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Abstract 
 
A modified version of the micturition model proposed by Hübener et al in 1994 [1] is 
presented. Relations between variables in the model are derived and explained then 
simulations are compared to published urodynamical data.  Finally, the model is compared 
to other published models, and its implications and limitations are discussed. 
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Introduction 
 
This paper is divided into several sections.  Firstly the components of the lower urinary 
tract are introduced and then experimental methods of investigating urinary function and 
dysfunction are briefly discussed.  A model of the process of micturition is then derived 
and used to investigate the effect of various anatomical, myogenic and neurogenic factors 
on voiding characteristics.  The experienced reader may wish to go straight to the 
subsection entitled “The simulation in brief” (on page 7) that summarises the model and the 
simulation process. 
 
 
The Lower Urinary Tract (LUT) 
 
The Lower Urinary Tract consists of the urinary bladder, the external sphincter and the 
urethra.  The LUT is one of the only parts of the body that is influenced by both the 
voluntary and involuntary nervous system.  This makes the LUT very complex to model.  It 
is a non-linear multivariable dynamic system variant in time and subjected to internal 
alterations (convulsions, dysfunctions and infections) and external alterations (coughing, 
sneezing, cold, fear etc…) [2].   The components of the LUT are now introduced in a little 
more detail. 
 
 
Bladder 
 
The bladder is a roughly spherical hollow muscle that collects and stores urine from the 
ureters until it is stimulated to contract and evacuate the urine through the urethra.  The 
bladder wall mostly consists of one smooth muscle, the detrusor, and so normally the 
mechanical properties of the whole bladder are assumed to be those of the detrusor.  When 
the detrusor is relaxed, the stress in the bladder wall depends on its viscoelastic properties.  
These properties can be modelled by a contractile element in series with an elastic element 
(or non-linear spring), both of which are in parallel with another elastic element.  This is 
the method used by most authors in their mathematical models e.g.[3, 4, 5] and shall be 
returned to later. 
 
 
Sphincter 
 
The main mechanical functions of sphincter muscles are controlled constrictions and 
relaxations.  The sphincter in the LUT is a contractile sheath of striated muscle around the 
urethra that is responsible for relaxing or constricting the urethra and therefore changing 
the urethral resistance.    In most models of the LUT the sphincter is not modelled 
separately but integrated into the urethra.  This is normally accomplished by multiplying 
the outflow by a simple block function (with possible values of 0 or 1) [6, 7] or by making 
use of a pressure threshold that, when exceeded, allows urine flow [1, 8, 9].  The latter will 
be the method employed in this paper.  
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Urethra 
 
The urethra carries urine out of the body from the bladder during micturition.  Early work 
on the urethra was based on flow through rigid tubes.  This could not be more erroneous.  
Improvements were made in 1965, when Stibitz proposed a mathematical model where the 
urethra was considered as a generally tubular lining enclosed in a sheath of muscle (known 
as the pelvic floor) [10].  Sandwiched between these two layers is a layer of spongy tissue 
that Stibitz treated as if it were a fluid.  The corresponding model consisted of a thin 
surface representing the muscular sheath which contained a fluid under pressure that 
represented the spongy tissue, the lining and the actual fluid.   
 
Generally the urethra is considered as a distensible, elastic tube of varying cross section 
surrounded by a contractile sheath in the sphincteric zone. 
 
 
Nervous Control 
 
The neurogenic control system of the LUT is extensive and complicated.  It contains sacral 
and pontine reflex loops as well as a suprapontine network [4].   There are various feedback 
loops such as voiding and guarding reflexes instigated by afferent and efferent nerve 
signals continuously going back and forth between the bladder, urethra, sphincters and 
different neural regions such as the parasympathetic unit, the somatic unit and control areas 
known as L (lateral) and M (medial) regions. 
 
The subpontine/pontine part of this network has been studed extensively and the number of 
different reflexes that contribute to LUT function may be as many as 32 [11].  Many 
simplifications, involving only a few simple loops, have been proposed to get round this 
incredible complexity, but it has been suggested by Elbadawi that they are unrealistic [11] 
and that the LUT should be considered as being under the control of a single reflex with a 
complicated structure. 
 
The LUT nervous control system has the property that it is always in one of two opposite 
states, namely storage/filling and voiding.  Analogies have been drawn, to bistable 
electronic circuits, that suggest that the system should be simulated by means of two 
mutually inhibitive regions, one controlling the detrusor and one controlling the urethral 
sphincter [8].  Because of this mutual inhibition, either the sphincter region is active and 
the detrusor is inhibited (storage), or vice versa (voiding). 
 
This suggests that the most simplistic (while still physiologically plausible) set of nerve 
signals, that could control the LUT and cause micturition, would be an excitatory signal 
controlling the detrusor working in conjunction with an inhibitory signal that controls the 
sphincter/urethra. 
 
In the next section the model is derived and explained in full.  Please refer to Appendix A 
for a brief discussion of the methods of studying urinary function and disorder, and the 
main motivations for creating a mathematical model of micturition.  
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The Model 
 
The model can be compartmentalised into three main sections: the bladder, the urethra and 
their nervous control.  Each of these components of the model shall be outlined in this 
section.  Please refer to page 7 for a summarised version of this information without much 
of the derivation, explanation and discussion. 
 
 
Nervous Control 
 
Following the method of Hübener et al [1], the neurogenic control of micturition is 
modelled in a simplistic fashion.  It is assumed that there are two nerve signals, one that 
controls the contraction of the bladder musculature and another that controls urethral 
relaxation, hereafter called 1s and 2s  respectively.   
 
Hübener et al chose linear forms for these two signals which increased to, or decreased 
from, a normalised value of 1, as can be seen in Figure 1.  1s is described by the angle α 
which dictates the rate at which the bladder is stimulated.  2s  is described by the angle β 
which describes the rate of urethral relaxation and two other parameters δ and C.   
δ represents a variable time delay between the onset of bladder stimulation and urethral 
relaxation. Hübener et al found that increasing δ only had the effect of delaying the onset of 
micturition and so it was set to zero throughout this simulation.  A new parameter C was 
added to the model.  It represents the relative level that the urethral relaxation decreases to 
and can be seen in Figure 1. 
 
