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Darwin's 'struggle for existence' was based on Malthus's demography: 

competition among species should be similar to natural selection among 

genotypes within species. Yet the role of population ecology in 

evolution remains debated. In particular genetic variation for intrinsic 

rate of increase r is seemingly neutral in conventional 'rigid carrying 

capacity' (r-K) demographic models, whereas r is equivalent to fitness in 

simple population genetic models. Due to focus on conventional 

models, known results linking ecological competition and natural 

selection have been obfuscated. 

 

Here I show that simple theory based on birth and death rates instead 

supports an 'elastic carrying capacity' reinterpretation of population 

regulation. This model solves theoretical paradoxes introduced by the 

conventional model, and explains hitherto puzzling experimental 

results. Furthermore, selection of many different kinds, including 

simple Fisherian r selection, density-dependent and frequency-

dependent selection, as well as hard and soft selection all emerge 

cleanly from the resulting haploid demographic formulation. Diploidy 

and sexuality add complexity, but the same principles apply.  

 

These findings clarify earlier debates about r and K selection, and can 

lead to better understanding of spatial evolution, life history evolution, 

and genetic loads. They demonstrate the fundamental unity between 

population ecology and evolution. 
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Introduction: Evolution and ecology 

 

It is a curious feature of the theoretical core of evolutionary biology – 

population genetics – that it often ignores the original impetus of its creation, 

population ecology. The idea of natural selection was triggered only after 

Darwin read a treatise on overpopulation and human suffering (Malthus 

1826). The earliest ecologists to investigate competition were motivated by an 

interest in Darwin's 'struggle for existence,' or natural selection (Gause 1934; 

Scudo and Ziegler 1978), but later ecologists focused mainly on population 

densities of competing species.  In contrast, the originators of population 

genetic theory, Ronald A. Fisher, J.B.S. Haldane and Sewall Wright, based 

their theories on population ecology, but generalized selection almost 

exclusively in terms of gene frequencies within species. As a result, textbooks 

today treat population ecology and evolution by natural selection as almost 

entirely separate topics.  

 

This separation is reasonable if gene frequencies and population density do 

not interact. Unfortunately, interaction is likely: selection is caused by 

differences in fertility and survival, the same parameters that affect 

population density. A deliberate fusion between evolution and ecology, 

'population biology,' was attempted in the 1960s and 1970s (Wilson and 

Bossert 1971; Roughgarden 1979). Today, a common opinion is that the effort 

has failed (Lewontin 2004). 

 

Competition among species closely resembles natural selection among 

genotypes, so it ought to be possible to build theories of population genetics 

equivalent to ecological competition. However, efforts to unify ecology and 

evolution have been frustrated because theories of population growth and 

competition conflict with common sense about evolution. In particular, 

ecological theory seems to demand that genotypes with the highest carrying 

capacities K will be fitter, while intrinsic growth rate r does not affect the 
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outcome (MacArthur 1962; Roughgarden 1971); meanwhile classical 

evolutionary theory employs r as the basis of fitness (Fisher 1918; Fisher 1922; 

Fisher 1930)?  

 

Here I use simple models to demonstrate the fundamental unity between 

population ecology and evolution. The literature on combining demography 

with evolution is voluminous and has a long history. Many problems have 

been solved repeatedly (Kostitzin 1937; MacArthur 1962; Smouse 1976; Slatkin 

1979; Asmussen 1983a; Asmussen 1983b; Christiansen 2004). Crow and 

Kimura (1970) and Kimura (1978) made major inroads. However, the results 

were never linked and the overall problem remains elusive. Smouse's 

important paper (1976), for example, is rarely cited, perhaps because it did not 

appear to address a key debate of its time, MacArthur and Wilson's 

hypothesis of r and K selection (MacArthur and Wilson 1967).  

 

The overall topic is often known as 'density-dependent selection.' The issue 

has sometimes been viewed as little more than an interesting backwater, an 

embellishment on simpler population genetics to 'allow for' selection in 

density regulated populations. However, because natural selection depends 

on differences in fertility and viability that also affect population growth and 

density regulation, the topic is fundamental: its solution leads to a clearer 

understanding of natural selection in general. 

 

I first briefly review paradoxes that have appeared in demographic models, 

before applying their resolutions to natural selection. 

 

Population growth and competition: problems with conventional formulations 

 

The per capita instantaneous growth rate, R = B – D is sometimes called the 

'Malthusian parameter' (Fisher 1930) after Malthus' original insight (Malthus 
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1826). It is the excess of births over deaths in the population, both of which 

may be functions of population density: 

 

( ) ( )1
( )

dN
R N B N D N

N dt
= = −       (1) 

 

At its simplest, populations are unregulated, and both B(N) = b and D(N) = d 

are constants: the intrinsic growth rate itself becomes constant, r = b – d. Then: 

 

r
dt

dN

N
=

1
         (2) 

 

On integration, this gives exponential growth, Nt = N0ert, where N0 is the 

initial number at time t = 0.  

 

When populations are regulated, growth rate is expected to decline 

monotonically as a function of density, N. (I comment on low density 'Allee 

effects' below, but ignore them for now). A well-known function is the logistic 

formulation introduced by Gause (1934), in which growth declines linearly to 

0 when N = K and becomes negative when N > K. The new parameter K is the 

equilibrium population density, known as 'carrying capacity:' 
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1

1
        (3) 

 

Logistic growth is the basis for many models in population biology, and the 

integral for this equation is also well known (e.g. Crow and Kimura 1970; 

Roughgarden 1979; Pastor 2008).  

 

In the present context, it is worth noting that equation 3 has often been 

claimed to be unrealistic, and indeed it can behave paradoxically. The best 

known case occurs when r < 0, and N0 > K as a starting condition: equation 3 
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predicts a singularity when population growth accelerates until dN/dt → +∞ 

after a finite time 
{ }

||

)/(log 00

r

KNN
t

−
=  (Kuno 1991). This is known as Levins' 

paradox (Hutchinson 1978; Gabriel et al. 2005). A number of other paradoxes 

are known (Kuno 1991; Ginzburg 1992); for instance, when r = 0, the 

population neither grows nor declines no matter how large N is, even if larger 

than K (Kuno 1991).  

 

In modern theories of the evolution of geographic range limits of species, for 

example, it would be sensible to allow r < 0 in unfavourable regions 

(Kirkpatrick and Barton 1997; Polechová et al. 2009), and stochastic 

fluctuations should sometimes lead to a population exceeding equilibrium 

density. Models of population dynamics should deal with such situations. If r 

< 0, with N0 > K, we intuitively expect the population to decline to extinction 

rather rapidly since exceeding the carrying capacity should reduce population 

growth still further below zero. Instead, in Levins' paradox, a product of two 

negatives in equation 3 becomes positive and the population increases to 

infinity. Therefore, some ecologists now interpret these paradoxes as serious 

failures rather than just annoyances (Kuno 1991; Ginzburg 1992; Gabriel et al. 

2005; Pastor 2008). 

 

Another paradox is produced in theories of competition that are extenstions 

of equation 3. The best known model is Lotka-Volterra competition: 
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where the subscripts refer to species i and j and αij represents the density-

dependent interaction effect of species j on species i. Conditions for 

coexistence or exclusion of one by the other are well known and readily 

demonstrated graphically by the method of isoclines (Gause and Witt 1935).  



Mallet: Competition and natural selection 7 

The inequalities that determine outcomes (Table 1) for two species have 

appeared in many ecology texts since then. Yet it is paradoxical that outcomes 

of competition depend only on α and K, and not on intrinsic growth rates, r. 

