
ALF User Manual

Daniel A. Dalquen

August 11, 2015

1 Getting Started

1.1 Obtaining ALF

ALF is available as a web service as well as a stand-alone version. Both
are available at http://www.alfsim.org. The web service can be used to
run simulations directly or to generate parameter files for the stand-alone
version. I recommend using the web service only for small simulations. If
you want to be notified when new releases are available, you can register
with your email address, when you download the stand-alone version.

1.2 Installing the stand-alone version

When you download and unpack the stand-alone version of ALF, the fol-
lowing files and directories are created:

install.sh

install script (instructions below)

bin/

- binaries of the darwin engine for Mac OS X and Linux
- starter scripts for darwin and ALF
- script to convert Fasta to Darwin files

lib/

- the darwin library
- the entire ALF source code is located in lib/simulator

params/

sample parameter sets to reproduce some of the results from the pub-
lication

1



ALF can be started directly from this directory (see section 1.3), but it
will probably be more convenient to install the software, because that will
allow you to start ALF directly from any directory.

To install ALF on your system, run the script install.sh. By default,
binary and script files will be copied to /usr/local/bin and the lib di-
rectory will be copied to /usr/local/share/alfdarwin (this will require
super user privileges). If you wish to install ALF in a different location, pass
the path to that location as parameter to install.sh. For example, if you
want to install ALF in your home directory, use

./install.sh /path/to/home.

This will create the directories bin/ and share/alfdarwin/ in your home
directory, if they don’t exist already.

1.3 Running Simulations

If you did not install ALF, run it with the following command:

bin/alfsim [path to parameter file]

If you did install ALF and the script is on your PATH, then this reduces to

alfsim [path to parameter file]

When no paramater file is given, ALF will look for the file parame-
ters.drw in the current working directory. Section 2 lists and explains all
available parameters.

1.4 Citing ALF

If you use ALF in your research, please cite:

1.5 Contact information

If you have a question or want to report a bug, please send me an email to
d.dalquen@ucl.ac.uk.

2



2 Parameters

Parameters for a simulation are passed in a parameter file that uses the
Darwin syntax (see http://www.biorecipes.com/DarwinHelp for details).
For example,

protStart := 200;

sets the parameter protStart to 200. Note that each assignment is termi-
nated by a semicolon.

Some parameters expect a list (comma-separated values enclosed in square
brackets, e.g. [2.4, 133.8]) or a set (comma-separated values in curly
brackets, e.g. {0, 1, 2.5}).

Strings are enclosed in single quotes, e.g. ’a string’.
Finally, comments start with the number sign (#).

2.1 Tree Parameters

ALF simulates sequences along a tree. This tree can be sampled randomly
from a birth-death process or from a tree of life. Alternatively, you can also
supply your own tree. The parameters below set up the species tree for the
simulation.

• treeType

Method for creating the species tree. Accepts the following values:

’BDTree’

Creates a birt-death tree with distance mutRate from origin to
leaves, and λ = birthRate and µ = deathRate. Uses the sam-
pling process described by [?].

’ToLSample’

Creates a tree by sampling from the tree of life (currently consists
of 1038 species derived from OMA)

’Custom’

Use a custom tree defined by treeFile.

• mutRate

Distance from origin to species at the leaves (for random trees)

• scaleTree

Set to true, if the branch lengths of the tree should be scaled. When
treeLength is defined as well, the sum of all branches will be scaled

3



to match treeLength. Otherwise, the distance from root to deepest
leaf is scaled to match mutRate. (default false).

• treeLength

Sum of all branch lengths (only in conjunction with scaleTree).

• birthRate

For ’BDTree’: birth rate (λ)

• deathRate

For ’BDTree’: death rate (µ)

• NSpecies

The number of species in the tree (for ’BDTree’ and ’ToLSample’).

• ultrametric

For BDTree: should resulting tree be ultrametric (default true).

• treeFile

String with path to tree file with tree in Darwin or Newick format.
You can also directly assign a darwin tree structure, which has the
following format:

Tree(Left,Height,Right,xtra)

where Left and Right can be another tree structure or a Leaf (Leaf(Label,
Height, xtra)), Height is the distance of the node from the root and
extra is a field for additional information (for example used to anno-
tate the tree with model switches, see below).

