( )d m m
imi

p x x a x +
+=

= .  If f(x) is a straight line, f(x) = a0 + a1x, two points will be 
enough to achieve a perfect fit.  In general, one can fit a polynomial of order n with n + 1 
points.  A class of numerical integration methods known as Gaussian quadrature try to 
approximate the integrand using those forms.  Similarly if the integrand can be written in the 
forms f(x) = p(x)eax, f(x) = p(x)sin x, etc., with p(x) to be a polynomial, one can calculate the 

a ba ba b
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integral analytically.   
The integral ( , )d d

b d

a c
f x y y x   is the volume between the x-y plane and the surface f(x, y) 

over the rectangle defined by a < x < b and c < y < d.  [[Add a graph to show volume.]] 
Higher-dimensional integrals can be calculated numerically as well, just like the 1-D 

integrals.  While the amount of computation for 1-D integrals is proportional to the number of 
points n, the amount of computation for integrals of k dimensions is proportional to nk, which 
becomes quickly unmanageable with the increase of the dimension k.  Calculation of high-
dimensional integrals is a major problem in many applications in physics and statistics.  This 
difficulty has motivated the development of modern computational algorithms such as 
Markov chain Monte Carlo. 

 

1.6. Analytical and numerical methods 
We use the example of finding the maximum of the following function to illustrate the 
difference between an analytical method and a numerical method (iterative algorithm).   

 L(θ)= θ k (1 – θ)n – k = θ10
 (1 – θ)90,   0 ≤ θ ≤ 1,  

with n = 100, k = 10.  When θ changes, L will change as well.  We want to find the value of θ 
that makes L achieve its maximum.   

As will be explained later around equation 3.2, L is the likelihood function for binomial 
data while θ is the probability parameter, and the value of θ that maximizes L is called the 
maximum likelihood estimate (MLE).  You can use the following R code to plot the curve. 
L=function(x) x^10*(1-x)^90 
curve(L(x), xlim=c(0,1)) 

Analytical solution.  When L achieves its maximum, the slope of the curve is 0, so we set 
the first derivative to 0: L'(θ) = 0 and solve the resulting equation.  In our case this means 

 L' = 1 1 1 1(1 ) ( )(1 ) (1 ) [ (1 ) ( ) ] 0k n k k n k k n kk n k k n kθ θ θ θ θ θ θ θ− − − − − − −− − − − = − − − − = .  (1.46) 
We get three roots: θ = 0, 1, and k/n = 0.1.  The root θ = 0.1 maximizes L and is the solution 
we seek.  (In theory we should also check that the second derivative L'' < 0.) 

Numerical solution.  If we cannot calculate the derivatives or solve the equation, we may 
use a numerical algorithm to find the θ that maximizes L iteratively.  One such algorithm is 
Newton’s method, which uses a second-order polynomial (a parabola) to approximate the 
curve  

 L  = aθ2 + bθ + c. (1.47) 
If a < 0, L  has a maximum at θ* = –b/(2a).  We use the first three terms of the Taylor 
expansion to approximate L(θ) around the current value θk 

 21
2( ) ( ) '( )( ) ''( )( )k k k k kL L L Lθ θ θ θ θ θ θ θ= + − + − . (1.48) 

This is a quadratic function in θ, in the form of equation (1.47), with a = L"(θk)/2 and  
b = L'(θk) – L''(θk)θk.  If L''(θk) < 0, the quadratic (1.48) achieves its maximum at  

 1
'( )

2 ''( )
k

k k
k

Lb
a L

θθ θ
θ+ = − = − . (1.49) 

In our problem, the first and second derivatives are given as  
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1 1

2 1 1 2

' (1 ) ( )(1 ) ,
'' ( 1) (1 ) 2 ( ) (1 ) ( )) 1) (1 )

k n k k n k

k n k k n k k n k

L k n k
L k k k n k n k n k x

θ θ θ θ
θ θ θ θ θ

− − − −

− − − − − − −

= × − − × − −
= − × − − − − + − − − −

   

We apply this algorithm to our problem, with the initial value θ0 = 0.08.  The iteration is 
shown in the table below.  The algorithm converges to the correct value very quickly, with L' 
approaching 0 very fast.   

Two drawbacks of Newton’s method are (i) that it requires the calculation of the first and 
second derivatives which may be expensive or impossible to calculate; and (ii) it may diverge 
so that good initial values are very important: in our example, the algorithm converges only if 
the initial value is in the neighbourhood of the MLE, in the narrow range (0.08, 0.11). 
Iteration θk L'(θk) L''(θk) θk + 1 L(θk) 

0 0.08 1.607 × 10–13 –5.501 × 10–12 0.1092 5.913 × 10–15 
1 0.1092 –6.894 × 10–14 –6.282 × 10–12 0.0982 7.285 × 10–15 
2 0.0982 1.518 × 10–14 –8.692 × 10–12 0.1000 7.604 × 10–15 
3 0.1000 1.849 × 10–16 –8.467 × 10–12 0.1000 7.618 × 10–15 
4 0.1000 3.579 × 10–20 –8.464 × 10–12 0.1000 7.618 × 10–15 
5 0.1000 1.414 × 10–27 –8.464 × 10–12 0.1000 7.618 × 10–15 

L <- function(x, n, k) (x^k)*((1-x)^(n-k)) 
dL <- function(x, n, k)  k*((1-x)^(n-k))*(x^(k-1)) - (n-k)*((1-x)^(n-k-1))*(x^k) 
ddL <- function(x, n, k)  k*(k-1)*((1-x)^(n-k))*(x^(k-2)) - 2*k*(n-k)*((1-x)^(n-k-1))*(x^(k-
1)) + (n-k)*(n-k-1)*((1-x)^(n-k-2))*(x^k) 
 

n = 100 
k = 10 
x = 0.08 
 

for(i in 1:9){ 
  d = dL(x, n, k) 
  dd = ddL(x, n, k) 
  xnew = x - d/dd 
  cat(i-1, sprintf("%.4f",x), sprintf("%.3e", d), sprintf("%.3e", dd),  
      sprintf("%.4f",xnew), sprintf("%.3e", L(x, n, k)), sep = "   ", "\n") 
  x = xnew 
} 
 

2. Probability 

2.1. Two probability concepts 
In classical (also called Frequentist) statistics, probability is defined as the limit of a 
frequency in a long-running experiment.  For example, the frequency of heads in many tosses 
of a “fair” coin is believed to approach ½ when the number of coin tosses approaches infinity.  
The value ½ is thus the probability of heads for the coin. 

In Bayesian statistics, probability is an expression of one’s degree of belief.  According to 
the Bayesian view (from the time of Laplace), the physical world is fully deterministic and 
the only uncertainty is our knowledge of it.  Bayesian statistics attempts to use probability 
distributions to represent our uncertain knowledge of the world.   

