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Abstract: In this paper I aim to provide an introduction to Monte Carlo
Simulations in general and then apply them to the study of the one dimensional
harmonic oscillator and to the study of the free scalar field and the Sinh-Gordon
and Sin-Gordon fields in two dimensions. Numerical results are compared to
theoretical predictions and discussed.
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1 Statistical Computer Simulations

1.1 Introduction

Lattice Field Theories' have many formal analogies with statistical systems used
in the description of thermodynamical behaviour, and can be investigated by
numerical methods known as Monte Carlo simulations.

Monte Carlo simulations have been comprehensively applied to the study of
lattice field theories and several important results have been achieved. Some
have demonstrated, albeit numerically, the validity of long standing theoretical
conjectures, whilst some have allowed the determination of interesting physical
observables.

1.2 Formulation of a quantized lattice field system
Consider a Quantum Field Theory defined through the following formal steps:

1. Time is rotated to the imaginary axis, so as to achieve a positive definite
Euclidean Metric in space-time.

2. A suitable action functional S(¢,m) of the field configuration is defined,
where ¢ denotes the collection of all fields and m for all masses and other
particle parameters of the theory.

3. For any observable O(¢) it’s quantum expectation value is defined by
averaging the value it takes on a given field configuration over all the
field configurations with measure proportional to exp(-S), where we have
adopted units A =c =1

<0>=2z"1 /DqS O(p)e 5™ | zZ= /D¢ e—S(¢,m)

The quantity Z is the vacuum to vacuum permanence amplitude, sometimes
referred to as the partition function because of the analogy with the statistical
formulation of a thermodynamical system. The quantum averages of < O > are
continued back, if necessary, to Minkowskian space-time.

What do the expressions above mean mathematically? The space-time con-
tinuum is replaced by the vertices of a lattice and the functional integrals above
turn into ordinary multiple integrals by limiting the lattice to a finite volume V'
and defining the fields only at the lattice sites. The partial derivatives occuring
in the kinetic part of S are also replaced with finite difference expressions. We
can recover theoretical results through the thermodynamical limit V' — oo and
the continuum limit @ — 0. The lattice regularized quantum expectation values
are then given by:

205=2"1 / [I Ddzy O(pey)e™ 5™ | Z = / [I D¢y e=S(@essm)
Ty zyY

1lare field theories formulated on a discrete lattice of points in Euclidean space-time.



1.3 Monte Carlo Estimation - A simple example

Monte Carlo simulations are the name collectively given to types of simulation
that explicitly depend on (pseudo)random numbers. The name is derived from
the famous Monaco casino, and emphasizes the importance of randomness in
this method. As a quick example, I outline below a method for numerically
determining the value of © by Monte Carlo estimation.
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Figure 1: An example with 100 random points

The area of a circle is given by 7r2. So the area of one quarter of a unit circle
isn = iﬂ. That gives us 4n = 7. So by estimating the area of a quarter circle
we can estimate the value of 7. So the simulation takes the following steps:

1.
2.

~w

Set two variables to zero, M = N = 0.

Pick a pair of random numbers, say a and b, both between 0 and 1.
M=M+1andif a® +b?> <1then N=N +1.

Repeat steps 2 and 3 a large number of times.

% is an estimation of the area of the quarter circle.

SO % is an estimation of 7.



Every point is going to be within the unit square, that is why M is increased
every time. Not every point will be within the unit circle quadrant. In the
picture on the last page M is the number of green points and N is the number of
green and red points. Increasing the number of random points chosen increases
the accuracy of the estimate. For M = 1000 a quick simulation yielded the
result Testimate = 3-142. Although this is accurate, the process of Monte Carlo
integration by this method becomes less accurate in situations involving integrals
such as those at the end of section 1.2. A better solution is to use the process
known as ”importance sampling”.

1.4 Importance Sampling

How do we evaluate the averages laid out at the end of the section 1.2? They
could be (crudely) worked out by Monte Carlo estimation of the two integrals,
perhaps using the same set of random numbers for evaluation of both integrals.
However, this is not practical as a significant part of both integrals will tend
to be concentrated in a small region of the phase-space due to the exponential
factor.

If the phase space is discrete so that the action S(¢,m) is also discrete, i.e.
S =3%,Sk =>;S(¢r,m) then the integrals turn into summations over the
discrete states Sj.

<0>= 2120¢k)e (¢em) g Ze (¢x.m)

It is impractical, and in most cases near impossible, to perform these sums
over all possible configurations. So we can obtain an estimate by summing k
over a finite subset of M configurations. Clearly, the representativeness of the
subset and the size of M will affect the accuracy of the calculated estimate.
This is where importance sampling plays a key role. The idea is to choose our
M configurations in some way that is biased in favour of configurations of the
form we desire. If the probability of a certain configuration ¢ appearing in the
sample of representative configurations is given by P(¢) then the sums become:

) O(¢k —S(¢r,m) *S(¢k,m)
<O>=2 Z Pé0) ! Z TPl

Of interest, in this paper, are configurations chosen with the probability
P(¢p) o e=5(®%m) then the so called Boltzmann factors will cancel out and
the average, summed over M configurations, simply becomes:

M
<0>=M"Y 0(¢)

k=1

This is a calculation that is much less labour (or CPU) intensive. The
problem then becomes how to choose our configurations in such a manner that
this labour saving process can be applied. The answer is to use the Metropolis
Algorithm.