The rapidity with which equilibrium is attained does depend on r 

(Roughgarden 1971), as does the stability of equilibria in models with ≥ 3 

species (Strobeck 1973). However the paradox of the lack of involvement of r 

in outcomes remains puzzling (Maynard Smith 1989): p. 19; (Begon et al. 

1996): 278). This is also a major problem for natural selection (discussed 

below). Noting these issues, John Maynard Smith argued:  

 

There is an important difference in kind between equations [2, this 

paper] and [3, this paper]. This can be expressed by saying that 

equation [2] can be microscopically justified, whereas equation [3] is 

descriptive and phenomenological.  ... The justification for equation [3] 

is that it accurately describes some cases of change in population 

number, and that it is mathematically simple, but not that it is derived 

from what individuals are doing (Maynard Smith 1989): 19, see also 

(Maynard Smith 1974): 18-19). 

 

Maynard Smith and others have therefore argued that the logistic is 

inadequate to incorporate our intuitions about r.  

 

Population growth and competition: paradox resolution via the 'elastic K' logistic 

 

However, equations 3 and 4 can in fact be justified microscopically from 

equation 1 in the same way as equation 2. This justification was first 

published in the 1930s (Kostitzin 1937; Kostitzin 1939); since then, it has been 

independently re-derived several times from the underlying birth-death 

model (Prout 1980; Bell 1997; Christiansen 2004; Gabriel et al. 2005; Pastor 

2008; Gotelli 2008):  
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cNr
dt

dN

N
−=

1
          (5) 

 

This follows from first principles if B(N) and D(N) in equation 1 are both 

linear, where  r = (b – d) as before, and a 'crowding effect' c = (β + δ) is the sum 

of density-dependent effects on birth and death (Appendix 1). K is no longer a 

'rigid' carrying capacity; instead, setting equation 5 to zero results in a 

dynamic or 'elastic' equilibrium, K = (b – d)/(β + δ) = r/c, a balance between 

density-dependent and density-independent birth and death parameters. For 

competition, equation 4 is modified similarly (Appendix 1): 
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1
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ijiii
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i
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dt
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N
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≠

+−= α        (6) 

 

where the crowding effect on an individual of species i by another species j is 

αij relative to that of its own species, ci.  

 

Density-independent elements, r, and density-dependent parameters, c, are 

completely separated in equations 5-6. In contrast, the classic 'rigid K' 

parameterization (equations 3, 4) enforces a paradoxical effect of r on density-

dependent regulation (because c = r/K). The  'elastic K' logistic (equation 5) 

was the form first proposed for population dynamics (Verhulst 1838), and 

was used to derive all the major results in ecological competition (Lotka 1925; 

Volterra 1927; Lotka 1932), such as the outcome inequalities in Table 1. As it is 

based on a non-linear birth-death process, it is also formally equivalent to 

stochastic, dynamic equilibrium models of colonization and extinction such as 

the Levins metapopulation model and the MacArthur-Wilson theory of island 

biogeography (Hanski and Gilpin 1991). 

  

Levins' paradox no longer applies because c must be positive to give 

population regulation with a positive equilibrium density (Kuno 1991). 
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Crowding will always reduce population growth in equation 5; therefore, 

when r < 0 the 'carrying capacity' K is also negative. A negative K implies an 

absence of a positive equilibrium rather than an actually negative N: the 

population always declines to extinction when r < 0 or r = 0, as seems most 

logical. In competition, both density-dependent c and density-independent r 

parameters in equation 6 are directly involved in the outcome of competition, 

even for two species. The Lotka-Volterra paradox is thus resolved: relative 

values of r are now important for outcomes.  For example, stable coexistence, 

condition 4 (Table 1), now requires 1/α21 > r1c2/r2c1 > α12. The elastic K 

formulation thus resolves all known paradoxes of the rigid K formulation 

(Kuno 1991; Christiansen 2004; Lewontin 2004; Gabriel et al. 2005; Pastor 

2008). Therefore, it is perhaps best not to think of K as a rigid feature of the 

environment, as seems implied by the term 'carrying capacity.'   

 

These discoveries have not yet penetrated into mainstream ecology, although 

some textbooks do now mention the Kostitzin derivation (Begon et al. 1996; 

Pastor 2008; Gotelli 2008). Of course, the logistic is only the simplest of a 

family of models for population regulation, and higher-order models may 

sometimes be required (Ayala et al. 1973; Ginzburg 1992). Nonetheless, 

paradoxes similar to those above will arise in more complex rigid K models.  

 

As an example of a more complex model, consider 'Allee effects.' These are 

beneficial effects of population size at low density, and can lead to an unstable 

threshold density below which the population crashes to extinction. Allee 

effects are not incorporated into the logistic, but it is not a problem to add 

parameters to do so. Such models give logistic-like behaviour when N is 

greater than the Allee threshold (Kostitzin 1940; Asmussen 1979). Thus 

although the lack of Allee effects in equations 3-6 can be unrealistic, this is not 

a good argument against logistic approximations near equilibrium. 
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Rigid K formulations appear very ingrained, and to some appear intuitively 

correct. For example, Ginzburg's preference was to "side with intuition" when 

confronted with a problem caused by the rigid K logistic: his intuition dictated 

that equilibrium density should remain constant under changing constant 

mortality (Ginzburg 1992). It is here suggested that, as with relativity in 

physics, siding with logic rather than intuition can resolve the paradoxical 

'thought experiments' given above. 

 

An important justification for the elastic K logistic is that it can be derived 

from explicit consideration of births and deaths (Kostitzin 1937; Prout 1980; 

Pastor 2008), while the rigid K model cannot (Appendix 1). Logistic-like 

models can also be derived from physical chemistry models of consumers 

exploiting either finite or constantly renewed non-living resources (Williams 

1972; Pastor 2008). Similar, but more general justifications for logistic-type 

regulation have been based on ideas of energy conservation, efficiency, and 

energy flow (Lotka 1925; Slobodkin 1960). 

 

Finally, perhaps the most powerful evidence in favour of elastic K 

formulations in population dynamics is empirical. 

 

 

Empirical evidence for elastic K population regulation 

 

At first sight, it seems unlikely that mere parameterization of the logistic 

could be at all important in nature. However, if r and c are mechanistically 

independent, as in Kostitzin's version of the logistic, this might be 

demonstrable in real organisms. Under elastic K, we might expect r to be 

positively correlated with K = r/c. In fact, tests of life-history trade-offs 

between r and K in experimental data have often produced results that were 

highly puzzling under a rigid K interpretation. For example, experiments on 

Paramecium showed strong positive correlations of fitted r and fitted K among 
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strains of P. primaurelia, and among different species of Paramecium and other 

ciliates (Luckinbill 1979). Positive correlations were also found for inbred 

strains of Drosophila melanogaster when grown alone (Mueller and Ayala 1981). 

Furthermore, when populations of P. primaurelia were selected for higher r, a 

positive response was seen in K as well (Luckinbill 1979). Although quite 

unexpected under the r vs. K trade-off ideas of their time (see below), these 

results are perfectly in accord with elastic K theory.  

 

Similar positive correlations between r and K occurred among laboratory 

populations of Nephotettix leafhoppers feeding on a fixed input of resource 

(rice seedlings) at different temperatures (Fig. 1). Crowding effects c = r/K 

were uncorrelated with K both within and among species normally feeding on 

rice (Valle et al. 1989; Kuno 1991).  These results are expected if the crowding 

effects c are relatively independent of temperature, while maximal per capita 

rate of increase r (as well as its effect on an elastic K) is more strongly affected. 