These simplistic signals systematically introduce a discontinuity into the pressure-flow data 
because of their own inherent discontinuity when changing between their linearly 
increasing or decreasing sections and their constant sections. It is therefore desirable to 
propose another form for 1s and 2s .    The discontinuity could theoretically be “smoothed 
out” by employing a variety of approaches involving, for example, parabolas, exponentials 
or trigonometric functions.  All these approaches were experimented with (see Figure 2), 
and the difference between their effects on the pressure-flow curves produced by the 
simulation were negligible.  The motivation for a new form of neurogenic control was to 
“smooth out” the sharp discontinuity of the original signals.  In light of this, exponential 
forms were chosen for 1s and 2s , as they were the most dissimilar to the linear signals (the 
most “curvy”), as can be seen in Figure 2.  The functions describing the nerve signals 1s  
and 2s  in this model are given as: 

 
1

1 1 k ts e−= −     and   2
2 (1 ) k ts C e C−= − +  

 
where t is time, and 1k  and 2k  control the rate of increase or decrease and can be 
considered a parallel to the angles α and β in the linear model.  Figure 3 shows the linear 
and exponential forms of 1s and 2s  used in this paper. 
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Bladder 
 
The pressure in the bladder and the rate of bladder evacuation are opposite ends of a 
reciprocal relationship that can be described by a modified version of the Hill equation [1], 
hereafter called the Bladder Output Relation (BOR). 
 

0 0
0 0

5
4 4 16
p Qp Q p Q  + + =      

 
 p is detrusor pressure, and Q is flow rate. For a derivation of the BOR see Appendix B, [9]. 
This relation is represented by blue hyperbolae in Figure 4. 0p  and 0Q  are parameters that 
determine the shape of the curve as they represent the intercepts of the curve with the axes, 
i.e. 0p p=  when 0Q =  and 0Q Q=  when 0p = .  Neither of these extreme conditions 
occurs clinically in general.  Hübener et al [1] succinctly explain the cause for this as 
follows:   
 

The detrusor muscle can be thought of as a limited power source.  This  
limited power can be used to generate force (expressed as a pressure in a  
hollow muscle like the bladder) or to shorten the muscle.  Normally the  
urinary bladder operates somewhere between these two extremes, i.e. part  
of the muscle is used to generate force and another part for shortening. 

 
In the model the nervous control of the BOR is assumed to simultaneously change both 0p  
and 0Q , i.e. 0 1( ) mp t p s=  and 0 1( ) mQ t Q s=  for some mp  and mQ .  Combining this with 
the results from Appendix B we then have: 
 

0
0 0 0 12

( )( , ) ( ) ( ) m

F rp r t p r p t p srπ= =     and    2
0 0 0 max 1( , ) ( ) ( ) 2mQ r t Q r Q t Q r v s= = . 

 
where mp  and mQ  are intrinsic or maximum values.  The effect on the BOR of 1s  
increasing can be seen in Figure 4. 
 
 
Urethra 
 
The Urethral Resistance Relation (URR) is another equation that relates detrusor pressure 
to flow rate during voiding.  It has been shown that a linear approximation to this relation is 
adequate to fit experimental data [12, 13] and has been used in previous models [1, 14].  
Thus in this model the URR is described by: 
 

OPp p mQ= +   
 

OPp  represents the urethral opening pressure (the pressure required to distend the elastic 
wall of the urethra and start flow) and m is the urethral resistance.  This equation may be 
empirical but is consistent with the behaviour expected of a passively distensible tube [14].  
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Once again it is assumed that the nervous control acts simultaneously on both parameters, 
so we have: 
 

2OP hp p s=     and    2hm m s=  
 
where hp  and hm  are intrinsic or maximum values.  The effect on the URR of 2s  
decreasing can be seen in Figure 4, where the URR is represented by straight red lines. 
 
The next section shall outline the step by step processes involved in performing the 
simulation. 
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Methods 
 
 
The simulation in brief 
 
Choices of parameter values are made, then if the discrete time increment is γ, at time t, 
when the bladder has volume V, the simulation process proceeds as follows: 
 

• The values of the nerve signals 1s and 2s  are calculated using t. 
• 0 ( )p t , 0 ( )Q t , OPp  and m are calculated from 1s and 2s . 
• The bladder radius r is calculated from V. 
• 0 ( )Q r  and 0F  are calculated using r. 
• 0 ( )p r  is calculated from 0F  and r.   
• Using these values, the BOR and the URR are simultaneously solved for p and Q 

(see Figure 5) to yield an instantaneous “snapshot” of the pressure-flow 
characteristics of the simulated voiding. 

• Any other parameters representing contraction velocity etc. are then calculated. 
• 

dV Qdt = −  is integrated to give the voided volume, which is subtracted from V to 
give a new value for the bladder volume.  Since the time steps are discrete, this 
may be written  new oldV V Qγ= −  

• the values of Q, p, V , t and all other parameters are stored  
• the simulation time is increased one increment new oldt t γ= +  

 
This whole process is carried out at each time step, for a given number of time steps, 
leaving the user with lists of data that can then be plotted and analysed.  Repeating the 
simulation with different parameter values allows comparison of the resulting effects on 
pressure-flow relations and voiding characteristics in general.  
 
 
Investigation 
 
Typical values were chosen for the parameter values (see Appendices C and D).  Once this 
was done the simulation could begin in earnest.  The effect on various voiding 
characteristics (such as maximum flow rate MAXQ  and maximum detrusor pressure MAXp ) of 
varying each of the parameters 1 2 0 0, , , , , ,MAX hk k C r p v p  and hm , as well as the initial 
bladder volume V from their “typical” values, was studied.  Then graphs showing 
relationships between different simulation variables (e.g. pressure-flow, flow-time, flow-
volume, pressure-time etc..) were plotted and analysed.  The findings and implications are 
discussed in the next section. 
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Results 
 
The resulting relations between parameters that the various simulations produced can be 
seen in Figures 6 to 10.  For each parameter varied, four types of graph are shown.  From 
top to bottom they are graphs of flow-rate against time, flow rate against instantaneous 
bladder volume, bladder volume against time and pressure against flow-rate.   
 