1.5 The Metropolis Algorithm

Configurations with the convenient property outlined in the last section can be
generated by means of the Metropolis Algorithm. To reiterate, the Metropolis
Algorithm allows us to create a sample of representative configurations, where
the probability of a certain configuration occurring is directly proportional to
that configuration’s Boltzmann factor. Since first proposed? it has become both
important and widespread in the realm of the Monte Carlo method.

Given a configuration ¢y and a transition probability function T'(¢r — ¢r41),
the Metropolis Algorithm constructs a new configuration ¢y41 from the one be-
fore by updating one variable of the configuration and calculating the change in
the action. To make a sequence of such configurations, known as a Markov chain,
approach a desired distribution it is sufficient (but not necessary) to impose a
condition known as ”detailed balance”. If P(¢y) = es(¢Zk ™) s the probability
of configuration ¢, then detailed balance states that, for an arbitrary pair of
configurations, the following equality should hold :

P(¢;)T(¢; — ¢r) = P(or)T (1 — ¢;)
= If T(¢ — ¢]) =0 then T(¢j = ¢r)=0

T(¢r = ¢5)
T(¢; — ¢x)
This last equation implies that a move from one configuration to another is

only possible if the inverse move is also possible. In light of this, the Metropolis
Algorithm proceeds thus:

andif T(¢r = ¢;) #0 = =exp(—dS) where 05 =25;-5;

1. A proposed new lattice site value r is chosen randomly from a particular
probability distribution.

2. The change in 45 from replacing a lattice site ¢y by r is calculated.

3. The new site value r is accepted with probability Ppecept = Min(1,e%5).

Steps 1 to 3 are repeated systematically on each lattice site in turn until the
entire lattice has been covered®. Infact, step 3 can be expanded into a number
of ”substeps” to make the process more efficient for the computer. They are
detailed below to provide a better explanation of what is happening.

1. If S < 0 the new site value r is accepted.
2. If not, a random number R is chosen uniformly from the interval [0,1].
3. The new site value r is accepted if e 9% > R.

4. Otherwise the lattice site remains unchanged.

2by Metropolis et al. in 1953
3This is referred to as one "sweep” of the lattice.



1.6 Putting it all together

There are many other aspects and matters of simulation fine tuning that need
to be taken into account, such as how to discretize the action. Before discussing
these finer points, I shall quickly lay out the steps involved in a Monte Carlo
simulation.

1. An initial lattice configuration is chosen.
2. A certain number of sweeps are performed to thermalize the system.

3. The current configuration or calculations based on it are stored for later
inspection.

4. A number of further sweeps are performed to decorrelate the current lattice
configuration from the last stored one.

5. Steps 3 and 4 are repeated a large number of times.

6. Once finished, the stored configurations or the calculations based on them
are analysed and averaged to provide a reliable estimate of the physical
observables that one is seeking.

The initial configuration can be what is known as a "hot start”, where the
lattice site values are chosen randomly from some probability distribution, or a
”cold start” where all the lattice site values are initially set to be constant and
equal, normally to zero. A large number of thermalisation sweeps have to be
performed in order to transform the hot or cold start into a lattice configuration
that matches the desired canonical probability distribution.

A couple of fine tuning issues remain. Firstly, it is desirable for the Metropolis
Algorithm to change a site’s value roughly 50% of the time. This is because if
the acceptance rate is too high, then the simulation moves through the phase
space too slowly, and if the acceptance rate is too low then a lot of time is wasted
on rejections. An acceptance rate that is very close to 50% is easily achieved
by fine tuning a single parameter that decides how the random number r from
the last page is chosen. Choosing the proposed site update r from a normal
distribution, that is centred on the old site value ¢y, allows one to fine tune the
acceptance rate by choosing different values of the variance o and observing the
effect.

Another issue to be considered is how to choose how many sweeps to perform
in step 4 above. This is decided by measuring something that is known as the
autocorrelation, which shall be explained in a later section. This fine tuning
process, once again, is crucial to both the accuracy and efficiency of the Monte
Carlo simulation. If too few a number of sweeps are ignored between stored
configurations, then the configurations won’t be sufficiently decorrelated from
each other and any calculations based on those configurations will be inaccurate
at best. If too many configurations are ignored, the calculations will be accurate
but the simulation will take longer than necessary.



1.7 The Autocorrelation Function and Decorrelation

A quick calculation shows that for a 32 x 32 lattice, where 5000 configurations
are stored for calculations and 200 sweeps are performed between each stored
calculation we have to perform the Metropolis Algorithm a total of:

32 x 32 x 200 x 5000 ~ 10° times!

Clearly, this is a huge number of calculations and so any extra speed that
can be squeezed out of the simulation by fine tuning the acceptance rate is
most welcome. As previously mentioned, another way to increase the efficiency
of the simulation and something that is absolutely crucial to it’s accuracy is
the number of sweeps to perform between stored, or calculation, configurations.
This is decided by means of the autocorrelation function. Given a sequence of
configurations (¢(1), #(2),--) it is defined as:

ac(T) = %Z > ij(k)gij(k+T)

k=1 \i,j=1

The subscripts 7 and j denote two dimensional lattice coordinates and the
subscript k denotes the position of the configuration ¢ in the sequence of stored
configurations. M is the size of the lattice, and N is the number of different
starting positions that the autocorrelation function is averaged over.