2.2. Discrete random variables 
A random variable is a variable whose value is a measurement or observation of a random 
process.  It may represent the possible outcome of an experiment to be performed, or the 
potential value of a quantity whose value is fixed but uncertain, due to incomplete 
information or imprecise measurement.  For example, the random variable X may represent 
the result of a coin toss, with 0 for heads and 1 for tails, or X may represent the outcome of 
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the throw of a die: 1, 2, …, 6. 
A random variable can be discrete or continuous.  A discrete random variable may take a 

finite number of values or a countably infinite many values (such as all the natural numbers).  
A continuous random variable may assume any numerical value in an interval or a collection 
of intervals.   

A probability distribution describes the probabilities of different values that a random 
variable may take.  For a discrete random variable X, we list the probabilities for the 
individual values that X may take.  Suppose X can take k possible values: xi for i = 1, 2, …, k, 
where k can be ∞.  The distribution is then specified by the probabilities pi for those values, 
with 1ii

p = .   
xi x1 x2 … xk 
pi p1 p2 … pk

 
For a continuous random variable, its distribution is characterized using the probability 

density function, to be explained later.   
The average value of the random variable is known as the (mathematical) expectation. 

For a discrete variable X, it is defined as  

 μ = E(X) = 
1

k

i i
i

p x
=
 . (2.1) 

The variance is defined as  

 V = E(x – μ)2 = ( )22 2

1
( ) ( ) ( )

k

i i
i

p x E x E xμ
=

− = − . (2.2) 

For example, the number of points in a throw of a fair dice has the following distribution  

xi 1 2 3 4 5 6 
pi 1

6
1
6

1
6

1
6

1
6

1
6

The expectation is thus E(x) = 1 1 1 1 1 1
6 6 6 6 6 61 2 3 4 5 6× + × + × + × + × + ×  = 3.5, and the variance is 

E(x) = 
6

21
6

1
( 3.5)

i
i

=

−  = ?.  

2.3. Continuous random variables 
Histogram.  A histogram is an estimate of the probability distribution of a continuous random 
variable.  We break the range of the variable into many equal-sized bins and plot the 
frequency of observations falling in each bin against the mid-value of the bin.   

 
A histogram 

#### histogram 
x=rgamma(100000, 5, 2) 
hist(x, xlim=c(0,6.9), ylim=c(0,0.45), freq=F, xaxs="i", 

yaxs="i", bty='l') 
lines(density(x), col='blue', lwd=2) 

 

Probability density function (PDF).  Imagine now that we take a very large sample from a 
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continuous distribution, with billions of points, and construct a histogram with many small 
bins.  A typical bin may be (x, x + Δx).  As Δx is very small, the mid value is nearly x.  When 
the sample size increases and the bin size Δx decreases, the histogram will look more and 
more smooth.  Furthermore we require that the total area under the curve is 1.  This resulting 
curve is known as the probability density function or PDF and is written f(x).  The PDF has 
the following interpretation: f(x)Δx, for small Δx, is the proportion of the sample that lies in 
the bin (x, x + Δx).   

The (cumulative) distribution function (CDF), written as F(x), is the proportion of points 
in all bins left of x.  More formally, it is defined as  

 F(x) = Pr(X < x) = ( )d .
x

f t t
−∞  (2.3) 

Note that F(−∞) = 0 and F(∞) = 1. 
For a continuous random variable X, its mean and variance are defined as  

 μ = E(X) = ( )dxf x x
∞

−∞ . (2.4) 

 V = E(x – μ)2 = 2( ) ( )dx f x xμ
∞

−∞
− . (2.5) 

2.4. Conditional, joint, and marginal probabilities 
We consider the discrete case first, and then the continuous case. 

Discrete variables 

Set operations.  a ∈ A means an item a belongs to the set A.  Ω is the 
whole set, ∅ is the empty set.  ∩ means the intersection, ∪ means 
the union, and ⎯ means negation. 

Suppose A is the event that it will rain tomorrow, and B the event 
that it will not rain tomorrow.  Then A ∩ B = ∅ since both A and B cannot occur, while A ∪ 
B = Ω since one of A and B must occur.  Here B = A . 

Let A and B be two events.  Then P(A ∪ B) is the probability that at least one of A and B 
occurs, and P(A ∩ B) is the probability that both A and B occur.   
 ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩ . (2.6) 
This should be obvious from the Venn diagram. 

The conditional probability of A given B, written as P(A|B) and read “probability of A 
given B”, is defined as 

 P(A|B) = ( )
( )

P A B
P B

∩ , (2.7) 

under the assumption that P(B) > 0.  Again for a proof, look at the Venn diagram. 
For two discrete random variables X and Y, pij = P(X = i, Y = j) is called the joint 

probability, while  

 1

1

( ) ( , ),

( ) ( , )

i i j
j

i i j
i

P X x P X x Y y

P Y y P X x Y y

∞

=

∞

=

= = = =

= = = =




 (2.8) 

A AB BA AB B
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are the marginal probabilities of X and Y, respectively.  

Suppose 1 2
1

n

i n
i

A A A A
=

=    = Ω and i jA A  = ∅ for every i and j.  In other words, 

one and only one of A1, A2, …, An must occur.  Then A1, A2, …, An are said to form a 

mutually exclusive partition of the sample space.  Then 
1

( )
n

i
i

P A
=
  = 1.  The probability of any 

event B is then given as  

 P(B) = 
1 1

( , ) ( ) ( | )
n n

i i i
i i

P A B P A P B A
= =

=  . (2.9) 

This is called the law of total probability.  The conditional probability of Ai given that B has 
occurred is given by the Bayes theorem or the inverse-probability theorem:   

 

1

( , ) ( ) ( | )( | )
( ) ( ) ( | )

i i i
i n

j j
j

P A B P A P B AP A B
P B P A P B A

=

= =


,   i = 1, 2, …, n. (2.10) 

 
Example (False positives of a test) (from Yang 2006: page 147).  Suppose a new clinical 

test has been developed to screen for an infection in the population.  If a person has the 
infection, the test accurately reports a positive 99% of the time, and if a person does not have 
the infection, the test falsely reports a positive only 2% of the time.  Suppose that 0.1% of the 
population have the infection.  What is the probability that a person who has tested positive 
actually has the infection? 

Let A be the event that a person has the infection, and A  no infection.  Let B stand for 
test-positive.  Then P(A) = 0.001, ( )P A  = 0.999, P(B|A) = 0.99, ( | )P B A  = 0.02.  The 
probability that a random person from the population tests positive is, according to equation 
(2.10), 

 P(B) = ( ) ( | ) ( ) ( | )P A P B A P A P B A+  = 0.001 × 0.99 + 0.999 × 0.02 = 0.02097.  
This is close to the proportion among the noninfected individuals of the population.  Equation 
(2.10) then gives the probability that a person who has tested positive has the infection as 

 P(A|B) = ( ) ( | ) 0.001 0.99
( ) 0.02097

P A P B A
P B

×=  = 0.0420.  