Figure 6 shows the effect of varying initial bladder volume on these four relations.  For this 
figure only, graphs calculated using the linear nerve signals are shown as a direct 
comparison to the new exponential forms of the proposed nerve signals.  Figure 7 shows 
the effect of varying the rate of excitation or inhibition the two nerve signals provide to the 
LUT.  Figure 8 shows the effect of varying the parameters in the URR, and Figure 9 shows 
the effect of varying the parameters in the BOR.  Figure 10 shows the effect of varying the 
parameters 0r and C.  Many things can be deduced from these graphs.   
 
 
The effect of initial bladder volume on voiding 
 
Figure 6 shows that maximum flow rate increases with initial bladder volume up to a 
certain threshold limit as expected.  Initial bladder volumes greater than this limit, share a 
similar maximum flow rate.  Since the maximum flow rate is the same, the bladder takes 
longer to empty.   
Notice that in the flow rate versus volume graph all the curves share the same ”descent” 
trajectory, at low volumes, close to the cessation of micturition.  This is consistent with the 
findings of Griffiths et al [15].  The pressure-flow graph indicates that the pressure at 
which maximum flow occurs is fairly independent of the initial bladder volume.   This is 
consistent with the findings of many studies, e.g. [16] and is because voiding pressure is 
mainly determined by outflow conditions and so is not volume dependent [3].  
 
 
The effect on voiding of nervous control. 
 
In figure 7 it can be seen that decreasing the rate of detrusor stimulation has many effects.  
It delays the onset of voiding, increases the voiding time, lowers the maximum flow rate 
and increases the pressure at which this maximum occurs.  This is because slower detrusor 
stimulation results in the urethra being more relaxed for any given level of bladder 
excitation.  A more relaxed urethra results in higher maximum flow rates (due to the 
lowered urethral resistance) and lower flow pressures (due to the lowered urethral opening 
pressure and the shallow gradient of the URR due to the lowered urethral resistance).  
 
It can be seen in figure 7 that increasing the rate of urethral relaxation also decreases the 
maximum flow rate and raises the pressures at which they occur.  This can be attributed to 
the same cause as for slower detrusor stimulation.  Notice how the pressures and times at 
which voiding commences remain unchanged.  This is because the bladder has reached 
peak excitation before the urethra has relaxed enough for flow to commence.  In each case, 
once this same threshold pressure is breached, the flow commences. 
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The effect of the URR on voiding 
 
 
Figure 8 shows the effects of varying the parameters in the URR.  Increasing the pressure 
required to open the urethra increases the pressure at which micturition commences and 
ceases, as one would expect, but doesn’t change the difference between them.  The onset of 
voiding is once again delayed as the detrusor needs to wait for a higher level of stimulation 
before it can produce the forces required to overcome the higher urethral opening pressure.  
Since the forces and pressures produced by the detrusor remain unchanged, the pressure 
difference that causes the flow decreases as the urethral opening pressure increases.  This 
lower pressure difference results in the lower maximum flow rates and the increased 
voiding time. 
 
Increasing urethral resistance (also shown in Figure 8) has similar effects to increasing the 
pressure required to open the urethra.  The only real difference is related to the pressures 
and times at which the flow begins, remaining unchanged in this scenario.  This is as a 
direct result of the urethral opening pressure remaining constant throughout. 
 
 
The effect of the BOR on voiding 
 
 
Figure 9 shows that decreasing maximum contraction velocity and decreasing maximum 
detrusor pressure both increase voiding time and lower maximum flow rate.  The rate of 
flow Q is directly proportional to maximum contraction velocity maxv .  So a decrease in 
contraction velocity results in a slower flow, and accounts for the lower maximum flow 
rate and longer voiding times. 
 
Comparing Figure 8 and 9 it can be seen that lowering maximum contraction velocity has 
very similar effects to increasing urethral resistance.  The only difference is in the pressure-
flow plots.  This can be readily explained.  Decreasing maxv  (e.g. from metabolic detrusor 
dysfunction), decreases Q and therefore decreases the factor m Q in the relation 

OPp p mQ= +   meaning the curves in the pressure flow plots get steeper. Increasing m 
obviously has the opposite effect on the factor m Q and thus causes the gradient of the 
curves to shallow out. 
 
In a similar vein, decreasing the maximum detrusor pressure can be seen in Figure 9 to 
have very similar effects to increasing the urethral opening pressure as seen in Figure 8.  
Once again the decreased maximum flow rate, and increased voiding time etc can be 
attributed to the lower pressure difference between the detrusor and the urethra.   
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Other parameters 
  
 
Increasing C, has the effect of increasing OPp  and m simultaneously and the similarity of 
the effect can be seen in the graphs in Figure 10.  More interesting is the result of varying 
0r .  This corresponds to changing the force-length characteristics of the muscle by some 

mechanism, e.g. an overstretching of the elastic element of the detrusor muscle.    The 
“ideal” value of 0r  results in a force that vanished when then bladder is empty.  A larger 0r  
results in lower forces and the detrusor reaching zero force production before the bladder 
has been fully evacuated.  In this case, residual urine is clearly apparent in both the flow-
volume and volume-time curves.   
 
A smaller 0r  results in larger forces at small volumes and the bladder tries to continue to 
produce force when the bladder is empty.  This explains the abrupt end to the flow-time 
curves.   The decreased maximum flow rate and increased voiding time can once again be 
understood in terms of reduced detrusor force (and pressure) production. 
 
 
 
Residual Urine and Maximum Flow Rate 
 
 
Figures 11 and 12 summarise the effects, if any, that varying the aforementioned 
parameters has on the residual urine volume and the maximum flow rate.  Clearly, 
increasing the urethral opening pressure, decreasing the maximum detrusor pressure and 
decreasing 0r  all result in a decrease of maximum flow rate combined with an increase in 
residual urine.  In fact if any of these parameters is shifted far enough micturition will not 
commence.  
 