The purpose of averaging the autocorrelation in this manner is to smooth out
statistical variations in the different configurations. The graph below and the
two on the next page show a sample autocorrelation function worked out and
averaged over 100, 1000 and then 10000 different starting positions.

Autocorrelation
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Figure 2: Averaged over 100 different starting positions.
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Figure 3: Averaged over 1,000 different starting positions.
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Figure 4: Averaged over 10,000 different starting positions.

In this case, which shall later be referred to as Case 7, performing 200 lattice
sweeps between configurations used for calculations would be suitable. If less
intermediate sweeps were performed, the autocorrelation value would be too
high, whilst if more intermediate sweeps were performed, the simulation would
take significantly longer for little or no gain in accuracy.
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2 My simulations

2.1 Discretizing the Action

I now plan to elaborate on the previous section, and explain how it applies to
the simulations I have carried out. First I shall explain briefly what the action
S(¢,m) is and how it is discretized. Classically:

dx
S = /dt L (w, t)

This is just the time integral of the Lagrangian, where the Lagrangian of
a system is equal to the system’s kinetic energy minus the system’s potential
energy,i.e. L=T-V.

Now V = V(¢) is easy to discretize. Omne simply replaces, the continuous
variable ¢ with the discrete variable ¢, in one dimension, or with the discrete
variable ¢, in two dimensions. So the discretized potential is simply V' = V (¢y,)
or V="V(¢gy).

The kinetic energy is more difficult to discretize as it contains derivatives of
¢ rather than containing ¢ explicitly. The kinetic energy term always has the
basic form ¢ 8,¢ or simply (8,¢)? in Euclidean space-time as covariant and
contravariant indices mean the same thing. So, if D is the number of spatial
dimensions, the discretized action has the form:

S:/dt ( Z%(auw + v(m))

Discretization of derivatives can be performed in many ways. A simple
method would be to replace each of the first derivatives in the kinetic term
with a discrete counterpart, the simplest being known as the forward and back
derivatives.

(8u01)> = (P41 — dk)> or (8udk)” = (¢ — Pr—1)’

Although the discretization scheme chosen should not effect the value of
physical observables calculated in the simulation, the preferred method makes
use of a second order derivative approximation known as the central difference
method. Firsty, we can rewrite the derivative term:

(6u¢k)2 = Ouor Oudr = —i 6Z¢k by partial integration.

The central difference approximation gives: 8%¢; = (r41 + Gr_1 — 2 1)

This is fine for one dimension, but in 2 dimensions we have to remember that
there is a second derivative in each of two directions. Taking this into account
the kinetic term in two dimensions becomes:

82¢zy = (¢z,y+1 + ¢z,y71 + ¢z+1,y + ¢z71,y - 4¢zy)

11



The final step in discretization is to replace the integral over time in the
action with a sum over discrete variables. i.e. [dt — > ,. So the final form
of the discretized action, in one and two dimensions respectively, becomes:

S = Z [—; Ok(Pry1 + Pr—1 — 2 ¢x) + V(o)

k
1
S = Z _E ¢wy(¢z,y+1 + ¢w,y—1 + ¢w+1,y + ¢:c—1,y - 4¢zy) + V(¢wy)
zy
To save space we can denote the surrounding terms S1(k) = épr1 + dr_1

and S2($y) = ¢w,y+1 + ¢ac,y—1 + ¢w+1,y + ¢w—1,y to get:

S = Z [—; Pk (S1(k) =2 ¢x) + V(¢k)]

k

S

S |5 dnalSelon) =4 6 ) + Vion)

Ty

Before proceeding, it is necessary to include the explicit form of the potentials
in the action. The potentials for the scenarios I have been simulating are as
follows:

1

Vi(¢) = §w2¢2 for the one dimensional harmonic oscillator.
Va(p) = §m2¢2 for the two dimensional free scalar field.
2
Vi(p) = 75—2[1 — cosh(¢)]  for the sinh-gordon field in two dimensions.
m2
Va(gp) = F[cos(qﬁ) —1] for the sin-gordon field in two dimensions.

We can also introduce a lattice spacing constant a. The continuum limit is
represented by a — 0 and taking different values of a corresponds to rescaling
the lattice. So including the lattice spacing a, and the explicit form of the
potentials V;(¢) into the four actions gives:

N
Sio= ) [_21(1 Gk[S1(k) — 2 ¢x] + ;:ﬁﬁ}
k=1
o [1 a g .9
S = zél __% Gay[S2(zy) — 4 ¢ay] + im ¢$y]
Mo 1 a m2
S; = Z "% Gzy[S2(zy) — 4 ¢0y] + ?[1 —cosh(qﬁmy)]}
z,y=1 *
AR | a m?
Sy = Z _% ¢zy[52(93y) -4 ¢zy] + W[COS((ﬁzy) — ]_]:|

8

@
Il
-
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The similarity between S; and Sy is unsurprising, the free scalar field is
just a collection of harmonic oscillators, which are coupled by the gradient term
0;¢ 0;¢ in the action or Hamiltonian.