• unitIsPam

Set to false if branch lengths are in substitutions per site. Set rate
parameters for events accordingly. By default, ALF uses PAM dis-
tances.

2.2 Root Genome

The genome at the root of the tree can either consist of your own sequences
or can be randomly generated. The following parameters set up the root
genome.

• realorganism

A string specifying the path to the Darwin DB with the sequence
data. Use the script fasta2darwin in the bin directory to convert

4



Fasta files into the Darwin DB format. Note: Sequences containing
ambiguous characters or special amino acids (B, J, O, U, X, Z for amino
acid sequences; B, D, H, K, M, N, R, S, V, W, X, Y for nucleotide
sequences) are removed.

Example (reads sequences from the file se ECOLI core.db in direc-
tory realseed):

realorganism := ’realseed/se_ECOLI_core.db’;

• protStart

The number of sequences that the first organism should have (only if
the root genome is generated).

• gammaLengthDist

List of parameters for the length distribution of the generated se-
quences (∼ Γ(k, θ)).

Example (lengths will be drawn from ∼ Γ(2.4, 133.8)):

gammaLengthDist := [2.4, 133.8];

If lengths of all sequences should be identical, set k = θ = 1 and
specify the desired length with minGeneLength.

• minGeneLength

Minimum length of a gene.

2.3 Sequence types

In ALF, you can configure different sequence types defined by a substitution
model, an indel model and a model for rate variability among sites. The
following sections describe how to set up the models, define sequence types
and assign them to the sequences of the root genome. Switches between
different sequence types can be performed during speciation or duplication.

2.3.1 Substitution Models

ALF supports a variety of nucleotide, codon and amino acid substitution
models. Several models can be simulated in parallel for a subset of sequences.
The parameters in this section allow you to set up substitution models.

• substModels

List of substitution models, where each model definition has the fol-
lowing format:

5



SubstitutionModel(name:string, parameters:list,

frequencies:list, neutralDNA:boolean)

The number of arguments required depend on the model:

– models CPAM, ECM, ECMu, GCB, JTT, WAG and LG require just the
name of the model (e.g. SubstitutionModel(’CPAM’)).

– When using a custom matrix (CustomC, CustomP), pass the path
to the matrix file as parameter.

– For M-series models, pass also the codon frequencies (in the order
AAA, AAC, AAG, AAT, ACA,. . . , TTT).

– Finally, for nucleotide models specify as fourth parameter whether
non-sense mutations should be allowed.

Available models include:

nucleotide substitution
F84, GTR, HKY, TN93

codon substitution
CPAM, ECM, ECMu, M0, M2, M3, M8, CustomC

amino acid substitution
GCB, JTT, LG, WAG, CustomP

Parameters are ordered as follows

custom empirical models
parameters[1] should contain a path to a matrix in PAML for-
mat (lower triangular matrix of exchangabilitites, followed by a
line with codon/aa frequencies).

M-series models
parameters[1]: κ
parameters[2]: ω (single value or list)
parameters[3]: list of probabilities for ω-class[es]
parameters[4]: for M8, parameter p of beta distribution
parameters[5]: for M8, parameter q of beta distribution

nucleotide models
GTR:
parameters[1]: a
...

6



parameters[6]: f

HKY:
parameters[1]: α
parameters[2]: β

F84:
parameters[1]: κ
parameters[2]: β

TN93:
parameters[1]: α1

parameters[2]: α2

parameters[3]: β

Example (defines two substitution models, the CodonPam model for
coding sequences and one a TN93 model with α1 = 0.3, α2 = 0.4 and
β = 0.7 and equal base frequencies for non-coding sequences):

substModels := [SubstitutionModel(’CPAM’),

SubstitutionModel(’TN93’, [.3, .4, .7],

[seq(0.25,4)], true)]:

• blocksize

When no substitution model is given (pure gap simulation), select
block size for gaps

2.3.2 GC Content Amelioration

GC content amelioration can be enabled by setting the variable targetFreqs.
There are three possibilities:

- targetFreqs := [’Random’];

Creates random target frequencies for all leaf species and all models.
Overrides frequencies supplied in substitution models.

- Use specific frequencies per species and substitution model
If you want to have specific target frequencies per species and substitu-
tion model, set targetFreqs to an array with the following structure:

targetFeqs := [freqsModel_1, freqsModel_2, ...]