Van Mastrigt et al [17] describe the series-elastic characteristic of the bladder by assuming 
the bladder wall material has a mono-exponential elastic modulus.  In terms of this model 
an overstretching in the bladder, could then be interpreted as an overstretching of this 
spring.  This would have the effect of reducing peak contraction velocity without 
necessarily reducing peak contraction force, i.e. the bladder is slower but not weaker [18].   
 
This is precisely the behaviour that the simulation exhibits when MAXv  is decreased (or m is 
increased – essentially the same thing in the URR).  As can be seen in Figure 12, there is no 
increase in residual urine when these two parameters are varied yet there is still a change in 
the maximum flow rate. 
 
Classically, when residual urine and a low maximum flow rate are present, the diagnosis is 
normally that of urethral obstruction (perhaps by prostatic hypertrophy).  But, as pointed 
out in [19], “..an obstruction alone does not lead to a residual, since, if the bladder 
generates high pressures there is no reason why emptying should not be complete.  
Residual urine points to a failure of the bladder to maintain its contraction, probably as a 
result of changes in the bladder wall due to the obstruction”.   



 11 

Poor voiding function with normal unobstructed outflow conditions is common, and then 
typical “obstructive” symptoms such as poor flow rate, hesitancy and residual urine volume 
are because of poor detrusor contraction function [3]. This can be either neurogenic or 
myogenic in origin.  Hence lower maximum flow rate and increased residual urine do not 
necessarily imply urethral obstruction, but urethral obstruction does imply a lower 
maximum flow rate [1]. 
 
 
 
Pressure-Flow plots 
 
 
Idealised forms of pressure-flow plots, obtained by varying simulation parameters are 
shown in figure 13.  When the urethra starts to relax after the bladder is already fully 
stimulated the pressure-flow curve follows the straight line of the URR.  
 
Comment should be made on the form of the pressure-flow plots shown in Figures 6 to 10.  
They almost all exhibit a rise in pressure at the end of micturition.  Petros et  al report of a 
similar phenomenon.  A frequent find during their study [20] was that of a sudden rise in 
detrusor pressure on the completion of micturition.  Petros explains “It is consistent with a 
detrusor contracting against a urethral tube suddenly closed by elastic recoil of the vaginal 
hammock from the stretched position back to the closed position.” 
 
It is known that voiding in men and women differs considerably because of the differing 
anatomy of their genitourinary systems [21].  The reproductive organs in women are 
closely related to the urinary system and may exert direct or indirect effects on the function 
of the lower urinary tract.  However, it would be overly optimistic, inaccurate and 
ultimately misleading, to conclude that the pressure flow plots are evidence of a good fit of 
the model to the female hydrodynamical data used in [16].   
 
The combination of this anomaly and the lack of accurate output values for parameters 
such as the pressure at maximum flow rate, and residual urine volume for different initial 
bladder volumes (when compared to [16]), one is left to conclude one of several things:    
The most obvious answer would be that it is somehow related to the use of the exponential 
nerve signals, but by tweaking simulation parameters this behaviour can be eliminated (see 
Figure 13).  It is highly unlikely that the results from [16] used in the fit are inaccurate and 
flawed so another explanation could be that the model makes too many simplifying 
assumptions and cannot be used quantitatively in this manner, or perhaps that the number 
of free parameters nedds to be increased.   
 
This possibility and general limitations of the model are broached in the next section. 
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Discussion 
 
 
The limitations of the model are discussed and the underlying assumptions questioned 
below.  For a brief discussion of other models of the LUT please go to Appendix E. 
 
It is well known that rarely does any model completely mimic every aspect of behaviour of 
the system that is being modelled.  This is normally due to simplifications or assumptions 
being made.   One such incorrect assumption could be that: 
 
The bladder is assumed to remain spherical until it is empty.  However, it is more likely 
that the bladder changes shape due to folding when its volume is small.  Since the relation 
between mechanical stress in the bladder wall and the pressure depends on the shape of the 
bladder, this undoubtedly affects voiding characteristics in reality. 
 
The model, although simplistic, describes variations in urodynamical parameters due to 
various myogenic and neurogenic causes and allows insight into possible mechanisms for 
urinary dysfunction.  It also highlights the strong influence of urethral properties on 
voiding, particularly the end phase. 
 
 
 
Limitations of the model 
 
 
As Hübener et al point out in their original paper [1] the neurogenic control of the bladder 
and urethra in this simulation is very simple and not based on any physiological data.  As 
mentioned previously, there could be as many as 32 different reflexes involved in the 
control of the LUT.  Many other combinations of nerve signals are both imaginable and 
plausible, and a more complete model of the neurogenic control is desirable.  Despite this, 
the signals combine to adequately describe realistic responses that allow investigation of 
the other non-neural components of the system. 
 
 
Well-known mechanisms that are omitted from this model are the series and parallel 
elasticity elements of the detrusor muscle [3, 4, 5] that are commonly proposed to explain 
pressure development in an isometric contraction .  In the original model [1], this is 
justified by quoting an earlier work of van Mastrigt [22] that found that a muscle 
shortening of only a few percent was enough to make the contribution from the elastic 
element negligible.  The parallel elastic element can provide up to 35 % of the active 
pressure in optimum conditions.  It has been shown that voiding normally occurs at bladder 
volumes well below this optimum condition, and that is why it was not included in the 
original model [1].  As with neural control, a more complete description is desirable, and 
any “complete” model will have to include these components. 
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Underlying assumptions 
 
It is well known that there is a relationship between maximum flow rate and initial bladder 
volume.  The flow rate increases with bladder volume until a certain threshold limit where 
there is no further increase and the flow rate reaches a plateau [15, 16] 
This peak flow rate has been described as “quite closely proportional to the square root of 
the bladder volume” [8] in one study.   
 
Schäfer et al found that the maximum contraction velocity appears to be almost 
independent of the volume voided [3].  This leads to the interesting conclusion that peak 
flow should occur at the same detrusor contraction velocity in one patient.  This, in turn, 
results in the relation 

2
3Q V∝  that fits well with previous clinical data [23], and forms the 

basis for the assumption made in both [1] and this paper that Q is proportional to the square 
of the bladder radius.  However, another study [24] found that average flow rate (that is 
strongly correlated with maximum flow rate) had no particular volume dependence at all.  
Another shadow cast on this assumption, is made by van Duyl et al who claim from their 
study [25] that maximum contraction velocity is unpredictably variable and so is therefore 
not a very useful contractility index. 
 