The process does not stop here however. In the simulation we are interested
in the change to the action caused by replacing one of the ¢, or ¢, with a
new value, r say. It would be extremely inefficient and impractical to calculate
the whole sum every time the Metropolis Algorithm analysed a proposed site
update. For a particular site ¢ or ¢,, the explicit changes in the action are
given by:

“a 2
88y = (fuy—7) [52(;‘1/) — (buy +7) (2 * ;m2>]

58 = (be—7) [Sl(k) (65 +7) (;Jr“wz)]

0S3 = 2(‘%1} — 1) [S2(zy) — 2(pay + 1) + GBTZQ [cos(Bay) — cos(Br)]
35 = (a1 [S2(o) — 2 (buy + 1] + 5 comh(5r) — cosh(3zy)]

It is these changes to the action that the Metropolis Algorithm evaluates.
Structuring them in this manner, so as to perform as few multiplications as
possible is a further effort to speed up the simulation. In general multiplications
take more CPU time than additions.

2.2 The actual simulation process

Many simulations were performed, over a wide variety of values for the input
parameter values, in all four regimes. For each simulation I chose a cold start on
the lattice. After 1000 thermalisation sweeps, a further 10,100 sweeps would be
performed for the purposes of analysing the acceptance ratio and decorrelation
length. After experimentation with each scenario, the optimum value of the
variance ¢ and the minimum number of sweeps to perform between calculations
were determined and the simulation could begin in earnest.

With the fine tuned parameters, the program would be run again in the manner
laid out in previous sections. The next few sections will discuss and prove many
theoretical results from the four regimes mentioned above. Following that will
be another section containing comment and discussion on the simulation results
found and comparing them to the theoretical predictions. Tables of simulation
parameters and results, as well as graphs of relevant functions are included in
Appendix A and B respectively, at the end of the paper.

13



3 One Dimensional Theory

3.1 nth roots of unity

The following result also applies to two dimensional theory. Consider w = e~

(w” ) (=) 4 4,20-3) (N-1)t—ipy — L 1= @)Y
Ifj#1: Z (1+w Fw? et )= N1
) (w=D)k
Clearly if j = [ the sum equals 1 hence we have: Z —— =4y

N
k=0

3.2 Fourier Transform of the lattice sites

2mi

The Fourier Transform p; of the variable z; in momentum space is defined by

N-1 ; N-1
k w —jk

—— pr where w = e R

N-1 : N-— N—1 .
w_]k wkl k(l .7) (w(l_]))k
= 2= ) \/Nﬁmlzz Al P R o= 0 o=

3.3 Fourier Transform of the lattice action

We shall now consider the discrete action for the Simple Harmonic Oscillator in
one dimension on a periodic lattice with boundary condition z¢g = 2 :

N-1

1 1 1
S = ZA:U; + Bzyzi41 where A—iam +a and B = —
=0
N-1 Wi 1DE
= Y A pgpk + Bijpk

Js k, 1=

N-—

J, k=0

L |

7, k=0

N
¥

k 0
1 N-1 l(]+k) N-1
= > Z (A+ BuF)pjpr = Y 8, _r(A+ Bw*)p;px
k= =0

E 21k
= Z 244+ Bw* +w ) Iprp_k = Z{2A+2BCOS(T)}pkp,k

k=1 k=1
¥

= Z SywPePw Where Sy = Sy 0y,—y = {2A+ZBcos(
v, w=1

14
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3.4 Calculation of the correlation function propagator

1 0 0
<.’L'1"'£L'n>:§/D$€S£U1"'.Z'n: (atl___atn/DweS-l—hz1+...+tnwn>

t;=0

where Dz = H dr and S is the discrete lattice action described in the last section.

T

Z is a normalisation constant chosen such that <1 > =1. In other words = Z = /Dm es

1
= <pr P> = E/Dpespl---pn

i i 5+qlp1+-~-+qnpn>
(8(11 6(1n/Dwe

;=0
0 0 "
- R — < >
(a(h o< an )
m= ¢;=0
0 0
B (8(]1 8Qn Q ) q:=0
0 0 (Nl ek )
— — e — exp Z %
0¢n  Ogn £~ 2A+2B cos(2xh) st

qxk
2A+ 2B cos(%)

The last line was reached through the change of variables pyj — p4r — as

N-1
1 27k
Q = Z/Hdp exp (,;,0 prkp—r{2A + 2B COS(W)} + PGk +P-kq-k)

1 21k
- 7z H (/ dpr, dp—r exp (prp—r{24 +2B COS(T)} + Prak +kak)

1 2k qkq—k
= dpy, dp_ _+{2A + 2B —_
ZH (/ pr dp_r exp (Pkp k{24 + 2B cos( N )}+2A+2Bcos(%)

1 N-1 27Tk = —
= {Z/Hdp exp (Z prp-k{2A + QBCOS(N)}) } {eXp (Z 2A+§k3qcss(2;\rﬁ))}

k=0 k=0

N1
_ Hexp dkq—k = exp Z akqd—k
2A + 2B cos(22E) 2A + 2B cos( k)

k=0

1

= < pip_k > =G b, where G =
PiP—k k Dk k 2A+2Bcos(%)

15



3.5 Expectation Values

N-1

Using < zjz)p > = Z

m,n=0

wjmwkn

N < pmpn > and 1.1 we can calculate expectation values.