This indicates a perhaps surprisingly poor test.  Because the infection is rare and most 
individuals are healthy, most of the people testing positive are actually healthy.  
 
Exercise 6 The Monty Hall problem is a probability puzzle based on the US television game 
show Let’s Make a Deal, originally hosted by Monty Hall.  It is also called the Monty Hall 
paradox.  Suppose you are given the choice of three doors: Behind one door is a car; behind 
the other two, goats. You pick a door, say No. 1, and the host, who knows what’s behind the 
doors, opens another door, say No. 3, which has a goat.  He then says to you, “Do you want 
to pick door No. 2?”  Calculate the probability of winning if you do not switch and if you 
switch. 
Hint: Define A1: behind door 1 is a car; A2: behind door 1 is a goat.  Define B: winning.  Then 
apply the law of total probability (eq. 2.9) for each of the two options (switching and no 
switching).    
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Continuous variables 
For continuous random variables x and y, f(x, y) is called the joint probability density function 
of (X, Y), while  

 ( , ) ( , )d d
x y

F x y f u v u v
−∞ −∞

=    (2.11) 

is the cumulative distribution function.  The marginal density functions of X and Y are  

 
( ) ( , )d ,

( ) ( , )d .

f x f x y y

f y f x y x

+∞

−∞
+∞

−∞

=

=




 (2.12) 

The conditional probability density function  

 ( , ) ( ) ( | )( | )
( ) ( )

f x y f x f y xf x y
f y f y

= = . (2.13) 

The joint probability density is thus written as  
 ( , ) ( ) ( | ) ( ) ( | )f x y f y f x y f x f y x= = . (2.14) 

Distributions of more than two variables are defined similarly. 
Similar to the discrete case, we also have the law of total probability and the Bayes 

theorem, except that the results are stated using the probability density functions (PDFs) 
instead of probabilities, and the summations are replaced by integrals. 

Law of total probability: ( ) ( | ) ( )df y f y x f x x
∞

−∞
=  . (2.15) 

Bayes theorem: ( | ) ( ) ( | ) ( )( | )
( ) ( | ) ( )d

f y x f x f y x f xf x y
f y f y x f x x

∞

−∞

= =


. (2.16) 

 
[[Add examples to illustrate the use of conditioning to derive probabilities.]] 

2.5. Common discrete distributions 
Below we illustrate a few commonly used discrete distributions.  For each we give the 
probability distribution as well as the mean (expectation) and variance.   

Binomial distribution.  Suppose a coin is biased with the probability of heads to be p.  
The number of heads x in n tosses of the coin has the binomial distribution  

 (1 ) ,  0,1,x n x
x

n
p p p x n

x
− = − = 

 
 , (2.17) 

where !
!( )!

n n
x x n x

  =  − 
.  We write x ~ bino(n, p).  The expectation and variance are 

 E(x) = np,  Var(x) = np(1 – p). (2.18) 
Note that the proportion x/n has mean p and variance p(1 – p)/n. 

Poisson distribution.  The Poisson distribution has a parameter λ > 0, which is the 
expected number of a particular event.  The number of such events has the probability 
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 e ,  0,1,
!

x

xp x
x

λλ −= =  . (2.19) 

Both the expectation and variance are E(x) = Var(x) = λ.  
Another common formulation is based on the Poisson process.  Suppose a particular 

event (earthquake, lightening, arrival of a customer at McDonald’s, a mutation in a gene etc.) 
occurs at the rate λ, so that the expected number of events over time t is λt.  Then the number 
of events over time t is a random variable from the Poisson distribution with parameter λt: 

 ( ) e ,  0,1,
!

x
t

x
tp x

x
λλ −= =  . (2.20) 

Note that the number of events (x) is a random variable, and its mean is λt. 

2.6. Common continuous distributions 
We give the PDF of a few commonly-used continuous distributions, together with their 
expectation (mean) and variance. 

Normal distribution: X ~ N(μ, σ2).   

 
2

2
( )

2
2

1( ) e ,     
2

x

f x x
μ

σ

πσ

−−
= − ∞ < < +∞ . (2.21) 

The expectation and variance are E(X) = μ and Var(X) = σ2. 
If μ = 0 and σ2 = 1, X ~ N(0, 1) is said to follow the standard normal distribution.  The 

PDF and CDF for the standard normal distribution are often written as φ and Φ. 

 

2

2

21
2

21
2

,( ) e

( ) e d .

x

x t

x

x t

π

π

φ −

−

−∞

=

Φ = 
 (2.22) 

 
The probability density functions of normal 

distribution with different parameters. 

 
#### Normal distributions 
a=-5; b=5; 
curve(dnorm(x, 0, 1), xlim=c(a,b), xaxs="i", 

yaxs="i", bty="l"); 
curve(dnorm(x, 0, 2), xlim=c(a,b), add=T); 
curve(dnorm(x, 1, 1), xlim=c(a,b), add=T); 

 
Exponential distribution. The density function is  

 e( ) , 0.xf x xλλ −= ≥  (2.23) 
This is sometimes written as X ~ Exp(λ).  The mean and variance are E(X) = 1/λ and 

Var(X) = 1/λ2. 
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The probability density function of the exponential 

distribution 

 
#### exponential distributions 
a=0; b=5; 
curve(dexp(x, 1), xlim=c(a,b), xaxs="i", yaxs="i", 

bty="l"); 
curve(dexp(x, 2), xlim=c(a,b), add=T); 

 
One reason that the exponential distribution is important is that the waiting time of a 

Poisson process is an exponential random variable.  Suppose bus N arrives according to a 
Poisson process, with rate λ = 0.1 per minute.  The probability that the bus will arrive in the 
next half minute (we think a half minute is a small time interval) is λΔt = 0.1 × 0.5 = 0.05.  
The number of bus arrivals over the time interval (t0, t0 + t) has a Poisson distribution with 
mean λt: if t = 60 minutes, the average number of bus arrivals in one hour is 6.  The waiting 
time or inter-arrival time has the exponential distribution with mean 1/λ = 10 minutes.  The 
Poisson process has no memory.  The probability that the bus will arrive in the next 2 minutes 
is independent of the amount of time that we have waited for the bus; the waiting time until 
the bus arrives has the same exponential distribution with mean 10 minutes, whether we have 
waited for 1 minute or 30 minutes. 

Uniform distribution: X ~ U(a, b). The density function is  

 1( ) , .f x a x b
b a

= < <
−

 (2.24) 

The mean and variance are E(x) = (a + b)/2 and Var(x) = (b – a)2/2. 
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x  
The probability density function for U(a, b) 

 
#### uniform distribution 
a=0; b=5; 
curve(dunif(x,2,4), xlim=c(a,b), type='l', xaxs="i", 

yaxs="i", bty="l"); 

 
The U(0, 1) random variable is fundamental to computer simulation, and is known as a 

random number.  A random number generator is a mathematical algorithm that generates a 
sequence of numbers that look like random variables from the U(0, 1) distribution. 