Possibly, r depends strongly on metabolic processes in these species, 

explaining the temperature dependency within species of r and the 

consequent response of equilibrium density K.  

 

Toxic chemicals provide another means to alter population growth. Data on 

many organisms showed that r was directly proportional to K as r declined 

after treatment with toxins (Hendriks et al. 2005). These results are again as 

expected under elastic K, in which density-independent death rates d, and 

therefore r (Appendix 1) should be directly proportional to equilibrium 

density K. If K were not elastic, pesticides would be considerably less useful. 

 

 

Theory of natural selection based on clonal genotype competition 

 

The simplest case of natural selection supposes that populations of haploid 

alleles, haplotypes, or clonal genotypes compete only by growing at different 
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rates. The goal here is to understand how changes in frequency p1 of a focal 

allele (allele 1) emerges from population growth. By analogy with equation 1, 

we compare the growth in density, n1, of the focal allele 1 with that of all other 

allelic types, n2, in a population of total density 21 nnN += : 

 

1
1 1 1

1

1 dn
R B D

n dt
= = −          (7a) 

2
2 2 2

2

1 dn
R B D

n dt
= = −         (7b) 

 

Meanwhile, the entire population grows according to: 

 

1 1 2 2

dN
R n R n

dt
= +         (7c) 

 

B1, D1, B2, and D2 and therefore R1 and R2 are functions that may depend on 

allelic densities n1 and n2. Then it is true in general that the rate of change of 

allele frequency is as follows (from Appendix 2, equation A2.4): 

 

{ }1
1 2 1 1(1 )

dp
R R p p

dt
= − −        (8) 

 

1 2S R R= −  measures the strength of natural selection, while the values of R 

measure allelic fitnesses; these derived functions also depend, in general, on 

allelic density because of their basis in viability and fertility. 

 

Exponential growth 

 

A special case of equation 8 supposes that the population is not subject to 

regulation, and genotypes differ only in constant intrinsic growth rates, so 

that B1 – D1 = r1 and B2 – D2 = r2 are constants. The parameters r1 and r2 were 
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Fisher's (Fisher 1922; Fisher 1930) measure of fitness. Substituting into 

equation 8, the change of allele frequency is given by: 

 

{ }1
1 2 1 1 1 1(1 ) (1 )

dp
r r p p sp p

dt
= − − = −       (9) 

 

The selection function, S becomes a constant 1 2s r r= − ; s measures the strength 

of selection. Equation 9 is itself a kind of logistic (here p1 is analogous to N/K 

in equation 3), even though both types increase without limit (equation 8, Fig. 

2A). Integration gives (Fisher 1918; Fisher 1922; Haldane 1924; Lotka 1925; 

Crow and Kimura 1970): 

 

stC
p

p
e +=









− )1(
log

1

1         (10) 

 

Here, )]1/([log 0,10,1 ppC e −= , which depends on the starting allele frequency, 

p1,0. Thus, when [ ]1 1log / (1 )p p−  (the 'logit' transformation of p1) is plotted 

against time, the sigmoid growth of p1 is straightened, giving a constant slope 

s (Fig. 2B).  

 

This linear relationship of logit allele frequency to time, equation 10 (Fig. 2B), 

suggests a kind of 'gold-standard' for Fisherian constant fitness (Crow and 

Kimura 1970; Smouse 1976). Conformity in more complex models to logit-

linear natural selection would imply that 'Fisherian' constant, density-

independent fitnesses, as well as weak 'Wrightian' selection in discrete 

generations (Appendix 3) provide a good representation of natural selection. 

  

Logistic population regulation 

 

The implicit assumption that populations grow without limit does not at first 

sight seem to provide a particularly fruitful foundation on which to build a 
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population genetics of natural selection (Leigh 1971; Wagner 2010). When 

population numbers are regulated, for instance via competition among alleles, 

haplotypes, or clonal genotypes, the mathematics of natural selection should 

become considerably less simple. Assuming Lotka-Volterra competition, 

equations 6 and 7 specify overall population growth as follows: 

 

[ ] [ ]1 1 1 12 2 1 2 2 2 21 1 2( ) ( )
dN

r c n n n r c n n n
dt

α α= − − + − −     (11) 

 

Substituting these functions into equation 8, gene frequency evolves as 

follows (Appendix A2.6, see also Smouse 1976): 

 

( ) ( )[ ]{ } )1()1()( 11111221221121
1 pppccpccNrr
dt

dp
−−−−−−−= αα   (12) 

 

The terms in brackets before p1(1 – p1) form the new natural selection function 

S(N, p1) of overall population density and gene frequency. S is now 

dependent on values of c and α, as well as r for each allele. Equation 12 is the 

general model for natural selection corresponding to Lotka-Volterra 

competition among haploid or asexual populations. This selection is both 

frequency- and density-dependent since equation 12 depends both on allele 

frequencies p1 and on overall population density N.   

 

Some special cases are especially interesting: 

 

Logistic regulation special case 1: 'r selection' 

 

If heritable differences among alleles affect only r1 and r2 , all other 

parameters being equal (i.e. α12 = α21 = 1, c2 = c1 = c), equation 12 reduces to: 

 

1
1 2 1 1{ } (1 )

dp
r r p p

dt
= − −        (13) 
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... in other words, identical to equation 9, giving a Fisherian gold-standard 

type of evolution, even though the population is now regulated (Crow and 

Kimura 1970; Smouse 1976). The same density-independent result is also true 

somewhat more generally for variable c and α, if c1/c2 = α21 = 1/α12 (equation 

12). Evolution is identical however far either allele is from its equilibrium 

density. This is because only density-independent parameters r differ. 

Perhaps Fisher (1930) knew this: he did not need to make an assumption of 

exponential growth, as is sometimes believed.  

 

This result (Volterra 1927; Leslie 1957; Smouse 1976) has gone largely 

unrecognized (MacArthur 1962; Roughgarden 1971; Desharnais and 

Constantino 1983; Asmussen 1983a), because r is convoluted with K in rigid K 

population regulation. As we have seen, with K1 = K2 = K and α12 = α21 = 1, 

values of r have no effect on outcomes: coexistence of alleles is neutrally stable 

(Table 1). Curiously, only density dependent selection is possible under 

conventional r-K regulation, thereby making impossible the most basic, 

Fisherian population genetic model. One apparent exception depends on the 

ruse of forcing density regulation of each allele to depend in part on the value 

of r in the other haplotype as well as overall density N (case 2 in Crow and 

Kimura 1970: 27); this hardly seems justified.  Even when recognized, the 

elastic K logistic was characterized as "weaker population control," a situation 

that "is probably quite unusual in nature" (case 3 in Crow & Kimura 1970: 28). 

A suitable name for the current case is 'pure r selection,' which has a different 

meaning to MacArthur & Wilson's term when ni >> 0 (see below). Because c is 

constant, equilibrium density Ki can vary, and is directly proportion to ri .  

 

As in exponential growth, this pure r selection is independent of density and 

gene frequency. However, selection does strongly affect density, and is 

therefore also a form of 'hard selection' (sensu Christiansen 1975; the 

alternative, 'soft selection,' would not affect population density). Population 
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geneticists often assume soft selection implicitly, and ignore population 

density. This is clearly not a valid assumption even in this, the simplest form 

of Fisherian natural selection. 