N-1
1 .
Since < pmp—n > = Gm Omn We have < zjz) > = N E wml—k) <« PmP—m >
m=0

[

N-1 N—

1 " . 1
=><mjmk>=NZwm(’ )G so if j =k we have <a:ja:j>=NZ Gm
m=0 m=0
N-1 N/2—1
1 1 1 1
= N <2’ >= = + + .
2 24 4+ 2Bcos(22k)  24+2B  24-2B z_: A + B cos(2zh)
k=0 N k=1 N
Notice that, without ambiguity or loss of generality, we can write < 22 >
above as the index j does not appear explicitly on the right hand side.
. . . . 1 5,1 1
For the one-dimensional harmonic oscillator we had A = 2 om +— and B=——
a a

N/2-1

1 1 a
2 —_
T<T 2=y am2+2+a2m2+ I;

2
am?® + 2{1—cos(2zE)}

16



4 Two Dimensional Theory

4.1 Fourier Transform of the lattice sites

The Fourier Transform pj;, of 2,,, in momentum space is defined by

N-1 wjmwkn N-1 w—jmw—kn 2mi
Djk = E —N  Tmn and Tjp = E — N Pmn where w = e~
m,n=0 7,k=0
N-1 wf(jm+kn) wmr+ns N-1 - m(r 7) — n(s 7)
= Tjk = E N N Trs = E E N N Trs
m,n,r,s=0 r,s=0

Using the results of 1.1 we find that, as one would expect: zj; = 6, 05 Trs = Tji

4.2 Fourier Transform of the lattice action

We shall now consider the discrete action for the free scalar field in two dimen-
sions on a periodic lattice with boundary conditions z;o = z;n and zor = TN

= 1 2 1
S = Z Az’ 4B (TypTuys1 +TuvTusry) Where A = 3 am2+a and B = ~

u,v=0

N-1 N-1 —u(r+m)  ,—v(s+n)
2 w d
Now Z A Ty Z A N N DPmnPrs

u,v=0 u,v,m,n,r,s=0

N-1 N—1  —u(r4+m) N-1  _y(s+n)
Z A {(Z w]V) (Z wjv)pmnprs}

m,n,r,s=0 u=0 v=0

Z A 67‘,7m 55,7n PmnPrs = Z A Dr,sP—r,—s

m,n,r,s=0 r,5=0
N-1
Z B Lyy Lyv41 = Z Bw™® Pr,sP—r,—s and
u,v=0 s=0
N-1 N-1
Z B ryyTyr1e = Z Bw " prspr_s using the same method.
u,v=0 r,5=0
N-1
So the transformed action is: S = Z (B w?®+ Bw " +A4A ) Drs Pr—s
r,s=0
Nz 1 27s 2y
e
= S= Z Ssrfg Psf Prg Where Sgpq = <2BcosN + 2B €08 — - +2A)6s’_f Or,—g

r,s=1

17



4.3 Calculation of the correlation function propagator

We can calculate the propagator for the scalar field, using the same method
as we did in section 3.4 for the harmonic oscillator, by introducing an external
source to the partition function. It is, once again, the inverse of the lattice
action, in this case Sysf5. An outline for the calculation is provided below, but
for brevity some of the intermediate steps are excluded.

1
< Tipjy  Tipgn > = A /Dmesxiljl---a:injn where Dm:Hda:,-j and Z = /Dmes

ij

d d i sl
=S Py D s D= e ex rsqd—r,—s
Diyji DPi, jn 8qi1j1 aqinjn p ( Z 2B (COS 2% + cos 2%) +24

r,8=0 4;=0
N-1

The result was again reached through evaluating < exp Z Dijqij | > using a change
,j=0

q¥r,Fs
2B (cos 2%5 + cos 2%") + 2A

of variables, in this case: pipts = Pirts —

1

2B (cos%\,ﬂ + cos 2]{,—’) +2A

= < PrsP—m,—n > = Grs 6rm Osn where Grs =

4.4 Expectation Values

N-1 ;
w]mwkn WY W

N N

vs

Using < T Typ > = < PmnPrs > expectation values

m,n,r,s=0
are calculated using: < ppsp_m,—n > = Grs Opm Osn

1 N-1 1 N-1
=> < Tjk Tuy > = m Z wT(U*])wS(Ufk) GT‘S = < Zjk Tjk > = m Z G’I‘,S
m=0 r,s=0

N-1

1 1
=><a’>= — > . 5
N 2B (cos %8 + cos 2FF) +2A4

r,s=0

1 2
For the free scalar field in two dimensions: A = 5 am? + o and B = —

1 = a
2
=2<z> = — -
N2 ( Zoa2m2+2(2 — cos 2T 4 cos%ff))

T,5=

18



5 Continuum results

5.1 One dimensional Harmonic Oscillator

The Lagrangian and Hamiltonian for a classical system with position 2 and
velocity % are given by the two equations below.

1 /dz\> 1 1
L = 3 (;) —§w2a:2 and H = §p2+w2m2

The creation and annihilation operators, denoted at and a, are defined here as:

wT + 1 wr — 1 a+at wa—at
a:7+pand a’f:ipéwziandp: P —

Vaw V2w V2w

Of course, the definitions of the creation and annihilation operators are just
conventions, that may be defined in numerous ways. The similarity between the
variety of possible definitions is that they satisfy certain commutation relations.