Log-normal distribution.  If y is a random variable with a normal distribution, Y ~ N(μ, 
σ2), then X = eY has a log-normal distribution.  The density function is  
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2

2
1 (log{ } )( ) exp ,     0

22
xf x x

x
μ

σσ π
 −= − > 
 

. (2.25) 

The mean and variance are E(X) = 
21

2eμ σ+  and V(X) =
2 22(e 1)eσ μ σ+− .  Note that while the 

mean of Y is μ, the mean of X = eY is not eμ. 
 

 
The probability density function of the log-normal 

distribution 

#### Log-normal distribution 
a=0; b=5; 
curve(dlnorm(x,0,1), xlim=c(a,b), type='l', 

xaxs="i", yaxs="i", bty="l"); 
curve(dlnorm(x,1,2), xlim=c(a,b), add=T); 

 
Gamma distribution.  X ~ G(α, β).  The density function is  

 1( ) e ,   0
( )

xf x x x
α

α ββ
α

− −= >
Γ

, (2.26) 

where Γ(α) = 1

0
e dxx xα∞ − −  is the gamma function (equation 1.42).  The mean and variance 

are E(X) = α/β and Var(X) = α/β2.  Here α is the shape parameter and β is the rate parameter.  
When α ≤ 1, the density has a L shape.  If α > 1,  it has a mode in the middle.  When α is 
large, the gamma distribution is approximated by the normal distribution.   

Some authors use an alternative notation in which the scale parameter (also written as β) 
instead of the rate parameter is used: note that the scale parameter is the reciprocal of the rate 
parameter.  Check the mean to make sure which notation is used. 

 

 
The probability density function for the gamma 

distribution X ~ G(α, β) 

 
#### Gamma distribution 
a=0; b=5; 
curve(dgamma(x,1,1), xlim=c(a,b), type='l', 

xaxs="i", yaxs="i", bty="l"); 
curve(dgamma(x,2,2), xlim=c(a,b), add=T); 

When α = 1, the gamma distribution reduces to the exponential distribution: G(1, β) = 
Exp(β).  Also when α = n/2 and β = ½, the gamma distribution is known as the χ2 
distribution with n degrees of freedom, written as 2

nχ : that is, ( ) 21
2 2,n

nG χ= . 
Beta distribution.  X ~ beta(a, b).  The density function is  
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 1 1( )( ) (1 ) ,   0 1
( ) ( )

a ba bf x x x x
a b

− −Γ += − < <
Γ Γ

 (2.27) 

In particular, beta(1, 1) is the U(0, 1) distribution.   
The mean and variance are E(X) = a/(a + b) and V(X) = ab/[(a + b)2 (a + b + 1)]. 

 
The probability density function for the beta 

distribution x ~ beta(a, b). 

 
#### Beta distributions 
a=0; b=1; 
curve(dbeta(x,1,1), xlim=c(a,b), ylim=c(0,4), 

type='l', xaxs="i", yaxs="i"); 
curve(dbeta(x,0.5,0.5), xlim=c(a,b), col='red', 

lty=2, lwd=2, add=T); 
curve(dbeta(x,0.5,2), xlim=c(a+0.04,b), col='blue', 

lty=3, lwd=2, add=T); 
curve(dbeta(x,2,0.5), xlim=c(a,b-0.04), col='gray', 

lty=4, lwd=2, add=T); 
curve(dbeta(x,2,2), xlim=c(a,b), col='green', lty=5, 

lwd=2, add=T); 

 

2.7. Functions of random variables 
Suppose the random variable X has the probability density function fX(x) and y = y(x) is a one-
to-one transform of x, with the inverse transform x = x(y).  Then Y is a random variable with 
density  

 d( ) ( ( ))
dY X

xf y f x y
y

= × . (2.28) 

Here fY(y) is the PDF of Y evaluated at Y = y and fX(x) is the PDF of X evaluated at X = x.  
To appreciate how this formula works, imagine we have a huge number of x values and a 

histogram for x.  We then apply the transform y = y(x) to calculate the corresponding y values 
and construct a histogram for y.  In the histogram for x, the proportion of points in the bin (x, 
x + Δx) is fX(x)Δx.  The transform converts x into y = y(x) and x + Δx into y + Δy = y(x + Δx), 
with Δy = d

d
y
xxΔ ⋅ .  In other words, after the transform all points in the (x, x + Δx) bin, which 

has width Δx, will be in the (y, y + Δy) bin, which has width Δy.  Since those points constitute 
the same proportion of the whole sample, we have 

 

 fX(x)Δx = fY(y)Δy, (2.29) 
which means fY(y) = fX(x)Δx/Δy = fX(x)dx/dy.  If the transform y = y(x) is monotonically 
decreasing, we have fY(y) = fX(x)|dx/dy| since only the width of the bin matters in the 
argument. 

Example (Normal distribution).  Suppose z has a standard normal distribution with 
density  

 
21

21
2

( ) e zz
π

φ −= . (2.30) 

Let x = μ + σz, so that z = (x – μ)/σ and dz/dx = 1/σ.  Then x has the density  

 2
21 1

22

1( ) ( ) exp{ ( ) }
2

xf x xμ
σ σ σ

φ μ
πσ

−= × = − − . (2.31) 
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Thus x has a normal distribution with mean μ and variance σ2.  
Example (Log-normal distribution).  Suppose y ~ N(μ, σ2), and x = ey.   

 
2

2
( )

2
2

1( ) e ,     
2

y

f y y
μ

σ

πσ

−−
= − ∞ < < +∞  (2.32) 

We have y = log(x) and dy/dx = 1/x.   Thus the density function of x is 

 
2 2

2 22 2

1 (log{ } ) 1 1 (log{ } )( ) exp exp
2 22 2
x xf x

x x
μ μ

σ σπσ πσ
   − −= − × = −   
   

, (2.33) 

which is equation (2.25). 
Example (Exponential distribution).  Suppose u ~ U(0, 1), and x = –log(u).  Then x has an 

exponential distribution with mean 1.  To see this, note that f(u) = 1 for 0 < u < 1, and du/dx = 
−e–x, so that  

 f(x) = 1 × e–x ,  0 < x < ∞. (2.34) 
Thus if u is a random number, which follows the U(0, 1) distribution, then x = –log(u) will 
have an exponential distribution with mean 1.  Thus to simulate an exponential random 
variable with parameter λ (and mean 1/λ), we first generate a random number u, and then 
apply the transform  x = –log(u)/λ. 

Exercise 7 (inverse gamma distribution) Suppose  

 11( ) e , 0
( )

xf x x xα β

α
− −= < < ∞

Γ
.  

Let y = 1/x.  Derive the density of y. 
 

Exercise 8 Suppose  

 1( ) e , 0xf x xμ
μ

−= < < ∞ .  