  

Logistic regulation special case 2: 'c selection' 

 

If selection is primarily controlled by heritable differences in crowding effects 

c (or equivalently in equation A2.6b, variable K), but all other effects are again 

identical, (i.e. α12 = α21 = 1 and and r2 = r1 = r). Equation 12 reduces to: 

 

{ }1
2 1 1 1( ) (1 )

dp
N c c p p

dt
= − −        (14a) 

 

This is similar, again, to the Fisherian gold-standard of equation 9, but is now 

directly dependent on population density N. Any selection to minimize 

crowding is most effective in high density populations. The equivalent result 

from the traditional rigid K logistic (equation A2.6b) appears somewhat less 

elegant (case 4 in Crow and Kimura 1970: 29): 

 

1 1 2
1 1

1 2

(1 )
dp K K

rN p p
dt K K

  − 
= −  
   

      (14b) 

 

This type of selection might be termed 'pure c selection.' Unlike r selection, c 

selection is density-dependent, but like r selection it is independent of gene 

frequency and hard – it again tends to increase equilibrium population size.  

 

Logistic regulation special case 3: 'K selection'sensu MacArthur & Wilson 

 

An interpretation of the intent of MacArthur's pioneering paper (MacArthur 

1962) and of the 'K selection' of MacArthur & Wilson (MacArthur and Wilson 

1967) would allow both ri and Ki are allowed to vary among alleles, while 
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crowding is still effected by all alleles identically (αij = 1 ∀ i,j). This combines 

special cases 1 and 2 and gives the expected combination of equations 13 & 14:  

 

( ){ }1
1 2 2 1 1 1( ) (1 )

dp
r r N c c p p

dt
= − + − −      (15a) 

 

Or expressed in rigid K formulation: 

 

{ }1
1 2 1 1 2 2 1 1( ) ( / / ) (1 )

dp
r r N r K r K p p

dt
= − − − −     (15b) 

 

As with equation 13, selection is density-dependent, frequency-independent, 

and hard. Equilibrium densities K always increase (as in MacArthur 1962), 

because selection favours both increased r and reduced c. Interior equilibria 

are impossible under either r or c selection or their combinations in these 

haploid models; Lotka-Volterra conditions 1 & 4 cannot be met (Table 1). 

Virtually identical results for r selection, c selection and their combination 

(Macarthurian K selection)  were obtained in another elastic K model differing 

only in logarithmic rather than linear density dependence (Kimura 1978). 

 

Logistic regulation special case 4: 'α selection' 

 

Suppose selection does not alter equilibrium density, i.e. K1 = K2 = K =  r1/c1 = 

r2/c2 . The case is mathematically identical to the general equation 12: 

 

( ) ( )[ ]{ } )1()1()( 11111221221121
1 pppccpccNrr
dt

dp
−−−−−−−= αα   (16)  

 

It may seem puzzling that equilibrium density K may go up, down, or not 

change at all during evolution, while gene frequency evolution obeys the 

same equation 12 = 16. This is explained because in equation A2.6b Ki 

parameters appear always in the combinations ri/Ki or Ki/Ki and so can be 
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substituted by others. Equilibrium density K is important for population 

dynamics, and in evolution when αij = 1 ∀ i,j, but has variable effects in more 

general cases. This type of selection might be termed 'α selection' (Gill 1974; 

Joshi et al. 2001). An interesting simplification occurs when all solitary allelic 

growth parameters are identical, r1 = r2 = r and c1 = c2 = c = r/K, so that alleles 

compete only via differing α interactions, and equilibrium population density 

K does not evolve: 

 

[ ]{ }1
12 1 21 1 1 1(1 )(1 ) (1 ) (1 )

dp
cN p p p p

dt
α α= − − − − −       (17) 

 

This kind of selection might be termed 'pure α selection,' since only values of 

α differ among alleles.  

 

Even when density remains the same during evolution, we see a two-phase 

evolutionary process on a logit scale (equation 12, as in Figs. 3-6, discussed 

below). Thus selection is frequency-dependent. Overall density N remains 

approximately constant during replacement evolution, although 'blips' in 

population density can occur when selection is strong (Figs. 5A, 6A). Pure 'α 

selection' can be both effectively density-independent and frequency-

dependent. Furthermore, because equilibrium density does not change, 

selection can be approximately 'soft' (sensu Christiansen 1975). Frequency-

dependent selection emerges from these simple demographic models only via 

differences in α (interaction) among alleles.  

 

Interior equilibria are possible, both stable and unstable, and are given by 

conditions 1 and 4 for Lotka-Volterra competition (Table 1). A special case of 

this in equation 17 occrs when ( ) ( ) ( )1 12 21 12
ˆ 1 / 1 1p α α α = − − + −  . Evolution 

towards or away from interior equilibria will, however, give hard selection, 

since overall density at equilibrium will be higher than K for stable equilibria, 

or lower for unstable, even when K does not differ among alleles. 
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Logistic regulation: general case of haploid selection 

 

For the most general kinds of selection, equations 12 and A2.6b behave 

similarly to that under α selection. Evolution will consist of two 

approximately logit-linear phases; when allele 1 is rare, n1 ≈ 0, and if the 

population is at approximate density equilibrium, n2 ≈ K2 (as in Fig. 3), then 

the rate of evolution will be: 

 

( )
)1()1( 11

2

1122
111

1

212111 pp
c

cr
rpp

K

KKr

dt

dp
−








−=−

−
≈

αα
    (18a) 

 

Similarly, when allele 1 is common, the rate of evolution will be: 
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)1()1( 11

1
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2
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dt

dp
−




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


−−=−

−
−≈

αα
   (18b) 

 

Provided that density equilibration is rapid compared with the rate of 

evolution, we expect initial evolution of a rare advantageous allele at one 

constant rate, followed by a shift during evolution to a different constant rate 

mode when the allele becomes more common, when plotted on a logit scale as 

in Figs. 3-6. Even with slow replacement evolution (and therefore, weak 

selection), significant differences in r, K and α among alleles will mean that 

replacement evolution is frequency-dependent and deviates from the 

Fisherian gold-standard: it is no longer linearized by a logit transformation 

(Figs. 3B, 4B, 5B, 6B). In equations 12, 16 & 17, stable or unstable 

polymorphisms are possible, as in generalized Lotka-Volterra competition. 

Condition 4 for Lotka-Volterra coexistence must be met for a polymorphic 

equilibrium to be stable, and condition 1 for it to be unstable (Table 1). 
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Equation 12 also shows that natural selection will generally be density-

dependent and frequency-dependent; it will also typically affect population 

density (either up or down), so selection is hard. Even weak selection can 

result in major changes in population size and variable rates of evolution 

during replacement. Results of the various cases are summarized in Table 2. 

 

Natural selection and competition in diploids: the MacArthur and Wilson hypothesis 

of r and K selection 

 

The results so far apply only to the simplest haploid asexuals. More generally, 

selection might entail competition among sexual diploids: at its simplest 

among genotypes at a biallelic locus, A1A1, A1A2, and A2A2. This introduces 

interactions among individuals due to mating, genotypic interactions due to 

dominance and heterosis, and variation among progenies of each genotype. 

All these combine in complex ways with the purely competitive interactions 

discussed above for haploids. The difficulty of analysing diploid models has 

been exacerbated still further by opaqueness introduced by the rigid K logistic 

formulation, and in many cases by additional complexity due to modelling in 

discrete generations. Here, I discuss results for diploids by referring back to 

the haploid, continuous time cases to which they are most similar. 