One such relation is [a,af] = 1. Wecall N = a'a the Number operator.
1
With the definitions above we find the Hamiltonian becomes: H = w (N + 2)

1
and that z2 transforms into: 2> = % (a2 +aal +afa + (a1)2 )
W

Using Dirac notation ajn > = njn—1> and afln>= vVn+1in+1>
Now <mnla’ln>= 0 and <n|(a)’n>= 0 since <mn>= dpn

= 2w < n|z?|ln > = < nl(aa’ +ata)n > = < n|([a,al] + 2ata)|n >

1+2n
2w

= 22 <njz?n>=<n|(1+2N)n>= 142n = <nlz?n>=

1
In the ground state with n = 0 we have < 0|z%|0 > = 5, asone might expect.
w
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5.2 One dimensional Harmonic Oscillator in Euclidean Time

In Euclidean Time a translation by T is generated by: U(T) = e TH

For a periodic system: <O >= Tre 770 = Z <nle"T"On >

n

1+ 2 w
<0>=Y <nfOln>e DT 5 g2 5= ) ( ;wn> e~ e "
n

n

e T e T 1 2T
2 - —nwT —nwT - -
= = 2 =
<zt > % ( e + Zn:ne ) 2w (1—e—wT+(l—e—wT)2>
_ e — e WT 4 2¢—wT _ e 1+evT
N 2w (1 —e—wT)2 2w \(1—ewT)2

wT
w e 2 ]_
No E < nl|lln > e_("+%)‘*’T = e*TT E e T — —
" ! 1—e T  2sinh(4F)
n n

<z?> 1 T
So we are left with the normalised result: a: = — coth el

<1l> 2w 2

T
AsT — oo, coth (u;) — 1 and we regain the result for an infinite system.
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6 Calculation of the Propagator in infinite space

6.1 The calcuation

In this section I shall calculate the propagator? G(z — ) in infinite, Euclidean
space. It is known that the operator — 72 + m? has G(z — y) as it’s Green’s
Function. Using a Fourier transform we can write:

1
p2+m2

abP ; -
Ga—1) = [ Glp G & 7o) where G(p) =

1
Consider 1= 5/ doe % where A >0 is a positive real number.
0

Using this identity, we can choose to take A = p? + m?, and substitute this
back into the integral expression for G(z — y) given above.

de ei Pu(Tp—ypu)

=Gz — .
(z—y) @D e
= / /( )D 67% p +m2)+zp,,(zp Yu)
2
Y S ——
(2m)P
T e )
2 Jo (2m)P
0 2y — 2 2,
= %/ da e%( renli (2ma) 2
Jo
oo
= 2(21)17 / da a_% e_l‘t;cf‘z _MTQA
T2
|
1 m 2
= K —
it (Ey)  Feamz)
where the last line has been reached by the change of variables: a = Ln_l yl t

L[ s—1 ,—2(t+1) D
and K,(2) = 3 dt t°7" e 2\""%) where s=5—1 and z = mlz —y|
0

is the well-known integral representation of the Bessel function.

4otherwise known as the two-point correlation function
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Now that we have an expression for the propagator, it’s behaviour can be
examined for different scenarios. Of particular interest are short distances where
z=m|z —y| < 1 and long distances where z = m |z — y| > 1.

6.2 Short Distance behaviour

In this scenario z <« 1. For small values of it’s argument, the Bessel Function

behaves as:

Grar T\
r(g-1)
~ _1 Log M — A if D=2
27 2 )
(-1/2) |z —y| _ ——

Above, «y represents a constant known as Euler’s Constant and has the value
v = 0.577216. An interesting point here, is to note that the leading term
is independent of the mass, in any number of dimensions®. So this expression
represents the behaviour of the massless theory. Of more interest, and relevance
to this paper, is:

6.3 Long Distance behaviour

In this scenario z > 1. A saddle point calculation indicates that the Bessel
function K,(z) behaves asymptotically as:

Ki(z) =~ \/ge“z [1-1—0 (%)]

2 mP—2¢—ml|z—y| 1
> 6e-y) ~ YL fivo ()]
(2%)?(m|z—y|)7 m|m—y|
1 e—mlz—yl
~ if D =2.
2v2m /m|z — y| '
o 51-75 izl if D=1.

So, at long distances, the Euclidean Green’s Function decays exponentially.
The correlation length can be seen to be 1/m which is unsurprising as it is the
only variable in the theory with units of length.

Sexcept the special case D=2.
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7 Results and Discussion

7.1 One Dimensional Harmonic Oscillator

The results and the graphs for the Harmonic Oscillator are presented in Cases
1 to 6 in Appendix A and B respectively. The agreement between the expected
and the computed values of the physical observables was very good, and likely to
be due to the fact that the calculations were performed over 5000 configurations.
The value of < z? >;; matched the value of < z? >p, that was calculated
in Section 3.5, to within a very small margin of error, as can be seen in the
results of section 10.1, and the exponential fit to the correlation function’s long
distance behaviour (that was calculated in Section 6.3) was also very accurate,
as can be seen in Figures 5, 6 and 8.

The correlation function fit can be so accurate, even for small distances on
the lattice, due to the lack of a % factor in it’s long distance behaviour. This
means that the correlation function ”"behaves well” for small distances, as can
be seen in section 6.2.