Let y = 1 e x μ−− .  Show that y has the uniform distribution by deriving the density of y.  
[Hint.  F(x) = 1 e x μ−−  is the C.D.F. of x.  First determine the range of y.] 
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3. Statistics 

Statistics is a science that aims to make inference about the population based on a sample.  
The sample is assumed to involve random errors, generated under a probabilistic model.  For 
example, we may assume that our data are a sample taken from a normal distribution and we 
are interested in estimating the mean μ and variance σ2 of the normal distribution or in testing 
the hypothesis that μ = 0.  

3.1. Estimation 
A parameter is a constant that describes the population we are interested in, for example, the 
mean μ and variance σ2 of the normal distribution.  A statistic is a quantity we can calculate 

using the observed data.  For example the sample mean 
1

1 n

i
i

x x
n =

=   is a statistic.  We use a 

statistic to estimate the parameter, and it is called an estimator.  For example, the sample 
mean x  is an estimator of parameter μ,  sometimes written as ˆ xμ = .   

The statistic or estimator is a random variable.  It fluctuates among datasets if we take 
many different samples (datasets) from the population.  If the average of the estimator over 
datasets equals the parameter value,  
 ˆ( )E μ μ= , (3.1) 
the estimator is said to be unbiased.  Otherwise it is said to be biased and the difference 

ˆ( )E μ μ−  is called the bias. 
Note that unbiased estimators are in general not invariant to different parametrizations, 

except that the transform h(θ) is linear.  In other words, if ˆ( )E θ  = θ, then ˆ( )E a bθ+  = a + 
bθ.  However, if ˆ( )E θ  = θ, then 2ˆ( )E θ  ≠ θ2.   

 
Likelihood function and MLE  

The probability of observing the data given the parameters, viewed as a function of the 
parameters, is called the likelihood function.  Values of parameters that maximize the 

likelihood function are called maximum likelihood estimates (MLEs) 
Maximum likelihood (ML) is a methodology for estimating parameters and testing statistical 
hypotheses.  Suppose we have an unknown parameter θ in the model.  The probability of 
observing the data D is considered a function of θ, and is called the likelihood function.  
According to the likelihood principle, the likelihood function contains all information from 
the data about θ.  We use two simple examples to introduce the methodology. 

Example. Binomial model (red fish and blue fish).   There are a lot of red and blue fish in 
a pond.  Suppose we take a sample of n = 100 fish and found k = 10 red and n – k = 90 blue.  
What is our best estimate of the proportion of red fish (p)? 

With this simple case, we know the answer: the estimate is k/n = 0.1.  To use ML, note 

 Pr(k|n, p) = 10 90100
(1 ) (1 )

10
k n kn

p p p p
k

−   
− = −   

   
. (3.2) 

Since the data are observed, we view this probability as a function of p; let it be L(p).  L is 
usually very small, so it is more convenient to work with the log likelihood  = log{L}. 
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(p) = log{L(p)} = log
100
10

 
 
 

 + 10 log(p) + 90 log(1 – p). 

This is plotted against p below.  (p) and L(p) reach their maxima when p = k/n, so p̂  = k/n = 
0.1 is the MLE.   

The constant 
100
10

 
 
 

 is often ignored.  Note that dropping it does not affect our evaluation 

of different values of p.  The likelihood function is then p10(1 – p)90, given by multiplying 10 
ps (corresponding to the 10 red fish, each of which has probability p of occurrence) and 90 (1 
– p)’s (corresponding to the 90 blue fish, each of which has probability 1 – p of occurrence). 

 
 

Example. Estimation of sequence distance under JC69.  Suppose we want to estimate the 
sequence distance d under the JC69 model using a pair of sequences with n = 100 sites and k 
= 10 differences.  The unknown parameter is d.  Consider any site in the sequence.  The 
probability that this site is different between the two sequences separated by distance d is  

 ( )4
3

3 1
4

dp e−= − . (3.3) 

The likelihood function L(d) or the probability of observing k differences out of n sites is 
given by the binomial probability  

 
4 4
3 3

10 90100 3 3 1 3( ) (1 ) e e
10 4 4 4 4

d dk n kn
L d p p

k
− −−      = − = − +      

      
. (3.4) 

The log likelihood function is 

 (d) = log{L(d)} = 
4 4
3 3

100 3 3 1 3log 10log e 90log e
10 4 4 4 4

d d− −     + − + +    
    

. (3.5) 

These are plotted below.  They achieve their highest values at the same parameter value d̂  = 
0.1073, corresponding to p̂  = k/n = 10/100.  Thus the MLE of d is given by the Jukes-Cantor 
formula. 

 3 4
4 3

ˆ ˆlog(1 )d p= − − , (3.6) 
where the base of the logarithm is the constant e.  You can also obtain this analytically by 
solving the likelihood equation  

 d 0
dd

= . (3.7) 
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Likelihood function (L) 

 
Log-likelihood function () 

Again note that after the constant is dropped, the likelihood is given by multiplying the 
probabilities across all sites: 10 differences and 90 identities. 

The invariance of the MLEs.  Note that if the MLE of parameter θ is θ̂ , and h(θ) is a 
monotonic function, then the MLE of h(θ) is ˆ( )h θ .  For example, if θ is the side of a square 
and its MLE is 10 m.  Then the MLE of the area of the square h(θ) = θ2 is simply 100 m2.  
Suppose we are building a model, in which we can measure the size of the square by either its 
side or its area.  These two options will be different parametrizations.   ML is invariant to 
different parametrizations: no matter what parameters you choose to use, you will obtain the 
same conclusions.  In this regard, one may view the proportion of different sites p as a 
different parametrization in the Jukes-Cantor model, and its MLE is p̂  = k/n.  Then d = h(p) 
is considered a one-to-one mapping from p to d through equation (3.3), which can be used to 
derive the MLE of d as 

 3 4
4 3

ˆ ˆ ˆ( ) log(1 )d h p p= = − − . (3.8) 
Thus in general MLEs may have a bias in small datasets, which is tolerated.  When the 

dataset is large, MLEs are asymptotically unbiased.  They are also asymptotically normally 
distributed and asymptotically most efficient (they have the smallest variance). 

Under these simple models, analytical solutions are available, and the MLEs agree with 
our intuition.  In more complicated models, our intuition may fail.  Then ML provides a 
general methodology to allow us to proceed.  When analytical solutions are not possible, 
numerical optimisation algorithms are used to obtain the MLEs. 

Example.  Estimation of allele frequencies for the ABO blood groups.  The A, B, and O 
blood groups were discovered in 1900 and 1901 at the University of Vienna by Karl 
Landsteiner in the process of trying to learn why blood transfusions sometimes caused death 
and at other times saved a patient.  In 1930, he received the Nobel Prize for this discovery.  
Two alleles A and B code for two antigens that bind with two antibodies.  We will use the 
following table to estimate the frequencies of the two alleles p and q, with r = 1 – p –  q. 