 

Diploidy has been explored both in continuous-time models (Kostitzin 1937; 

MacArthur 1962; Smouse 1976; Desharnais and Constantino 1983), and in 

discrete-time Wrightian models (Anderson 1971; Charlesworth 1971; 

Roughgarden 1971; Asmussen and Feldman 1977; Anderson and Arnold 1983; 

Asmussen 1983b). Since weak selection in discrete generations can be 

approximated by a continuous-time equivalent, I here ignore the extra 

paradoxes and chaotic behaviour introduced by discrete time models 

(Charlesworth 1971; Asmussen and Feldman 1977; Asmussen 1983b). These 

problems do not occur under weak selection and can be eradicated by using 
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arguably more appropriate discrete time formulations (e.g. equation 20 in 

Asmussen and Feldman 1977).  

 

In MacArthur's original analysis (MacArthur 1962), genotypes were assumed 

to differ in values of K, but selection depended only on total density of all 

three genotypes N = N11 + N12 + N22 equivalent in the logistic to the 

assumption that αij = 1 ∀ i,j (where i and j represent combinations of diploid 

genotypes 11, 12, 22). This is MacArthur & Wilson's K selection. Unlike the 

equivalent haploid/asexual model (case 3, above), polymorphic equilibria are 

possible under diploid genetics. If heterozygotes are intermediate, K11 ≥ K12 > 

K22 , then A1 replaces A2 , and vice-versa for opposite signs.  If there is 

heterosis for K, i.e. K12 > K11 , K22, stable polymorphisms result; a reverse 

inequality gives unstable polymorphic equilibria (Kostitzin 1936; Kostitzin 

1937; MacArthur 1962). Purely competitive equilibria are still not possible 

when αij = 1 ∀ i,j, as in MacArthur's analysis (see special case 3 for haploids). 

 

MacArthur went on to argue that Ki "substituted for fitness" in a density 

regulated population (MacArthur 1962). He suggested that equilibrium 

density K would be maximized in evolution, unless populations were 

frequently perturbed so that N << K, in which case selection on r should 

prevail (MacArthur and Wilson 1967). Thus arose an argument for trade-offs 

between r vs K selection, even though strictly only K seemed important in 

MacArthur's formulation. "In an environment with no crowding (r selection) 

genotypes which harvest the most food (even if wastefully) will rear the 

largest families and be most fit. Evolution here favours productivity. At the 

other extreme, in a crowded area, (K selection), genotypes which can at least 

replace themselves with a small family at the lowest food level will win, the 

food density being lowered so that large families cannot be fed. Evolution 

here favours efficiency of conversion of food into offspring ..." (ref. (MacArthur 

and Wilson 1967): 149). 
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However fitness is more complicated than implied by MacArthur. Even in 

haploid c selection (special case 2), relative fitness involves r and overall 

population density as well as K; in rigid K terms it is given by 

2121 /)( KKKKrN −  (equation 14b; Crow and Kimura 1970: 29); allowing r to 

vary as well makes relative fitness more complicated: 

)//()( 221121 KrKrNrr −−−  (equation 15). Given Kostitzin's elastic 

interpretation of K = r/c, maximization of K argues for maximization of 

intrinsic rates of increase, r, as well as minimization of crowding effects, c, 

since fitness differences are affected by both (Kostitzin 1936; Kostitzin 1939; 

Christiansen 2004). Any mortality or fertility differences among genotypes 

will affect birth or death functions Bi(ni, nj) and Di(ni, nj) (equation 7), and 

therefore values of r or c. In short, r selection in the sense employed here (as in 

haploid special case 1) is bound to be involved in MacArthurian K selection 

(special case 3). This r selection will be equally important however near to or 

far from equilibrium the population density finds itself. As seems reasonable, 

under the elastic K formulation it is always beneficial to have higher birth and 

lower death rates, and therefore higher intrinsic growth rate r, even when 

crowded.  

 

Pure c selection (with constant r), on the other hand, will be more efficient in 

direct proportion to N; it is strongly density-dependent. These types of 

selection are frequency-independent and hard, because p1 does not appear 

anywhere within expressions for relative fitness (see haploid equations 13-15), 

and because selection alters the value of K.  

 

Frequency-dependent selection, α selection, and the general importance of competitive 

models of selection 

 

As we have seen, where crowding is effected by all genotypes identically (αij 

= 1 ∀ i,j), equilibrium density K increases monotonically under selection (León 

and Charlesworth 1978), as in haploids under r and c selection or classic K 
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selection. Interior equilibria occur only if heterozygotes are fitter or less fit 

than both homozygotes. 

 

After relaxing this assumption, selection on genotype i can also be expected to 

increase crowding pressure on other genotypes (αji), and reduce crowding by 

others (αij), as well as increasing i's own equilibrium density by maximizing Ki 

= ri/ci .  Thus, when interaction coefficients αij ≠ 1, equilibrium densities Ki can 

remain constant, or be driven down by α selection (as in Fig. 4). This mode of 

selection is important in the history of life: large, less fecund, complex 

organisms have clearly sometimes evolved from small, highly fecund, simple 

organisms. Optimization principles found by MacArthur (MacArthur 1962) 

no longer apply, and a balance between maximizing K = r/c and optimizing 

competition is expected (Anderson and Arnold 1983; Asmussen 1983b). As we 

have seen, this is true for haploids as well as for diploids.  

 

For diploids, additional stable and unstable equilibria become possible 

(Smouse 1976; Asmussen 1983b). Equilibria representing positive or negative 

heterosis are added to the Lotka-Volterra competitive equilibria of conditions 

1 and 4 (Table 1). Even during replacement evolution, the response on a logit 

gene frequency scale will be curvilinear and three-phased rather than two-

phased as in haploid evolution: first the heterozygotes, and then the new 

homozygotes will successively replace the original homozygotes (Fig. 7). 

Similar complex behaviours are found in another elastic K type model 

(Poulsen 1979). Special cases of the general model for natural selection in 

diploids occur where K = r/c is invariant among genotypes (as in haploid 

equations 16 & 17; Figs. 5, 6) and near population dynamic equilibrium. These 

can lead to purely frequency-dependent selection which does not alter 

population density, i.e. approximately soft frequency-dependent selection. 

Thus, frequency-dependent selection can emerge from simple demographic 

considerations involving interactions among alleles or genotypes. 
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Having said this, most small-scale evolution will involve only small fitness 

differences, mean fitnesses may often be similar, and selection will often 

produce evolution that reduces competition (i.e. towards αij < 1). Therefore, it 

can be argued that population size and/or biomass will not usually change 

rapidly, and should generally increase under selection (León and 

Charlesworth 1978). Even though selection is probably never completely soft, 

or frequency- and density-independent, one will sometimes be able to assume 

it is so as an approximation.  

 

However, one should not assume selection is soft when investigating 

problems such as the cost of natural selection, defined as the effect of selection 

on population numbers (Haldane 1957; Crow and Kimura 1970). Natural 

selection works through parameters that affect population growth and 

density and so will generally be hard. This leads to evolution by natural 

selection having a potential 'speed limit' (Haldane 1957; Kimura 1968; Barton 

and Partridge 2000; Barton et al. 2007). The costs of selection must be borne by 

the population as an allele heads to fixation (the substitution load) or 

segregates in polymorphic populations (segregational and mutational loads). 

Genetic load may cause severe problems in populations or species of small 

size where stochastic processes are important, or in those with low intrinsic 

rates of increase. Such populations may not be able to expunge deleterious 

mutations as rapidly as they arise by mutation and drift, causing a 'mutational 

meltdown' (Lynch et al. 1995). This could be a major problem for endangered 

species of complex organisms such as larger vertebrates.  