7



where

freqsModel_i = [[’speciesName_1’, [freqList_1]],

[’speciesName_2’, [freqList_2]], ...]

Example (Simulation with 4 species using a single nucleotide model):

targetFreqs := [[[’S1’,[0.15, 0.35, 0.3, 0.2]],

[’S2’,[0.2, 0.25, 0.3, 0.25]],

[’S3’,[0.25, 0.2, 0.25, 0.3]],

[’S4’,[0.35, 0.15, 0.2, 0.3]]]]:

Note: These target frequencies represent the stationary distribution
of the underlying model. The actual frequencies will depend on the
branch lengths.

- Use different models
You can define different substitution models for each branch (see sec-
tion 2.3.1).

2.3.3 Gap Models

You can define multiple models for insertions and deletions and assign each
of them (or have them assigned) to a subset of sequences. Use the following
parameters to define indel models.

• indelModels

List of indel models, where each model definition has one of the fol-
lowing formats:

IndelModel(0)

for no indels

IndelModel(rate:nonnegative, model:string, parameters:list,

maxLen:posint)

for one model for insertions and deletions with the same rate

IndelModel(gainRate:nonnegative, model:string, parameters:list,

maxLen:posint, lossRate:nonnegative)

for one model for insertions and deletions with separate rates for
insertions and deletions

IndelModel(gainRrate:nonnegative, gainModel:string, gainParameters:list,

gainMaxLen:posint, lossRate:nonnegative, lossModel:string,

lossParameters:list, lossMaxLen:posint)

for separate models for insertions and deletions

8



The parameters are as follows:

– gainRate/lossRate
rate of insertions/deletions

– model

can be one of the following:

’ZIPF’

Use a Zipfian distribution of the form L−Z c, described in [?].

’NEGBIN’

Use a negative binomial distribution ∼ NB(NB r, NB q)

’QG’

Use the Qian-Goldstein distribution with parameters QG c

and QG t, described in [?].

’GEOM’

Use a geometric distribution with parameter E p. This cor-
responds to a negative binomial distribution ∼ NB(1, E p)

’CUSTOM’

Use a custom distribution with probabilities from indelVector.

– gainParameters/lossParameters
the model parameters:

’ZIPF’

parameters[1]: c (Exponent of Zipfian distribution)

’GEOM’

parameters[1]: p (geometric distribution with mean 1/p)

’QG’

parameters[1]: c
parameters[2]: t (see [?])

’NEGBIN’

parameters[1]: r (r ∈ N)
parameters[2]: q (0 < q < 1)

’CUSTOM’

parameters[1]: p1 (Pr(indel of length 1))
...
parameters[N]: pN (Pr(indel of length N))

A list with probabilities defining a custom indel distribution.
Should be MaxLen elements long.

9



– gainMaxLen/lossMaxLen
maximal length of indels

• DawgPlacement

If true (default), each sequence is assumed to be part of a larger
sequence and gaps can extend beyond either end of the sequence. This
leads to a uniform distribution of gaps within the sequence. If false,
gaps will be constrained to begin and end inside the sequence. This
will lead to fewer gaps on both ends of the sequence.

2.3.4 Rate Variation Among Sites

The parameters in this section control rate variation among sites within
sequences.

• rateVarModels

List of models for rate variation among sites. Each model definition
has one of the following formats:

RateVarModel()

for no rate variation

RateVarModel(model:string, areas:posint, motifFreq:nonnegative,

alpha:nonnegative)

for defining a model

Note: These parameters are ignored, if M-series models or custom
rates are used (use RateVarModel() in these cases).

The model definitions take the following parameters:

– model

possible values include:

’None’

No rate variation among sites.

’Gamma’

Use gamma rates. The number of bins is defined by areas,
additionally, motifs occur with frequency motifFreq.

’Poisson’

Generates a random number of domains (at most areas) per
gene with rates drawn from a Poisson distribution. motifFreq
defines the fraction of domains with mutation rate 0 (motif).

10



– areas

For ’Poisson’: maximum number of areas with different rate
within a gene.
For ’Gamma’: number of rate classes.

– motifFreq

Proportion of invariable sites (motifs)

– alpha

Shape parameter of gamma distribution for gamma rates among
sites.