Phenotypes Genotypes Probability Sample  Frequency 
A AA + AO p2 + 2pr nA = 44 0.269939 
B BB + BO q2 + 2qr nB = 27 0.165644 
AB AB 2pq nAB = 4 0.024540 
O OO r2 nO = 88 0.539877 
Sum   n = 163 1 

 
Here we have two parameters p and q in the model.  Write down the likelihood, that is, the 
probability of observing the counts of people with different blood groups as a function of p 
and q.  In this case it is not possible to obtain the MLEs analytically, and numerical methods 
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have to be used.  The solution is p̂  = 0.1605, q̂  = 0.1004, ˆ ˆ ˆ1r p q= − −  = 0.7392, with  = –
175.448.  [[Insert some R code here for the optimization.]] 
 

3.2. Hypothesis testing 
Consider a sample from the normal distribution.  Suppose we know the variance from past 
data and are interested in whether the population mean μ deviates from a specific value μ0 = 
0.  Here μ0 = 0 may represent a lack of treatment effect.  Thus H0: μ0 = 0 is the null 
hypothesis.  If the observed data are seriously at odds with the predictions of H0, we will be 
forced to reject H0 and accept the more general hypothesis: H1: μ > μ0.  Here H1 is the 
alternative hypothesis.  Note that the two hypotheses H0 and H1 do not have the same role.  If 
they both fit the data nearly equally well, we will prefer H0.  Only when H0 does not fit the 
data and H1 fits the data much better are we prepared to reject H0.  The error of rejecting H0 
when it is true is called the type-I error or false positive error.  The error of accepting H0 
when H0 is false (and H1 is true) is the type-II error or false negative error.  Type-I errors are 
considered to be more serious than type-II errors.   

We use x  as the test statistic.  Suppose the data indicates a positive effect, with x  > 0.  
To determine whether this result could have arisen by chance even if H0 is true, we derive the 
distribution of the test statistic under H0 and calculate the probability that the test statistic is 
even greater than the observed statistic (the sample mean).  This will be the p value.  A small 
p value (say, <5% or 1%) means rejection of H0.  The p value may be the most confusing 
concept in statistics.  All the following statements are incorrect:  

(a) The p value is the probability that the null hypothesis is correct.   
(b) The p value is the probability of the data given the null hypothesis. 
(c) … 
Likelihood ratio test.  We are interested in comparing two parametric models H0 and H1, 

with H0 to be a special case of H1.  The two models are said to be nested.  Suppose the null 
model H0 has q parameters and its optimized log likelihood is 0, and the alternative model 
H1 has p parameters and its optimized log likelihood is 1.  Then twice the log likelihood 
difference 2Δ = 2(1 – 0) can be compared with the χ2 distribution with p – q degrees of 
freedom to decide whether H1 fits the data significantly better than H0.  The null distribution 
here is reliable when the dataset is large.  This test is known as the likelihood ratio test, as 
2Δ = 2(1 – 0) = 1

0
2 log L

L .  
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4. Markov chains 

4.1. Discrete-time Markov chains 
Suppose there are three kinds of weather: sunny (S ), cloudy (C) and raining (R).  We write 
the probability for tomorrow’s weather given today’s weather in the form of a matrix, as 
follows 

 P = {pij} = 
0.7 0.2 0.1
0.1 0.8 0.1
0.3 0.3 0.4

 
 
 
  

, (4.1) 

where pij is the probability that tomorrow’s weather will be j given that today’s is i.  For 
example, pSS = 0.7 means that given it is sunny today, the probability that it will be sunny 
tomorrow is 0.7.  Note that each row sums to 1.  There is a tendency for tomorrow’s weather 
to stay the same as today’s.   

Let Xn be the weather on the nth day, which takes values of S, C or R.  We assume that 
given today’s weather, the probabilities for tomorrow’s weather do not depend on the weather 
yesterday or earlier.  In words, given the present, the future does not depend on the past.  This 
memory-less property is known as the Markovian property.  More formally  
 P(Xn + 1 | X0, X1, …, Xn) = P(Xn + 1 | Xn).  (4.2) 
Then X0, X1, X2, … form a Markov chain.    

Back to the weather, we assume no seasons, so that the transition probability matrix P is 
independent of time; that is 

 1 1 0( | ) ( | )n n ijP X j X i P X j X i p+ = = = = = = . (4.3) 

Markov chains satisfying this condition are said to be time-homogeneous.   
The dynamics of a time-homogeneous Markov chain is characterized by the (one-step) 

transition matrix P.  We now try to calculate the two-step transition probability, for example, 
the probability that it will be sunny the day after tomorrow given that it is sunny today.  We 
have to average (sum) over all possible states for tomorrow’s weather 

 (2)
SSp  = pSS pSS + pSC pCS + pSR pRS = 0.7 × 0.7 + 0.2 × 0.1 + 0.1 × 0.3 = 0.54. (4.4) 

Note that this is a straightforward application of the law of total probabilities (2.9), 
conditioning on tomorrow’s weather. 

Other two-step transition probabilities can be calculated similarly.  If we let P(2) = (2){ }ijp  
be the two-step transition matrix.  Equation (4.4) implies 

 P(2)  = P ⋅ P  = P2. (4.5) 
By induction, the n-step transition probability matrix P(n) = ( ){ }n

ijp  is  

 P(n)  = P(n – 1) ⋅ P  = Pn. (4.6) 
A generalization of equation (4.4) is the Chapman-Kolmogorov equation: 

 ( ) ( ) ( )n m n m
ij ik kj

k S
p p p+

∈

=   for any i, j, and for any m, n ≥ 0. (4.7) 

This can also be written in matrix form as 
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 P(m + n)  = P(m) ⋅ P(n) (4.8) 
for any m, n ≥ 0.  

 
Exercise 9. Calculate P2 using equation (4.1). 
 
The n-step transition matrix Pn can be calculated through the diagonalization of P 

(equation 1.14). 
Exercise 10* (Jukes & Cantor model of DNA sequence evolution).  The evolution of a 

nucleotide site in a DNA sequence is described by a Markov chain.  The four states are the 
nucleotides T, C, A, G.  In every generation the nucleotide changes to one of the three other 
nucleotides with probability λ.  The transition matrix is thus  

 

1 3
1 3

1 3
1 3

P

λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ

− 
 − =

− 
 − 

. (4.9) 

The nucleotides are ordered T, C, A, and G.  Calculate Pn.   To be specific, consider the 
evolution of a site in a DNA sequence in the human-chimpanzee ancestor down to the 
modern human.  Let λ = 81

3 10−×  per generation, with 500,000 generations from the common 
ancestor to the present (assuming 10 years in one generation). 