Another problem with this model relates to the Hill equation.  As mentioned previously, the 
contractility of (urinary bladder) smooth muscle can be described in terms of a relation 
between its contraction force and its shortening velocity.  This relation can be 
approximated by the hyperbolic Hill equation. Van Mastrigt et al found that only 12% of 
2073 pressure flow studies he examined could be fitted in this way with a Hill curve [26]. 
 
A whole other issue to be considered is that of experimental error and assumptions.  e.g. 
Valentini, quite rightly asks: is the pressure measured in the rectum really equal to the 
abdominal pressure (defined as the counter pressure acting on the bladder) [27]? 
 
 
Conclusion 
 
The model worked well to show how various myogenic and neurogenic factors affect 
urodynamical features.  The fit to the model ended up being unsuccessful.  It is unclear 
whether that is because of an inherent error in the model, the data, or the assumptions made 
to combine the two.  This is something I would like to have explored further if given more 
time.  The outlook for the future in this field is good.  The models whilst getting ever more 
complex, are also getting ever more accurate.  As more advanced imaging and measuring 
techniques arrive, combined with, faster cheaper computing power for manipulating, 
recording and analysing the raw data, the models can only improve.  One can only hope 
that a model is created that is sufficiently accurate so as to circumvent the need for the 
invasive techniques that are commonplace in research in this field. 
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Figure 1:   These graphs show the (linear) nerve signals that control bladder excitation (left) 

and urethral relaxation (right) in the model of Hübener et al [1] . 
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Figure 2:   These graphs show a variety of approaches used to try and avoid the discontinuities 

that are inherent in the (linear) nerve signals shown in Figure 1.   
From left to right they make use of: sinusoidal curves, parabolas and exponentials.  
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Figure 3:   When comparing the linear and exponential forms of 1s  and 2s  the parameters 
defining the curves were chosen in a way that made the rates of excitation or 
inhibition similar. 
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Figure 4:   The graphs above show how the BOR (left) and the URR (right) change in  

response to nerve signals 1s and 2s respectively.  The arrow shows the direction  
of increasing stimulation on the left and increasing relaxation on the right. 
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Figure 5: These graphs show how the URR and BOR are simultaneously solved during a typical 
voiding.  When the two graphs intersect, the point of intersection is ( , )Q p  where Q is the 
flow rate and p is the pressure.  When the two graphs do not intersect, 0Q = . 



 20 

 

0 10 20 30 40 50 60
Time HsL

0

5

10

15

20

25

wolF
etar
H

l
m

êsL

 
0 10 20 30 40 50 60

Time HsL

0

5

10

15

20

25

wolF
etar
H

l
m

êsL

 
 
 

0 200 400 600 800
Bladder Volume HmlL

0

5

10

15

20

25

wolF
etar
H

l
m

êsL

 
0 200 400 600 800

Bladder Volume HmlL

0

5

10

15

20

25

wolF
etar
H

l
m

êsL

 
 
 

0 10 20 30 40 50 60
Time HsL

0

200

400

600

800

reddalB
e

muloV
H

l
m

L

 
0 10 20 30 40 50 60

Time HsL

0

200

400

600

800

reddalB
e

muloV
H

l
m

L

 
 
 

0 5 10 15 20 25
Flow rate HmlêsL

0

2

4

6

8

10

12

14

rosurteD
erusserP
Hmc

H
20
L

  
0 5 10 15 20 25

Flow rate HmlêsL

0

2

4

6

8

10

12

rosurteD
erusserP
Hmc

H
20
L

 
 

 
Figure 6:   The effect of initial bladder volume V on voiding function.  The arrows are in 

direction of increasing V. The value of V was varied from 80ml  to 800ml  in 
steps of 80ml .  The exponential and linear cases are on the left and right 
respectively.  
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Figure 7:   The effect of the nerve signal constants 1k and 2k  on voiding function, shown on the 

left and the right respectively.  The arrows are in direction of increasing rate of 
stimulation ( 1k ) and relaxation ( 2k ). The values of 1k and 2k  were varied between 
0.02 and 0.2  
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Figure 8:   The effect of hp  and hm on voiding function, shown on the left and right 

respectively.  The arrows are in direction of increasing hp  and hm . The value of 
hp  was varied from 27cmH O  to 225cmH O  in steps of 22cmH O  and the 

value of hm  was varied from 1
20.05 /cmH O ml s−  to 1

21.85 /cmH O ml s−  in 
steps of 1

20.2 /cmH O ml s− .   
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Figure 9:   The effect of maxv and maxp on voiding function, shown on the left and right 

respectively.  The arrows are in direction of decreasing maxv and maxp . The value of 
maxv  was varied from 10 /mm s  to 55 /mm s  in steps of 5 /mm s and the value 

of maxp  was varied from 225cmH O  to 270cmH O  in steps of 25cmH O .   
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Figure 10:   The effects of 0r and C on voiding function, shown on the left and right 

respectively.  The arrows are in direction of increasing 0r  and C. The value of 0r  
was varied from 50mm  to 72.5mm  in steps of 2.5mm  and the value of C was 
varied from 0.5 to 0.95 in steps of 0.05 .  