 

More complex types of evolution often will also be affected in important ways 

by population density. When evolution occurs in subdivided populations and 

there is dispersal among them, population density matters. If a subpopulation 

decreases in size as a result of selection, it will emit fewer dispersers than 

surrounding populations, and will be more prone to genetic swamping by 

constant levels of immigration (Christiansen 1975; Wilson and Turelli 1986; 
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Kirkpatrick and Barton 1997; Bolnick and Nosil 2007; Polechová et al. 2009). 

Such spatial models typically require elastic K formulation, although they 

may sometimes appear not to do so (e.g. Appendix 4). Genetic swamping will 

occur even though, in the absence of any connection to other populations, one 

might often be able to understand evolution while ignoring population size. It 

is therefore perilous to assume that natural selection is perfectly 'soft' in such 

metapopulations. Even the simplest form, 'pure r selection' or classical 

density-independent selection (equation 13) will be hard – it affects 

population density – while conforming to the Fisher gold-standard of density-

independence (Fig. 2). 

 

Empirical importance of different modes of selection 

 

Can these theoretical results be related to selection in nature?  A thorough 

review is not possible here, but I make some general observations. 

Complications due to diploidy, such as heterosis, are ignored (equivalent to 

an assumption of additive fitnesses in heterozygotes). 

 

r selection. – Although a large number of possible parameters (Table 1) might 

vary among genotypes, it is interesting that pure r selection provides a good 

fit to Gause's original studies of competition among Paramecium species 

(Leslie 1957). As another example, one can plausibly assume that bird attacks 

on melanic or non-melanic moths resting on bark of different colours might 

affect only density-independent death rates, d, and thus values of r only 

(Appendix 1). If so, then Haldane was quite justified in applying a constant 

selection model in his analysis of evolution of melanism in the peppered 

moth, Biston betularia (Haldane 1924). Similarly, it seems likely that death rates 

due to toxicants are mainly density-independent (Hendriks et al. 2005), as 

already mentioned. Selection for pesticide or antibiotic resistance will 

normally ameliorate density-independent death rates, so increasing r. 

Density-independent r selection will likely be a common form of selection in 
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nature as well: Ockham's razor suggests that r selection will at least provide a 

useful first-order approximation. Fisher's assumption of r selection seems 

vindicated, even in density regulated populations. 

 

c selection. – This mode depends on interactions among individuals within 

species, loosely equivalent to MacArthur's K selection without effects of r 

selection. Selection to reduce crowding effects (c selection) is likely important 

in nature, but is not easily separated experimentally from r selection, which in 

elastic K formulations will cause increased K also. A possible example might 

be the much greater effects of crowding c = r/K on rice as a host for 

Nephotettix malayanus, a leafhopper that normally feeds on grasses other than 

rice (Fig. 1B), in comparison to the three Nephotettix species that normally feed 

on rice (Valle et al. 1989). Adaptations to rice in these species evidently 

include a component that increases high density efficiency by reducing the 

effects of density-dependent crowding. 

 

α selection. – A possible empirical example of α selection might occur within 

bird species limited by nesting sites.  K is set by the environment, so that even 

if an allele has high r, its c parameters increase accordingly (alternatively 

reducing c reduces r accordingly), and no gain in equilibrium density results.  

However, if an allele i effects increased aggression (interference competition), 

this provides an example of an α12α21 > 1 strategy (condition 1 in Table 1), 

which tends to destabilize polymorphism. The evolution of a novel warning 

colour pattern is another example of such destabilizing selection (Mallet and 

Joron 1999). Alternatively, if alleles specialize on different kinds of nest sites 

(exploitation competition), then α12α21 < 1 among alleles (condition 4), an 

example of 'apostatic selection' which stabilizes polymorphism (Clarke 1962). 

 

Trade-offs, and their resolution. – In nature, therefore, it is clear that all these 

kinds of selection can occur. Yet while elastic K logistic theory predicts 

mechanistic linkage between r and K as well as independence of r, c and α, it 
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says nothing about possible trade-offs among parameters. Obviously, 

resource-controlled trade-offs must exist or all species would evolve 

unlimited growth rates (Slatkin and Maynard Smith 1979; Mueller 1997). As a 

possible empirical example of trade-offs, when ciliates in Luckinbill's 

(Luckinbill 1979) experiments were placed in mixed-species culture, outcomes 

of competition were almost exactly the reverse of the prediction that high K 

would win: high r and high K species usually did worse in competition, while 

low r, low K species competed better (Luckinbill 1979). This suggests potential 

trade-offs between values of r and effects of interaction with other species, α. 

Trade-offs also seem likely between r and c, being roughly equivalent to those 

expected in r vs. K selection (MacArthur and Wilson 1967). In nature, resource 

allocation trade-offs are likely among all three groups of parameters and will 

control their joint evolution. However, the purely mechanistic linkage 

between r and K under the elastic K formulation probably explains 

experiments where K is often correlated to r, in spite of expected trade-offs 

between r and c. 

 

Conclusions 

 

Theories of the interaction of demography and evolution have rarely proved 

satisfying in the past.  Evidence of the unclear situation is provided by 

extensive discussions of the involvement of population growth in evolution 

and of the validity or otherwise of the MacArthur & Wilson concepts of r and 

K selection over the last 40 years (Hairston et al. 1970; Charlesworth 1971; 

Roughgarden 1971; Pianka 1972; Gill 1974; Stearns 1977; Parry 1981; Boyce 

1984; Mueller 1997; Joshi et al. 2001; Saccheri and Hanski 2006; Holt 2009). I 

argue here that resolution of the debate has been hampered by a historical 

accident (see also Christiansen 2004): recent modelers mostly used the 

paradoxical logistic formulation introduced by Gause (1934), or similar rigid 

K models. Gause's r-K formulation is very useful for fitting experimental data, 

but it has the curious side-effect of obfuscating the most basic kind of natural 
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selection, Fisherian r selection.  Kostitzin's earlier, better justified, and 

mathematically more robust elastic K formulation, which does not cause this 

problem, was largely ignored.  It seems astonishing that reparameterizing the 

logistic aids understanding in evolution, but given it is now clear that the 

same trick clears up paradoxes in demography (Kuno 1991; Gabriel et al. 2005; 

Pastor 2008), perhaps this should no longer seem so surprising. 

 

Models analogous to Kostitzin's elastic K population regulation will also 

apply in more complex situations involving discrete generations (Asmussen 

1983a; Asmussen 1983b), stochasticity, multiple loci and quantitative 

inheritance (Kirkpatrick and Barton 1997; Polechová et al. 2009), life-history 

variation (Charlesworth 1980), and spatial models of evolution (Slatkin 1973; 

May et al. 1975; Barton 1979; Barton 1983; Barton and Hewitt 1989; Barton and 

Gale 1993). Employing the simplest continuous time, haploid logistic or 

equivalent additive diploid models, as here, clarifies how natural selection 

can emerge from demography, and thereby demonstrates the fundamental 

unity of population ecology and evolution. 