 
Certain Markov chains may have states with Pii = 1, so that the chain will remain in those 

states as soon as it enters them.  Such states are called absorbing states.  Some population 
genetics models involve absorbing states, but they are not often used in models in molecular 
evolution.  Some Markov chains are periodic.  For example, a Markov chain with three states 
1, 2, 3, and with transitions 1 → 2 → 3 → 1 has the period 3.  If we start in state 1, it is 
possible to get back to state 1 in 3 steps, 6 steps etc., but not in 5 steps.  Please convince 
yourself that the Markov chain illustrated below has a period of 2.  In some Markov chains, it 
is impossible (with probability 0) to go from some states to some other states.  Those states 
are said to be non-commutative.  For example, in the Markov chain represented by the graph 
below, the states T and C are commutative, as are A and G, but T and A are not commutative.  
We do not consider those types of chains.  Instead we try to avoid them when we build 
models in molecular evolution. 

 
 

A Markov chain with period 2 

 

A Markov chain with non-commutative states 
 
Markov chains that we will use have a finite number of states.  All states are “connected” 

or commutative, and every state is visited an infinite number of times and is said to be 
recurrent.  The chain is said to be irreducible.  Furthermore, the chain does not have a period 
and is aperiodic.  In Markov chain Monte Carlo (MCMC) algorithms in Bayesian 
computation, we should make sure that the Markov chain we generate is aperiodic and 

A G

T C

A G

T C

A G

T C

A G

T C
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irreducible. 
Limiting and stationary distributions.  When n → ∞, all elements in the same column of 

the matrix Pn will be identical: that is, ( )n
ij jp π→  when n → ∞, irrespective of the starting 

state i.  The vector  {π1, π2, …, πk}, where k is the number of states, is called the limiting 
distribution.  When the number of transitions n is large, the chain will have lost the memory 
of the initial state so that the probability that the chain is in state j after n transitions is close 
to πj, independent of the initial state i.   

The row vector π = {π1, π2, …, πk} is called the stationary distribution if the πj’s are ≥ 0 
and sum to 1, and if they satisfy  

 πj = i iji
pπ  (4.10) 

or in matrix notation  

 π = πP. (4.11) 
Exercise 11: Calculate the stationary distribution of the Markov chain specified by 

equation (4.1).  Use equation (4.11) to form two linear equations.  Use them together with π1 
+ π2 + π3 = 1 to solve the three unknowns π1, π2, π3.  The stationary distribution gives us the 
proportions of sunny, cloudy and raining days. 

 

4.2. Continuous-time Markov chains 
There are several ways of characterizing the continuous-time Markov chain.  First we can 
view it as the limit or approximation of a discrete-time Markov chain.  We consider a small 
time interval Δt as one step in the discrete-time chain, and let Δt → 0.  The state at any time t 
is then represented by X(t).   

With the Jukes-Cantor mutation model, we can write the one-step transition matrix as  

 P(Δt) = 

1 3
1 3

1 3
1 3

t t t t
t t t t

I Q t
t t t t
t t t t

λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ

− Δ Δ Δ Δ 
 Δ − Δ Δ Δ  = + Δ

Δ Δ − Δ Δ 
 Δ Δ Δ − Δ 

, (4.12) 

where I is the identity matrix and  

 Q = 

3
3

3
3

λ λ λ λ
λ λ λ λ
λ λ λ λ
λ λ λ λ

− 
 − 

− 
 − 

. (4.13) 

We are interested in the transition probability matrix over time t, P(t) = {pij(t)}, where pij(t) is 
the probability that given the chain is in state i now, it will be in state j time t later.  We 
calculate P(t) as the transition probability matrix over n = t/Δt steps.   

 P(t) = [P(Δt)]n = (I + Qt/n)n ≈ eQt. (4.14) 

The last approximation should look familiar if you remember ( )1lim 1 en
nn→∞

+ =  and  

  ( )lim 1 en xx
nn→∞

+ =  for a scalar x. (4.15) 
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For most models of nucleotide substitution, the matrix exponential eQt can be calculated 
by diagonalizing the matrix Q.    

Q = {qij} in equation (4.13) is known as the generator for the continuous-time Markov 
chain.  In the molecular evolution literature, it is commonly known as the rate matrix, since 
qij, i ≠ j, is the rate at which nucleotide i mutates (changes) into nucleotide j.  More precisely, 
the probability that given the current state i, the chain will be in state j a small time interval Δt 
later is qijΔt: Pr(X(t + Δt) = j| X(t) = i)= qijΔt.  The Q matrix has the following properties: (1) 
the off-diagonal elements are nonnegative, and (2) each row sums to 0, so that –qii is the total 
rate of change for state i.  Sometimes we write qi = –qii.  

Here is the Q matrix for the so-called HKY or HKY85 model 

 Q = 

( )   
( )

  ( )
 ( )

C R C A G

T T R A G

T C G Y G

T C A A Y

απ βπ απ βπ βπ
απ απ βπ βπ βπ
βπ βπ απ βπ απ
βπ βπ απ απ βπ

− + 
 − + 
 − +
 − + 

, (4.16) 

where πY = πT + πC and πR = πA + πG.  Again the nucleotides are ordered T, C, A, and G.  And 
here is the most general Q matrix for 4 states. 

 Q = 

T TC TA TG

CT C CA CG

AT AC A AG

GT GC GA G

q q q q
q q q q
q q q q
q q q q

− 
 − 
 −
 − 

, (4.17) 

where the diagonals are given by the requirement that each row sums to 0. 
A second characterization of the Markov chain views the continuous-time Markov chain 

as a “waiting game”.  Given the current state i, the waiting time until the next event 
(transition) is an exponential variable with rate parameter qi = –qii or with mean 1/qi.  When a 
transition occurs, the chain moves to the alternative states with probabilities proportional to 
their rates.  In other words, given that a transition occurs, the moves are described by a 
discrete-time Markov chain with transition matrix (still using the transitions between the 
nucleotides as an example) 

 M = 

TC TGTA

T T T

CT CA CG

C C C

AC AGAT

A A A

GT GC

G G

0
0

0

0GA

G

q qq
q q q

q q q
q q q

q qq
q q q
q q q
q q q

 
 
 
 
 
 
 

. (4.18) 

For the Jukes-Cantor model, all the off-diagonal elements of M are 1/3. 
In other words, if we ignore the waiting times between transitions, the sequence of states 

visited by the process constitutes a discrete-time Markov chain.  This is called the jump chain 
or the embedded Markov chain.   