 25 

 
 
 

7.5 10 12.5 15 17.5 20 22.5 25
pop - Urethral OpeningPressure Hcm H2OL

4
6
8
10
12

VUR
-

laudiseR
enirU

e
muloV

H
l

m
L

   7.5 10 12.5 15 17.5 20 22.5 25
pop - Urethral OpeningPressure Hcm H2OL

15
20
25
30
35
40

mu
mixa

M
wolF

etar
H

l
m

êsL

  
 
 

30 31 32 33 34 35
pop - Urethral Opening Pressure HcmH2OL

100

200

300

400

VUR
-

laudiseR
enirU

e
muloV

H
l

m
L

   30 31 32 33 34 35
pop -Urethral Opening Pressure HcmH2OL

0

2

4

6

8

mu
mixa

M
wolF

etar
H

l
m

êsL

  
 
 

30 40 50 60 70
pmax - MaximuumDetrusorPressure HcmH2OL

4

6

8

10

12

VUR
-

laudiseR
enirU

e
muloV

H
l

m
L

  
30 40 50 60 70

pmax - MaximuumDetrusorPressure HcmH2OL

15
20
25
30
35
40
45

mu
mixa

M
wolF

etar
H

l
m

êsL

 
 
 

 

12.5 15 17.5 20 22.5 25 27.5 30
pmax - MaximuumDetrusor Pressure Hcm H2OL

0

100

200

300

400

VUR
-

laudiseR
enirU

e
muloV

H
l

m
L

  
12.5 15 17.5 20 22.5 25 27.5 30

pmax - MaximuumDetrusorPressure HcmH2OL

0

5

10

15

20

mu
mixa

M
wolF

etar
H

l
m

êsL

  
 
 
 
Figure 11:   The effects of OPp  and MAXp , on residual urine volume (RUV –  

graphs on the left) and the maximum flow rate (Qmax – graphs on right). 
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Figure 12:   The effects of 0, , ,MAXm r v C  and initial bladder volume V, on residual urine 

volume (graphs on the left) and maximum flow rate (graphs on right). 
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Figure 13:   Typical pressure-time plots (on the right) and pressure-flow plots (on the left) that 

can be obtained from the model by fine tuning the simulation parameters.  From 
top to bottom the graphs represent varying hp  and maxv , and on the left the arrows 
indicate the direction of time during the flow. 
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Appendix A  - Experimental methods and motivations for creating a model  
 
 
Investigation of the process by which urine is expelled from the body, named “micturition”, 
is normally both obtrusive and inconvenient to the patient.  This is due to the need for 
simultaneous knowledge of the detrusor pressure and flow rate. As an example consider the 
process a patient had to endure to take part in a typical study that was carried out by 
Schmidt et al [28] in 2002.    
 
 
Detrusor pressure is normally taken to be the difference between the pressure inside the 
bladder and the abdominal pressure.  As part of the experiment [28], in order to measure 
these two pressures, each patient had a suprapubic double catheter passed into the bladder 
(under ultrasound guidance) and a balloon catheter inserted into the rectum.  Every time the 
patient voided they were asked to hook themselves up to pressure transducers and a 
flowmeter, then collect their expelled urine.   
 
 
Other studies often involve vaginal or transurethral catheterization, the need for 
participants to keep detailed diaries of their daily defecation and micturation habits, or 
require that participants follow a strict diet or fluid intake regimen.  These studies are more 
than just an inconvenience to participants, they can be physically damaging and 
psychologically distressing.  On top of this there is often the chance of infection and data 
obtained about the whole process is, at best, incomplete or imprecise.  There is another 
approach that can be taken. 
 
 
Instead of pressure-flow studies, voiding nomograms of uroflowmetry are a simple non-
invasive screening test for voiding dysfunction.   Every recorded flow curve contains a 
great deal of information.  Only a small amount of this information is taken into account by 
normal methods of analysis.  As Valentini et al point out [27], much more significant data 
can be extracted from the recorded curves by comparing them to curves calculated from a 
theoretical model.   
 
 
It is therefore understandable that there is great motivation in the urological community to 
create an accurate, reliable mathematical model of micturition. Ideally such a model could 
be used as a diagnostic tool to replace invasive experimental measurements, or at least 
reduce the frequency of their necessity.   
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Appendix B  - Derivation of the BOR  
 
In order to model the bladder one must consider the force that it can produce.  Almost all 
papers concerning this topic reference the work of Hill [29] in 1938.  By investigating the 
contractile behaviour of detrusor muscle strips, Hill derived the following well known 
force-velocity relation for striated muscle:  
 
 0( )( ) ( )F a v b F a b+ + = +  
 
where F is force, v is the velocity of the muscle shortening, a and b are constants and 0F  is 
the isometric force, i.e. 0F F=  when 0v = .  Hill found that 

0

0.25a
F

≈ . This was 
confirmed, via in vitro measurements of complete pig bladders, by van Mastrigt et al [17], 
who found a similar value of 

0

0.27a
F

≈ .   
 
Similar experiments by Hellstrand [30] and Murphy [31] confirm this. Infact, for urinary 
bladder muscle, and muscle in general, 

0

a
p

 (and 
0

a
F

 for strips of muscle) is found to be 
approximately equal to 0.25 [26].    
 
Griffiths et al [32] performed experiments on urinary bladder strips and showed that 
although F and 0F  both depend on the extension of the strip, 

0

F
F

 depends only on v to first 
order.  So we can write the Hill equation in a normalised form: 
 
 ( )

0 0 0

1F a av b b
F F F

   + + = +      
 

 
This equation, sometimes called the Bladder Working Function [3], only describes the 
behaviour of muscle strips. It is therefore necessary to transform this equation from one 
describing a force-velocity relation into one describing a pressure-flow relation. A widely 
used approach to relate force and pressure [17] is to consider the force F as the total force 
acting around the circumference of the bladder which is itself treated as a thinly walled 
sphere of radius r.   
 

2F r pπ=    and   2
0 0F r pπ=     

0 0

F p
F p⇒ =  

 
Thus the Hill equation can be written in the following form: 

0

1 5( )4 4
p v b bp

 + + =  
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Comparing with max max
0 0 0 0 0

1p a a a av v v
p p p p p

    + + = +        
 [26] we can simply write:  

 
 

0 max
0 max

5
4 4 16
p vp v p v  + + =      

 
This equation can be transformed further.  If the bladder’s volume is V, the flow rate of 
urine to the urethra is Q and v is the contraction velocity of the bladder wall, (i.e the 
velocity of the shortening of the bladder circumference) then we can derive a velocity-flow 
relation as follows [17]. 
 