 

Elastic K models provide more natural theories of density-dependent and 

density-independent selection, whereby frequency-dependent selection, and 

hard or soft selection can emerge from microscopic justification of population 

modelling rather than being imposed a priori. Their use is essential if r and c 

parameters are mechanistically decoupled in nature, as suggested by my brief 

review of empirical evidence. Energetic trade-offs are likely, and will 

undoubtedly affect evolution, but it is important to understand first the 

mechanistic background against which these evolutionary constraints 

operate. Furthermore, demographically realistic models of natural selection 

play a key role in understanding genetic loads and Haldane's 'cost of natural 

selection', as well as in spatial modes of evolution. Combining ecological and 

evolutionary models can yield a better understanding of many persistent 

problems on the interface between ecology and evolution.  
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Appendix 1. Kostitzin's derivation of population growth models 

 

With density regulation, crowding can affect instantaneous rates of birth and 

death, B(N) and D(N), so that ( ) ( )/dN Ndt B N D N= −  (equation 1).  The 

simplest means of achieving this is to imagine that the effect of crowding 

depends linearly on density: 

 

( )B N b Nβ= −         (A1.1a) 

( )D N d Nδ= +         (A1.1b) 

 

Expressions A1.1 can be regarded as forming the first two terms of Taylor 

expansions of the complete birth and death functions. These models revert 

cleanly to exponential growth (equation 2) when β = δ  = 0 so that B(N) = b 

and D(N) = d, giving a constant growth rate r = b – d. (In contrast, the classical 

logistic, equation 3, reverts to constant growth rate only when K →∞ ).  When 

growth is density-dependent:  

 

1
( ) ( )

dN
b d N

N dt
β δ= − − +        (A1.2a) 

 

or: 

 

1 ( )
( ) 1

( )

dN
b d N

N dt b d

β δ +
= − − − 

      (A1.2b) 

 

Equation A1.2 can be expressed in the familiar r-K format (equation A1.2b) or 

the Verhulst r-c format (equation 1.2a), where r = (b – d), density-dependent 

effects c = (β + δ), and equilibrium density is 
( )

( )

b d r
K

cβ δ
−

= =
+

, a ratio of the 

density-independent effects r and density-dependent effects c. Lotka-Volterra 

competition is a simple extension. Suppose birth and death rates are affected 
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by crowding not only by members of the same species, but also by members 

of other species. Overall rates of change in numbers are now affected by the 

densities of both species: 

 

1
1 1 2 1 1 2

1

1
( , ) ( , )

dN
B N N D N N

N dt
= −       (A1.3a) 

2
2 1 2 2 1 2

2

1
( , ) ( , )

dN
B N N D N N

N dt
= −       (A1.3b) 

 

By analogy with A1.1: 

 

1 1 2 1 11 1 12 2( , )B N N b N Nβ β= − −       (A1.4a) 

1 1 2 1 11 1 12 12( , )D N N d N Nδ δ= + +       (A1.4b) 

2 1 2 2 22 2 21 1( , )B N N b N Nβ β= − −       (A1.4a) 

2 1 2 2 22 2 21 1( , )D N N d N Nδ δ= + +       (A1.4b) 

 

Therefore, 

 

1
1 1 11 11 1 12 12 2

1

1
( ) ( ) ( )

dN
b d N N

N dt
β δ β δ= − − + − +     (A1.5a) 

2
2 2 22 22 2 21 21 1

2

1
( ) ( ) ( )

dN
b d N N

N dt
β δ β δ= − − + − +     (A1.5b) 

 

Equations A1.5 convert to equations 4 and 6, where r1 = (b1 – d1), r2 = (b2 – d2), 

c1 = (β11 + δ11), c2 = (β22 + δ22), K1 = r1/c1 , K2 = r2/c2, α12 = (β12 + δ12)/c1 and α21 

= (β21 + δ21)/c2 . The αij are here parameterized relative to within-species 

crowding effects ci on births and deaths to aid comparison with classic 

formulations used in most textbooks, and for easier comparison of 

interspecific versus intraspecific effects, expressed via αijαji > 1 or αijαji < 1 

(Table 1). 
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Appendix 2. Relationship of gene frequency evolution to population growth 

by James Mallet and Wei-Chung Liu 

 

Evolution is defined as a change in the fractions of alleles, p1, p2, in a 

population of size N (where p1 = n1/N and p2 = 1 – p1 = n2/N). How do 

changes in the numbers of each allele n1, n2, affect the the fractions of alleles in 

the population over time?  Here, we use methods developed earlier (Volterra 

1927; Crow and Kimura 1970; Leigh 1971; Smouse 1976), but apply them to 

the most general case. First, note that 
( )1 2 1 2

log / log loge e e
d n n d n d n

dt dt dt
= − . 

Given that 
xdx

xd e 1log
= , and 

[ ] [ ]( ) ( )d f x d f x dx

dt dx dt
= , this can be rewritten as: 

 

( )1 2 1 2

1 2

log / 1 1ed n n dn dn

dt n dt n dt
= −       (A2.1) 

 

Note also that: 

 

( )
dt

pd

dt

pd

dt

ppd eee )1(loglog/log 1121 −
−=  

 

dt

dp

ppdt

dp

pdt

dp

p

1

11

1

1

1

1 )1(

1

)1(

11

−
=

−
+=     (A2.2) 

 

Since 
( ) ( )

dt

nnd

dt

ppd ee 2121 /log/log
= , we can put A2.1 and A2.2 together: 

 

dt

dn

ndt

dn

ndt

dp

pp

2

2

1

1

1

11

11

)1(

1
−=

−
      (A2.3) 
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Substituting in the general formulation for allelic density growth (equations 

7a,b, A1.3) into A2.3 gives: 

 

( ) ( ) ( ) ( )1
1 1 2 1 1 2 2 1 2 2 1 2

1 1

1
, , , ,

(1 )

dp
B n n D n n B n n D n n

p p dt
   = − − −   −

  (A2.4) 

 

For logistic demography, we substitute appropriate analogues of Lotka-

Volterra competition among alleles (equation A1.4) into equation A2.4: 

 

[ ] [ ]1
1 1 1 12 2 2 2 2 21 1

1 1

1
( ) ( )

(1 )

dp
r c n n r c n n

p p dt
α α= − + − − +

−
   (A2.5a) 

 

Or, expressed in rigid K format: 

 

1 1 2
1 1 12 2 2 2 21 1

1 1 1 2

1
( ) ( )

(1 )

dp r r
K n n K n n

p p dt K K
α α= − − − − −

−
    (A2.5b) 

 

Setting p1 = n1/N in A2.5a, where N = n1 + n2:  

 

( ) ( )1
1 2 1 21 2 1 2 12 1 1

1 1

1
(1 )

(1 )

dp
r r N c c p c c p

p p dt
α α = − − − − − − −

  (A2.6a) 

 

Or in rigid K format: 

 

1 1 2 2 1
1 2 21 1 12 1

1 1 1 2 2 1

1
(1 )

(1 )

dp r r r r
r r N p p

p p dt K K K K
α α

    
= − − − − − −    

−     
 (A2.6b) 

 

Appendix 3. Equivalence of Fisherian and Wrightian fitness 

 

Discrete per-generation 'Wrightian' fitness (e.g. for allele 1, the fitness W1= 

1+S; for allele 2, W2= 1), where S is a selection coefficient, is perhaps more 

often used than Fisherian infinitesimal relative fitness, S = (R1 – R2), in 
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population genetics (equation 8). Here, absolute Wrightian fitnesses measured 

over a single time unit (generation) are 1

1

RW e=  and 2

2

RW e= . Wrightian 

relative fitness, which determines the rate of evolution, will be 

 

1 2

1 2/ 1R R SW W e e S−= = ≈ +        (A3.1) 

 

provided S is small. Wrightian and Fisherian measures of selection S are thus 

equivalent when per generation selection is weak. This is true in the simple 

situation where S is a constant, but applies also when S depends on allelic 

densities n1 and n2. 