The limiting and stationary distributions of the continuous-time Markov chain are defined 
similarly to the discrete case.  To get the stationary distribution, we can solve the equation  

 πQ = 0, (4.19) 
together with the constraint that the sum of the πs should be 1. 
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Glossary 

English Deutsch   日本語 中文 
alternative hypothesis  Alternative Hypothese / 

Alternativhypothese 
Hipótesis alternativa Εναλλακτική υπόθεση  対立仮説 备择假设 

aperiodic chain Aperiodische/unperiodische 
Kette 

Cadena aperiódica Μη περιοδική αλυσίδα 非周期的連鎖 非周期链 

Bayes’s theorem Satz von Bayes/Bayes-Regel Teorema de Bayes Μπεϋσιανό θεώρημα ベイズの定理 贝叶斯(贝斯)定
理 

chain rule Kettenregel Regla de la cadena Κανόνας αλυσίδας 連鎖則 链式法则 
commutative states Kommutative Zustände Estados conmutativos  可換な状態 互通 
conditional distribution Bedingte Verteilung Distribución condicional Υπο όρους (δεσμευμένη 

κατανομή) 
条件つき分布 条件分布 

cumulative distribution 
function (CDF) 

Kumulative Verteilungsfunktion Función de distribución 
acumulada 

αθροιστική συνάρτηση 
κατανομής 

累積分布関数 (累计)分布函数 

definite integral Bestimmtes Integral Integral definida Ορισμένο ολοκλήρωμα 定積分 定积分 
derivative Ableitung Derivada Παράγωγος 導関数 导数 
determinant  Determinante Determinante Ορίζουσα 行列式 行列式 
diagonal matrix Diagonalmatrix Matriz diagonal Διαγώνιος πίνακας 対角行列 对角矩阵 
diagonalization Diagonalisierung Diagonalización Διαγωνιοποίηση 対角化 (矩阵)对角化 
embedded chain Eingebettete Kette Cadena embebida Ενσωματωμένη αλυσίδα  埋め込まれた連鎖 嵌入链 (跳跃链) 
ergodic chain ergodische (Markov)-Kette Cadena ergódica (regular) Εργοδική αλυσίδα  エルゴード的マルコ

フ連鎖 

遍历链 

generator Generator Generador γεννήτρια 生成作用素 生成元 
gradient (slope) Gradient/Steigung Gradiente κλίση 勾配 梯度(斜率) 
Hessian matrix Die Hesse-Matrix Matriz Hessiana Εσσιανό Μητρώο ή 

Εσσιανός Πίνακας 
ヘシアン行列 Hessian 矩阵 

identity matrix Identitätsmatrix/Einheitsmatrix Matriz identidad Πίνακας ταυτότητας 
(Μοναδιαίος Πίνακας) 

単位行列 单位矩阵 
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initial distribution Anfangsverteilung Distribución inicial Αρχική κατανομή 初期分布 初始分布 
integral Integral  Integral ολοκλήρωμα 積分 积分 
irreducible chain Nicht-reduzierbare Kette Cadena irreducible Αμείωτη αλυσίδα 

(αδιαχώριστη αλυσίδα ή 
μη αναγώγιμη αλυσίδα) 

既約マルコフ連鎖 不可约链 

joint distribution Gemeinsame Verteilung Distribución conjunta Απο κοινού κατανομή 同時分布(結合分
布) 

联合分布 

jump chain Springende Markov-Kette/ 
Sprungkette 

 αλυσίδα μεταπτώσεων ジャンプ連鎖 跳跃链 (嵌入链) 

likelihood Likelihood Verosilimilitud Πιθανοφάνεια 尤度 似然(值) 
likelihood function Likelihood-Funktion Función de verosimilitud Συναρτηση πιθανοφάνειας 尤度関数 似然函数 
likelihood ratio test Likelihood-Quotienten Test Test de cociente de 

verosimilitud 
τεστ λόγου πιθανοφάνειας 尤度比検定 似然比检验 

marginal distribution Die Randverteilung Distribución marginal περιθώρια κατανομής 周辺分布 边缘分布 
Markov chain Markov-Kette Cadena Markov Αλυσίδα Μαρκόφ 

(Μαρκοβιανή Αλυσίδα) 
マルコフ連鎖 马尔可夫链 

Markov chain Monte 
Carlo 

Markov-Chain Monte Carlo 
Verfahren 

MCMC Μοντε Κάρλο μέθοδοι με 
χρήση Μαρκοβιανών 
Αλυσίδων 

マルコフ連鎖モンテ
カルロ 

马氏链蒙托卡

罗 

matrix Matrix Matriz πίνακας 行列 矩阵 
null hypothesis Nullhypothese Hipótesis nula Μηδενική υπόθεση 帰無仮説 零假设 
off-diagonal elements Die nicht auf der Diagonale 

einer Matrix liegenden 
Elemente 

Elementos no-diagonales Στοιχεία εκτος διαγωνίου 
(μη διαγώνια στοιχεία) 

非対角要素 非对角元素 

period Periode Periodo Περίοδος 周期 周期 
polynomial Das Polynom/ polynomial (adj.) polinómico Πολυώνημο 多項式 多项式 
posterior distribution A posteriori Verteilung Distribución a-posteriori posterior κατανομή ή εκ 

των υστέρων κατανομή 
事後分布 后验分布 

prior distribution A priori Verteilung Distribución a-priori  事前分布 先验分布 
probability density 

function (PDF) 
Wahrscheinlichkeitsdichtefunkti
on/Dichtefunktion 

Función de densidad de 
probabilidad 

Συνάρτηση πυκνότητας 
πιθανότητας 

確率密度関数 概率密度函数 
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recurrent states Wiederkehrende Zustände Estado recurrentes  再帰状態 常返状态 
Simpson’s method Simpsonregel (auch Keplersche 

Fassregel) zur numerischen 
Berechnung von Integralen 

Método de Simpson Μέθοδος Σίμσον シンプソン法 Simpson方法 

scalar Skalar escalar μονόμετρος ή βαθμωτός スカラー 标量 
slope Steigung Gradiente / Pendiente κλίση 勾配(傾斜) 斜率(梯度) 
state space Zustandsraum Espacio de estados χώρος κατάστασης 状態空間 状态空间 
stationary distribution Stationäre/gleichbleibende 

Verteilung 
Distribución estacionaria Στατική κατανομή 

(στάσιμη κατανομή) 
定常分布 平稳分布 

Taylor expansion Taylorreihenentwicklung Expansión de Taylor επέκταση Taylor テイラー展開 泰勒展开 
time-homogeneous Zeitlich homogen/ 

zeitlich homogener Prozess 
Homogéneo en el tiempo Χρονικά ομογενής 

(Ομογενής) 
⻫時的(マルコフ連
鎖) 

时齐(马尔可夫

链) 

transition matrix Übergangsmatrix Matriz de transición Πίνακας μετάβασης 遷移行列 转移矩阵 
transition probability  Übergangswahrscheinlichkeit Probabilidad de transición Πιθανότητα μετάβασης 遷移確率 转移概率 
trapezoid method Trapezregel-Methode zur 

Berechnung von Integralen 
Regla del trapecio Τραπεζοειδές μέθοδος 

(μέθοδος του τραπεζίου) 
台形法 梯形法 

type-I error Fehler erster Art Error tipo I Σφάλμα τύπου 1 第一種の過誤 I-型错误 
type-II error Fehler zweiter Art Error tipo II Σφάλμα τύπου 2 第二種の過誤 II-型错误 
vector Vektor  Vector διάνυσμα ベクトル 向量(矢量) 
Venn diagram Venn-

Diagramm/Mengendiagramm 
Diagrama de Venn Διάγραμμα Βενν ベン図 封氏图 

 