3 24 4
3

dV d drQ r rdt dt dt
π

π
 = − = − = −      and   ( )2 2d drv r

dt dt
π π= − = −      

 
22Q r v⇒ =      

 
This yields the equation used by Hübener et al in their 1994 paper [1] which shall be 
employed at the core of this simulation. 
 

0 0
0 0

5
4 4 16
p Qp Q p Q  + + =      

 
where 0p p=  when 0Q = , 0Q Q=  when 0p =  and 2

0 max2Q r v= .  This equation relates p 
(detrusor pressure) to Q (rate of flow from the bladder) at any particular point in time.  The 
relation is represented by blue hyperbolae in Figure 4 and the equation shall henceforth be 
referred to as the BOR (Bladder Output Relation). 
 
Note that 0

0 2( ) Fp r rπ=  and 2
0 max( ) 2Q r r v= . 

 
An example of the length dependence of force generation in urinary bladder is shown in 
[22].  The curve representing this relation was fitted using a parabola which, assuming the 
bladder has a spherical geometry, may be written:  
 

2

0
0 0

2.04 4.08 1.04r rF
r r

   = − + −      
 

 
This is the equation employed to describe the bladder force in this paper. 
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Appendix C  - Choice of parameter values  
 
 
In order to attempt making the model more than a purely theoretical tool, the number of 
free parameters must be reduced somehow.   This is done by identifying physiological 
values for parameters wherever possible.  
 
In this model so far we have 7 parameters, namely 1 2 0, , , , ,MAX hk k C r v p  and hm .  As 
Griffiths et al point out; almost any arbitrary curve could be fitted by adjusting so many 
parameters.  Griffiths was referring to his own model [14] (also with 7 parameters) when 
he said this.  He approached the problem by directly estimating 5 of these parameters from 
independent clinical measurements and assuming that any difference between calculated 
and measured flow curves was down to the final 2 parameters.  A similar process was 
attempted in this paper. 
 
 
Intrinsic Parameters 
 
There is a scarcity of physiological data on which to base the relative rates and strengths of 
the excitation and inhibition provided by the theoretical signals 1s and 2s .  In light of the 
“mutual inhibition” mechanism that has been proposed [8], equal but arbitrary values of 
1 2 0.5k k= = were chosen in this paper. 

 
0F  depends on 0r  as well as r.  The value 0r  represents the bladder radius at which 0F , the 

isometric force produced, reaches its maximum value of 1, i.e. 0 0( ) 1F r =   .  Now at 
00.3r r≈  and 01.7r r≈  the bladder generates no force ( 0 0 0 0(0.3 ) (1.7 ) 0.0004 0F r F r= = ≈ ).  

Based on this, the assumption was made that for 00.3r r=  the bladder is totally empty with 
a tissue volume of 0V .   0V  represents a dead volume of effectively non-contracting tissue 
enclosed by the contracting part of the detrusor and may be taken as a variety of values.  
For example, Hübener et al [1] use 0 20V ml= , Griffiths et al [8] use 0 10V ml=  and 
Colding-Jørgensen et al [8] use 0 50V ml= .  An intermediate value of 0 25V ml=   was used 
in this paper. 

 
34V rπ=

3
 , implies ( )130 00.3

4
r V

π

3= , i.e. ( )130 25 6.05
0.3 4

r cm
π

3= =
×

 to 2 DP. 
 
A typical figure for MAXv , the maximum contraction velocity of the bladder, is given by 
Griffiths et al [8] as 20 /MAXv mm s= .  A similar figure of 22 /MAXv mm s=  was 
empirically calculated by Rollema et al [15] and it is this figure that shall be used in this 
paper.   
 

0
0 12m

Fp p srπ=   where  
2

0
0 0

2.04 4.08 1.04r rF
r r

   = − + −      
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Now, 0

2m

Fp rπ  has a single maximum (when 1s  = 1) that can easily be calculated to be at  
00.509804r r=  .  Using the value for 0r  above and rewriting m MAXp D p=  where D is a 

constant chosen so that the maximum of 0
2

FD
rπ

is equal to 1 gives 0
0 1258.6 MAX

Fp p srπ= . 
In this way a maximum value of 0p  called MAXp  can be explicitly given to the simulation. 
 
 
 
Appendix D  - “Fine Tuning” Parameters 
   
 
The model is perfectly capable of producing physiologically feasible data from very 
unphysiological values for its parameters.  An attempt was made to pick the remaining 
parameters according to clinical data. 
 
A study of the hydrodynamics of micturition in healthy females [16] found that the 
maximum flow rate of urine from the bladder increased with volume up to a certain 
threshold limit, whereafter the maximum flow rate was independent of initial bladder 
volume.  This phenomenon has been noticed before [15] and is presented as a result of the 
original version of this model by Hübener et al [1].  Therefore this is a feature that is 
desirable for the model to recreate when using “physiological parameters”. 
 
The authors of [16] identify just such a threshold limit (of 400ml) and outline empirical 
values for many of the remaining parameters derived from the study.  The urethral 
resistance, the detrusor and intravesical pressures, and the maximum flow rates for 
micturition from different initial bladder volumes are all given, along with statistical 
analysis of the significance of the results. The values of , ,MAX hp p  and hm  were taken 
directly from this data.  The statistically soundest results in the study are from a bladder 
volume of 400ml and so it is these results (and an initial bladder volume of 400ml) that 
were used in this simulation. 
 
The remaining parameters mQ  and C were then varied by an iterative method until the 
curve of initial bladder volume versus maximum flow rate approximated the data given in 
[16].  The values chosen were 2mQ =  and C = 0.72, and the approximation can be seen in 
the graph on the following page. 
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A similar process was also attempted with the data from a separate study [28] concerning 
healthy males.  The values for the URR used in this case were those found empirically by 
Bates et al [33] and used by Griffiths in his model [14].  The fit produced for this scenario 
is shown below. 
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Due to a lack of explicit values for other parameters needed to “fit” or check the model this 
line of enquiry was not pursued for the male urodynamical data.   
 