Figure 7 shows a sample position probability distribution for the Harmonic
Oscillator. The probability distribution was calculated by dividing the space
axis into ”bins” of equal width and counting how many lattice points fell into
each bin. To get the good agreement shown in the figure it was necessary to
average this probability distribution over many configurations. It was found,
as expected, to be a Gaussian distribution, that is fitted in the figure by the

. _ 2
function: \/%e am=

7.2 Two Dimensional Scalar Field

The results and the graphs for the Scalar Field are presented in Cases 7 to 12 in
Appendix A and B respectively. The agreement between the expected and the
computed values of the physical observables was, again, very good, and likely,
once again, to be due to the fact that the calculations were performed over 5000
configurations.

The value of < 22 > #it matched the value of < 2?2 >p, that was calculated
in Section 4.4, to within a very small margin of error, as can be seen in the
results of section 10.2, and the exponential fit to the correlation function’s long
distance behaviour (that was calculated in Section 6.3) was also very accurate,
as can be seen in Figures 9 to 14.

The correlation function fit, due to the presence of a % factor in it’s long
distance approximation, "blows up” as x — 0. This is why the long distance
approximation does not agree with the numerical values that were calculated
for the correlation function for small values.

The long distance behaviour of the correlation function, calculated in section

6.3, is theoretically predicted to begin being exhibited for distances longer than
the correlation length (ﬁ) This point is represented by the dashed lines in
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figures 9 to 14 and, as can be seen in the graphs, theory and simulation do
appear to match closely to the expected form after this point. The explicit
match produced in figures 9 to 14 was producing by fitting the simulation data
to 4 /ﬁ%, where a is the usual lattice spacing.

Figures 15 and 16 show probability distributions for the Scalar Field from cases
7 to 12. They were calculated in the same manner of ”bin counting” and were
once again found to be Gaussian.

7.3 Two Dimensional Sinh-Gordon Field

The results and the graphs for the Sinh-Gordon Field are presented in Cases 13
to 18 in Appendix A and B respectively. However, it cannot be assumed that the
wavefunction is normalised correctly, so a mass renormalisation my;;(8) and a
wavefunction normalisation Z(3), where the correlation function takes the form

—m(m e

A “T, was sought by the process of least square minimisation.

The process of least square minimisation simply involved finding the values
of my;; and Z that minimised:

> << #(0) ¢(z) > _ZQ(WEY

In each case the calculations were averaged over 2500 configurations, m = 3
was used and a = 1, which is why it does not explicitly appear in the above
equation. Plots of the simulation correlation function data, compared to the
expected form of the correlation function with the optimised value of my¢;; are

shown in figures 17 to 22.

xz

The fit to the numerical correlation function data was very good, as can be
seen in figures 17 to 22. Plotting my;; against 4% (figure 23) and calculating
a line of best fit, indicates a linear relation between the mass renormalisation
and the input parameter squared 2. From this was deduced the approximate
relation: my; = 0.915882 + 0.10066132.

Plotting < ¢(0)2 > against §2 (figure 24) also seemed to indicate a linear
relation which was deduced to be < ¢(0)? > = 0.376131 — 0.014782532

The wavefunction normalisation constant was found to approximately follow
the relation: Z = 0.487644 — 0.00694171/3% as can be seen in figure 25.

7.4 Two Dimensional Sin-Gordon Field

The results and the graphs for the Sin-Gordon Field are presented in Cases 19 to
24 in Appendix A and B respectively. Mass and wavefunction renormalisation
terms were calculated in the same manner as for the sinh-gordon field. In each
case the calculations were averaged over 2500 configurations, m = % was used
as was a = 1.
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Plots of the simulation correlation function data, compared to the expected
form of the correlation function with the optimised value of my; are shown in
figures 26 to 31.

The agreement between the fit and the simulation is again very good. Plot-
ting my;; against 32 (figure 32) shows an approximate linear relation between
the mass renormalisation and the input parameter squared $2. From this was
(tentatively) deduced the approximate relation: mz; = 0.919329 — 0.10016932.

Plotting < ¢(0)2 > against 32 (figure 33) also seemed to indicate a linear
relation which was deduced to be < ¢(0)?2 > = 0.37685 + 0.016415532.

The wavefunction normalisation constant was found to approximately follow
the relation: Z = 0.488345 + 0.008144773% as can be seen in figure 34.

7.5 Comparison of Sinh-Gordon and Sin-Gordon Results

The Sinh-Gordon field and Sin-Gordon field are related to each other by the
transformation 8 — if3, i.e. 82, — —B2,. It is pleasing then that we have:

< $(0)? >pinn = 0.376131 — 0.014782552, ,
= 0376131 + 0.0147825432,,
0.37685 + 0.01641550;

< ¢(0)2 >sin

and dropping the ”fit” subscript from the mass renormalisation parameter
in each case we have:

Mainn = 0915882 + 0.10066152,),
= 0.915882 — 0.10066132

sin

0.919329 — 0.1001693>

sin

Q

Msin

This would indicate that the two sets of simulations (Cases 13 to 18 and
Cases 19 to 24) although separate are infact complimentary. In other words:

Mginhk — Mgin and < ¢(0)2 >sinh — < ¢(0)2 >sin under ﬂ.?znh - _ﬂzm

The fit found to the relation between the wavefunction normalisation constant
Z, followed a similar relation:

Zsinn = 0.487644 — 0.00694171837,,,
0.487644 + 0.006941718%,,
0.488345 + 0.008144773>

sin
= Zsin

R
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8 Further Discussion and Conclusion

8.1 Comment on Results

I am very pleased with the results for the harmonic oscillator and the scalar
field. The results from the Monte Carlo simulations agree very well with the
predicted theoretical results and prove the worth of the method as a whole.
The results for the Sinh-Gordon and Sin-Gordon fields were less conclusive, but
appeared to indicate the relationships mentioned before. I am confident that if
the calculations were averaged over a larger ensemble of configurations (perhaps
5000 instead of 2500) then the results® would become even more convincing. It
was unfortunate that computer time was at a premium and this was not an
option.