• areaPath

The path to a file, containing for each gene a list of areas with different
substitution rates. The file should have the following format:

[areas_gene_1, areas_genes_2, ...]

where

areas_gene_i = [area_1, area_2, ...]

area_i = [start_pos, end_pos, rate]

Note: If you use areaPath to provide custom rate variation, set
rateVarModels to [RateVarModel()] and define your sequence types
(see section 2.3.5) accordingly.

2.3.5 Assigning and Switching Between Sequence Types

The following parameters define different sequence types and probabilities
for switching between different types.

• seqTypes

A list of triplets [i,j,k], where i defines the substitution model, j
defines the indel model, and k defines the model for variation among
sites.

• seqTypeAssignments

Parameter concerning selection of sequence type for each sequence of
the root genome. Either supply a list of frequencies of the types 1 . . . n
defined in seqTypes for random assignment or a list of assignments
for each sequence of the root genome.

Example (assign T1 with probability 0.75 and T2 with probability
0.25):

11



seqTypes := [[1,1,1], [2,1,1]];

seqTypeAssignments := [0.75, 0.25];

• modelSwitchS/modelSwitchD
A matrix with probabilities for a switch from sequence type Ti to type
Tj after speciation or duplication, respectively.

Example (switch from T1 to T2 with probability 0.2 during speciation
in the new species):

modelSwitchS := [[0.8,0.2],[0,1]];

modelSwitchD := [[1,0],[0,1]]; % no switch

Note: You can define model switches in more detail by using a custom
tree and annotate it accordingly. Here is an example that creates the
scenario depicted in figure 1 (branch lengths are 40 PAM for a and b,
and 80 PAM for c - f):

treeFile := Tree(Tree(Leaf(’S1’, 120), 40,

Leaf(’S3’, 120), [S,[[1,[3,4]]]]),

0, Tree(Leaf(’S2’, 120), 40,

Leaf(’S4’,120), [S,[[2,[5,6]]]]),

[S,[[1,[1,2]]]]);

A

B C

S1 S3S2 S4

a

fedc

b

M1

M1 M2

M1 M3 M1 M4 M2 M5 M2 M6

Figure 1: This tree represents the following scenario: All sequences are
initially assigned T1. At node A, a switch occurs from T1 to T2 for branch b.
At node B a switch occurs from T1 to T3 for branch c and from T1 to T4 for
branch d. At node C a switch occurs from T2 to T5 for branch e and from
T2 to T6 for branch f .

12



2.4 Rate Variation Among Genes

The parameters in this section control rate variation among sequences.

• amongGeneDistr

Distribution of rates among genes. Possible values include:

’None’

No variation among genes.

’Gamma’

Draw rate for each sequence from a gamma distribution with
shape parameter aGAlpha and average 1.

’Custom’

Use custom rates from file defined by aGPath.

• aGAlpha

Shape parameter of among gene rate distribution.

• aGPath

Path to file with custom rates (see example file, only for custom root
sequences)

2.5 Gene Duplication and Loss

The following parameters control gene duplication and gene loss.

• geneDuplRate

Rate of gene duplications (relative to substitutions).

• transDupl

Probability of a tranlocation after duplication.

• numberDupl

Maximum number of consecutive genes involved in one duplication
event.

• fissionDupl

Probability of a fission event after the duplication of a single gene.

• fusionDupl

Probability of a fusion event after the duplication of two or more genes.

• P pseudogene

Probability of duplicate becoming a pseudogene (permanent rate change
for duplicate).

13



• ratefac pseudogene

Factor by which the rate for the pseudogene is modified.

• P neofunc

Probability of duplicate undergoing neofunctionalization (temporary
rate change for duplicate).

• ratefac neofunc

Factor by which the rate for the duplicate is modified.

• life neofunc

Life of increased rate (time to normalization of rate, in PAM units or
substitutions per site)

• P subfunc

Probability of both copies undergoing subfunctionalization (temporary
rate change for original and duplicate)

• ratefac subfunc

Factor by which the rate for the duplicate is modified.

• life subfunc

Life of rate change (time to normalization of rate, in PAM units or
substitutions per site).

• geneLossRate

Rate of gene losses (relative to substitutions)

• numberLoss

Maximum number of consecutive genes involved in one loss event.

2.6 Lateral Gene Transfer

• lgtRate

Rate of single lateral gene transfers (relative to substitutions).