Ultimately the “fitting process” did not produce output values of parameters that correlated 
with the raw data in [16].  This could be down to invalid assumptions made in this 
Appendix but given more time I would have liked to investigate what seems like an 
inconsistency in the units of the urethral resistance measure (or an implication of a 
quadratic URR) used in [16] that may have been the cause. 
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Appendix E  - Alternatives to BOR and URR and other models 
 
 
There are many other models published in the literature that try to describe the process of 
micturition.  Some are based on mechanical properties [3, 34], some on neural properties 
[8] (largely because most dysfunctions are either neurogenic or myogenic in origin), some 
try and combine the two [35], but most don’t consider every aspect of the problem.   
In many cases parameters are adjusted manually to provide a fit to clinical data, as was 
attempted in this paper.   This Appendix will briefly mention some of the other published 
models and their differences to the model proposed in this paper. 
 
As Hosein et al point out [8], any model necessarily contains arbitrary features and 
simplifications and can therefore never be completely realistic.  However it can suggest if a 
particular control system is possible in principle.  There are many differing approximations 
to real urodynamical flow that have been employed over the years. 
 
Griffiths et al [14] used a linear URR of the same form as the one used in this paper.  But 
instead of the hyperbolic form of the BOR used in this paper, they approximated bladder 
pressure-flow characteristics with a linear function: 
 

det 1 1
* *iso

p v Q
p v Q= − = −  

 
where detp  is the detrusor pressure, isop  is the isometric pressure, v is the contraction 
velocity of the bladder musculature, Q is the rate of flow and v* and Q* are estimates of the 
maximum contraction velocity and the maximum flow rate the bladder would produce if it 
were to discharge through a urethra of zero resistance. 
 
Considerations of energy conservation gave rise to an alternative form for the URR, first 
proposed by Schafer et al [36] in 1985: 

2

2OP
Qp p A= +  

 
where Q is the rate of flow and OPp  is the same urethral opening pressure as described in 
this paper.   A is the mean cross sectional area of the urethra, which varies considerably in 
males [9].  A similar form of the URR with a quadratic dependence on Q but no 
dependence on urethral area: 

 
2

OPp p R Q= +  
 
is used in some models [8] and given more time this equation would have been tested in the 
model.  In particular, the fit to the clinical data in [16] would have been attempted with this 
function, as the term R here is also often referred to as the “urethral resistance” (the phrase 
used by the authors of [16] ). 
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Work done by Kranse et al suggest that the linear form of the URR is a better 
approximation to the lowest part of pressure flow plots [12] than a quadratic form and that 
was the motivation for Hübener et al to choose the linear form to begin with. At any rate, 
all these relations are just approximations.  
 
To get the best results one needs to simplify as little as possible.  Take the urethra for 
example:  Existing mathematical models are based on frictional resistance to flow through 
the urethral tube [37] or urodynamic parameters through an elastic tube [38, 39, 40].  The 
urethra is generally assumed to be a straight, smooth walled circular tube.  Measured 
detrusor pressure and flow rate are used to determine an “effective” urethral diameter and 
therefore, urethral restriction.   
 
Recent dynamic video x-ray studies have demonstrated that the urethra is not a straight 
tube, either at rest or during micturition [41, 42].  The model proposed by Petros et al is 
centred on the far more complex equation:  
 

2
2

0 2 5
8 1

2ves

Q L fP P P V g hd
ρ ρ ρ
π

∆ = − = + − ∆  
 
where the pressure difference P∆  is the difference between the intravesical pressure vesP , 
and the pressure acting at the tube exit 0P . Q is the volume flow rate, ρ is the fluid density, 
g is the acceleration due to gravity,  f is the frictional factor, and h∆  is the change in height 
of the urethra from one end to the other.  Petros et al have shown that this equation gives an 
extremely good first approximation to the pressure-flow characteristics of an actual urethral 
tube [42].  As well as considering the effects of gravity and friction this model takes into 
account the effect of the pelvic floor muscles.  The most successful models seem to follow 
this pattern of simplifying as little as possible. 
 
Probably the most successful published model at the moment is the VBN model, named 
after its three creators Valentini, Besson and Nelson [5, 9].  In this model the changing 
cross-sectional area and elastical properties of the urethra are considered and a simple 
sphincteric control region is included.  The muscular force that the bladder wall produces in 
the model is complex, the elasticity is described as “elaborate” and the force interacts with 
the relatively simple nerve signals in an intricate way.   Perhaps most importantly, the flow 
through the urethra is not approximated in any way.  The flow is calculated directly from 
the basic equations of hydrodynamics, the urethral resistance is calculated from the flow 
and varies during micturition.  Friction is considered, (so Bernouilli’s equation cannot be 
used) and adds only a slight component to the urethral resistance [9]. 
 
In idealized voiding, urine is expelled by detrusor contraction and the contributions from 
gravity and abdominal straining are ignored.  As the effective abdominal pressure is only a 
weak contribution to the flow rate, for the identification of detrusor contractile strength, the 
contribution of abdominal straining has to be eliminated. [3] 
 
The unaltered calculated flow curves produced by the VBN model [9] are very convincing 
and when other effects, such as abdominal straining, are taken into account, the agreement 
between calculated and recorded flow curves is quite remarkable.   
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There are a variety of other types of published model.  Some are based on iterative 
methods, like [43] which is mathematically very complex, others are based on finite 
element methods [44].  Another approach is to employ a model based on neural networks 
[2] since they are “a tool which adapts well to this type of system” in having a high 
tolerance to faults, a low sensitivity to noise and ease with modelling non-linear functions. 
 
[35] is a biomechanical model of the lower urinary tract which is able to respond to input 
signals from a neural network control model previously developed by the authors.  This 
model makes use of Bernouilli’s equation. Unlike most models of urinary function [35] is 
not lacking a description of urethral sphincter dynamics.   Sphincters can be the topic of 
models themselves.  [45] is one such model, that also employs neural networks.  It is a 
multi compartment model that provides neural signals at the level of action potentials.  
 
The variety of methods employed in modelling the processes involved in the LUT means 
that there will be many more attempts to refine, and possibly combine, these models in 
years to come. There is a very real need and demand, amongst the urological community, 
for a good, accurate and working model that could perhaps one day replace all the invasive 
and distressing experimental methods outlined in Appendix A. 
 
 
 