 

Appendix 4. The Kirkpatrick and Barton model of range size evolution 

 

The Kirkpatrick-Barton quantitative genetic theory of geographic range 

evolution (Kirkpatrick and Barton 1997) seems, in one formulation, to employ 

rigid K population regulation.  Here I show that the model does in fact have 

an elastic density equilibrium. Ignoring influence from other sites, density at a 

single site changes as follows (their equation 7): 

 

1
e g

dN
R R R

N dt
= = +          (A4.1) 

 

The means are taken across multilocus genotypes. Population regulation is 

effected by an ecological component, e, determined independently of 

genotype, by: 

 

max 1
'

e

N
R r

K

 = − 
 

        (A4.2) 

 

where rmax and K' are spatially and genetically invariant and at first sight 

seem to have the usual meanings of 'intrinsic maximal rate of increase' and 
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'carrying capacity' (Kirkpatrick & Barton 1997: pp. 7-8).  The genetic 

component, g, of population growth, meanwhile, is given by: 

 

( )2( )

2 2

P
g

S S

x z V
R

V V

θ −
= − −        (A4.3) 

 

Equation A4.3 contains only density-independent terms, but is variable 

according to geographical location and genotypic constitution of the 

population. The V parameters represent phenotypic variance (P) and the 

strength of stabilizing selection (S) around the optimum, while the term 

( )2( )x zθ − measures the deviation of the quantitative phenotype z  from the 

optimum ( )xθ  at a particular spatial location x.  

 

When N << K' in equation A4.1, 

 

0 max gr r R= +          (A4.4) 

 

Therefore it is clear that the actual local intrinsic rate of increase, 0r , involved 

in population regulation depends on the average genotypic constitution of the 

population as well as the constant term within equation A4.2.  The 

equilibrium population size N̂  is obtained when 0R = : 

 

0ˆ r
N

c
=         (A4.5) 

 

where max / 'c r K=  is a constant. It is evident that the equilibrium population 

size is not the same as K'; it depends both on a density-independent intrinsic 

rate of increase ( 0r , A4.4), which is locally and temporarily a constant 

although spatially and genetically variable, and a crowding coefficient, c, as in 

equation 5, that is the same everywhere. Thus there is complete separation of 
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density-independent, 0r , and density-dependent, c, parameters; population 

regulation is exactly equivalent to the elastic K model of equation 5, and the 

model is a multilocus form of r selection in regulated populations. 
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Table 1. Conditions for coexistence and exclusion in two-species Lotka-

Volterra models of competition (equation 4) 

 

No. Condition* ... implies+: Interior equilibria 

1 1/α21 < K1/K2 < α12 α12α21 > 1 one, unstable 

2 1/α21 < K1/K2 > α12  none, 1 replaces 2 

3 1/α21 > K1/K2 < α12  none, 2 replaces 1 

4 1/α21 > K1/K2 > α12 α12α21 < 1 one, stable 

 

* These conditions are expressed in classical rigid K format. The equivalent 

elastic K conditions for equation 6 are readily found via the conversion Ki = 

ri/ci .  

 

+ If αijαji < 1 (condition 1), two species can partition the environment, giving 

exploitation competition that allows stable coexistence; if αijαji > 1 (condition 

4), species show interference competition, with an unstable equilibrium that 

prevents coexistence. 
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Table 2. Types of haploid selection emerging from the Lotka-Volterra model 

Model type S(...)* 

Parameter-

dependence 

of S 

Density- 

… 

Frequency- 

… 

Hard vs. 

soft+ 

selection 

Possibility 

of interior 

equilibria 

r selection - r1, r2  independent independent hard - 

c selection N c1, c2 dependent independent hard - 

K selection§ N r1, r2, c1, c2 dependent independent hard - 

pure  

α selection¶  

(N), 

p1 

c, α12, α21 effectively 

independent 

dependent ~ soft + 

α selection & 

general 

N, p1 r1, r2, c1, c2, 

α12, α21 

dependent dependent hard + 

 

Notes 

* variables of which the Fisherian selection term, S, is a function 

+ sensu Christiansen (1975) 

§ sensu MacArthur and Wilson (1967) 

¶ general model, except K1 = K2 and r1 = r2, and assuming replacement while N ≈ K 

during evolution 
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Fig. 1. Fitted logistic parameters for Nephotettix leafhoppers on rice at three 

different temperatures. A. Dependence of K on r. B. Dependence of K on c. 

Product-moment correlation coefficients, R, are shown for the rice species (i.e. 

excluding N. malayanus, which is not normally on rice) and overall (Valle et al. 

1989). 
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Fig. 2. Replacement of one allele by another under exponential growth 
(equations 9,10). Here s = r1 – r2 = 0.024 – 0.021 = 0.003. Allele 1 is initially at 
low density (n1 = 0.05, n2 = 1.0, when t = 0 generations), but eventually 
replaces allele 2.  (A). A segment of the density trajectory, showing 
exponential population growth of both alleles where allele 1 begins to 
overtake allele 2.  (B). The replacement of alleles on a logit scale, 

[ ])1/(log 1110 pp − , over a long time course. The constant slope is 

0013.0)10(log/ ≈es , as expected from equation 10.  
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Fig. 3.  Natural selection under weak generalized Lotka-Volterra competition 
(equations 11, 12), showing increase in equilibrium population size. 

Parameters: r1 = 0.10, K1 = 100, r2 = 0.03, K2 = 60, and α12 = 1/α21 = 1.5. As in 

Figs. 4-6, inversely related α are here used to give parallel isoclines, ensuring 
directional selection.   A. Allelic density.  B. Replacement of allele frequency 

on a logit scale, [ ])1/(log 1110 pp − , over time. The initial slope is 

( )[ ] 0043.010log// 121211 ≈− eKKKr α , and the final slope is 

( )[ ] 0014.010log// 212122 ≈− eKKKr α as expected (see equations 18). 
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Fig. 4.  Natural selection under weak generalized Lotka-Volterra competition 
(equations 11, 12), showing reduction in equilibrium population size during 

allelic replacement. Parameters: r1 = 0.03, K1 = 50, r2 = 0.05, K2 = 50, and α12 = 

1/α21 = 0.44.  A. Allelic density.  B. Replacement of allele frequency on a logit 

scale, [ ])1/(log 1110 pp − , over time. 
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Fig. 5.  Natural selection under strong generalized Lotka-Volterra competition 

(equations 11, 12), showing pure α selection with no difference in K among 

alleles, but a temporary rise in population size during replacement. 

Parameters: r1 = 0.15, K1 = 1000, r2 = 0.02, K2 = 1000, and α12 = 1/α21 = 0.6.  A. 

Allelic density.  B. Replacement of allele frequency on a logit scale, 

[ ])1/(log 1110 pp − , over time.
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Fig. 6.  Natural selection under strong generalized Lotka-Volterra competition 

(equations 11, 12), showing pure α selection with no difference in K among 

alleles, but a temporary dip in population size during replacement. 

Parameters: r1 = 0.05, K1 = 1000, r2 = 0.15, K2 = 1000, and α12 = 1/α21 = 0.6.  A. 

Allelic density.  B. Replacement of allele frequency on a logit scale, 

[ ])1/(log 1110 pp − , over time. 
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Fig. 7. Replacement of one diploid allele by another under strong generalized 

density-dependent selection, showing three-phased evolution of genotypes 

11, 12, and 22. A. Genotypic densities. B. Allelic fraction. Here r11 = 2.00, r12 = 

0.10, r22 = 0.03, K11 = 100, K12 = 110, K22 = 115, and  (αij,kl = 1 ∀ i,j,k,l). 
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