• orthRep

Proportion of lateral gene transfers that are orthologous replacements
(i.e. the transferred gene replaces the orthologous gene in the recipi-
ent).

• lgtGRate

Rate of lateral transfers of groups of genes.

14



• lgtGSize

Maximum number of genes which can be transferred in one event.

2.7 Genome Rearrangement

• invers

Rate of gene inversions (relative to substitutions).

• invSize

Maximum number of genes which are inverted in one inversion event

• transloc

Rate of gene translocations (relative to substitutions).

• transSize

Maximum number of genes which are translocated in one go

• invtrans

Rate of inverted translocations (relative to substitutions).

2.8 Gene Fusion and Fission

• fissionRate

Rate of gene fissions without prior duplication (relative to substitu-
tions).

• fusionRate

Rate of gene fusions without prior duplication of fused genes (relative
to substitutions).

• numberFusion

Maximum number of genes fused in one event.

2.9 Output

The following parameters define what output is generated and where it is
stored. ALF will always generate a species tree, that reflects the ancestry
of the simulated species, and the set of genomes of the species at the leaves
of that tree.

• simOutput

A set of output files and formats. If this variable is not defined, all
outputs are generated. Possible values include:

15



’GeneTrees’

all gene trees

’Ancestral’

output ancestral genomes

’Dup’

output ancestral sequences at gene duplications. The output con-
sists of one file per species. Each sequence is only stored in one
file (i.e. the one of the species where the duplication occurred).

’MSA’

MSAs of all related sequences

’VP’

pairwise evolutionary relationships (ortho/para/xenologs)

’DarwinTree’

output trees in Darwin format

’Newick’

output trees in Newick format (default)

’DarwinDB’

output genomes as Darwin databases

’Fasta’

output genomes as Fasta files (default)

Example (creates species tree in Darwin format, MSAs of all gene
families, and Darwin databases for all ancestral and leaf species):

simOutput := {’DarwinTree’, ’MSA’, ’DarwinDB’, ’Ancestral’};

• wdir

A string specifying the working directory, i.e. the directory where
simulation results are stored. current working directory by default,
can also be set as argument of alfsim

• mname

A string specifying the name of the simulation. ALF will create a
directory of that name in the working directory containing all result
files.

2.10 Misc

• Initialize random number generator
If you are interested in getting reproducible results, put SetRand(seed);

16



on the very first line of the parameter file, where seed is an arbitrary
integer number.

3 The Evolutionary History of a Gene

The Darwin database files hold information about all evolutionary events
that affected a gene. For each gene, the <DE> tag contains a string composed
of the following elements:

• a-(x)b speciation at time x of species a into species b

• -(gDx)a gene duplication of gene g at time x in species a

• -a(gLx)b LGT (novel acquisition) of gene g at time x from donor
species a into recipient species b

• -a(gLox)b LGT (orthologous replacement) of gene g at time x from
donor species into recipient species b

• -(gFix)a gene fission of gene g at time x in species a

• -(gFux)a gene fusion of gene g with the current gene at time x in
species a

4 Performance / Memory Usage

17



Simulation
Execution
Time (s)

Memory
Usage (MB)

root genome: 100 protein sequences, 500 aa each; 20
species; substitutions: WAG

7 300

root genome: 100 protein sequences, 500 aa each;
20 species; substitutions: WAG; indels: Zipfian; Γ
rates

10 664

root genome: 100 codon sequences, 500 codons each;
20 species; substitutions: CPAM; indels: Zipfian; Γ
rates

315 1506

root genome: 100 codon sequences, 500 codons each;
20 species; substitutions: CPAM; indels: Zipfian; Γ
rates; duplications/losses with rate 0.001

277 1489

root genome: 1000 seqs, lengths ∼ Γ(3, 134);
20 species; substitutions: CPAM, TN93; indels:
Zipfian; Γ-rates; duplications/losses/fusions/fissions
with rate 0.001; LGTs with rate 0.0004; rearrange-
ments with rate 0.005

1782 1801

root genome: 4352 E. coli genes; 20 species; sub-
stitutions: CPAM, TN93; indels: Zipfian; Γ-rates;
duplications/losses with rate 0.003; LGTs with rate
0.0005

16577 3934

Table 1: Performance of a number of example simulations. Based on simu-
lations run on a Indel Core 2 Quad with 2.33 GHz.

18