Of course the Sin-Gordon and Sinh-Gordon fields represent the tip of the iceberg.
Whilst researching this project I have come across a huge variety of different
directions that this project could have been taken in, with a little more time.
Infact, there seems to be more than enough areas of study to write a whole PhD
thesis on! This section of the paper aims to briefly introduce the reader to some
of the relevant literature and comment on areas of interest that I would have
liked to investigate further.

8.2 Relations and symmetry between different models

One of the most striking things that I have noticed during my research, is the
vast amount of similarities and relations between different models and fields.
For example, it is well known [4] that there is a duality between the quantum
sine-Gordon (SG) and the massive Thirring (MT) models, where:

50 = 50,0 + gleos(8g) ~1

M = g0 —m)q— %g(d 7 q)?

which was first convincingly demonstrated by Coleman in 1974. However,
[21] studied the mass spectrum of the Sine-Gordon model on a cylinder in the
UV and IR regime and their results strongly confirm the conjecture of Klassen
and Melzer that the sine-Gordon and massive Thirring models are not equiva-
lent when defined on a finite cylinder.

In [9] they are interested in the Sinh-Gordon theory, where they choose to
define the action by:

2

S = /d% [;(6M¢)2—2T;cosh(g¢)

The authors reminds us that it is the simplest example of an affine Toda Field
Theory, possessing a Zs symmetry ¢ — —¢ and that by means of an analytic
continuation in g, i.e. g — ig, it can be formally mapped to the Sine-Gordon
model, as indicated by my own results.

8such as the match between m iy and B2
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The authors go on to state that there are numerous alternative viewpoints
for the Sinh-Gordon model. First, it can be regarded either as a perturbation
of the free massless conformal action by means of a relevant operator cosh(gg).
Alternatively, it can be considered as a perturbation of the conformal Liouville
action:

S

/ &’z [;(6u¢)2 - Aew}

by means of the relevant operator e9¢ or as a conformal A;-Toda Theory, in
which conformal symmetry is broken by setting the free field to zero. They con-
tinue, pointing out that the Sinh-Gordon model can be mapped into a Coulomb
Gas System with an integer set of charges.

By means of an identity involving Bessel functions, in [9] the Euclidean par-
tition function of this model is transformed into a form where it depends on
the partition function of the massless theory and the two dimensional massless
propagator.

[11] studies kink and kink lattice mechanics in the Double Sinh-Gordon
model. Via scrutiny of the equation of motion identifies an important con-
nection between the kink (and kink lattice) solutions of the ¢* model and the
double sine-Gordon (DSG) and DSHG models. Given a certain form of the ¢*
potential, the substitution u = tanh(¢$) or u = tan(¢) leads to a DSGH model
or a DSG model. This means that all known solutions (in that case) of the ¢*
equations of motion can be directly taken over to the DSHG and DSG equations
of motion (and vice versa).

Dualities in more complex theories also exist. For example the conjectured
duality between Gél) Affine Toda Field Theory and the Df’) theory is fully in-
vestigated using Monte Carlo techniques in [15].

A flow diagram in [22], by means of various limits and transformations, suggests
further relations. The elliptic sine-Gordon model is related to the sine-Gordon

model and the elliptic D;lll—afﬁna Toda theory, which is itself related to the

minimal D&Zl—af-ﬁna Toda theory and the free theory, whilst the sine-Gordon
model is related to the free theory and the minimal D,(llll—afﬁna Toda theory.

Clearly, there are many more relations and similarities between various the-
ories and models, both already found in the literature, and I am sure, waiting to
be found in the future. I am intrigued by these similarities, that remind me of
the similarity between lattice field theories and thermodynamical systems, and
would have liked to investigate this area further.
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8.3 Correlation Functions from Form Factors

Another topic that seemed to continuously rear it’s head during my research was
the application of the theory of Form factors to finding correlation functions.

[1,6,9,20] imply that: The two-point correlation function for a hermitian
operator O in real Euclidean space can be presented as an infinite series of form
factors contributions:

d"ﬂ L
< 0]0(0,0)0(z, )0 > = Z / Fo(dBy, -, dBn)|* [ e ™ cosn4s)
j=1

where r denotes the radial distance 7 = \/z% + z32 and 6 is the rapidity that
is related to the momentum via p; = m;sinh(8;). All integrals are convergent
and one expects a convergent series as well. Similar expressions can be derived
for multi-point correlators.

[1] goes on to use the Fredholm determinant representation for derivation of
the asymptotic behaviour of the sinh-Gordon correlation function, to find:

H. 2
< 0[/0(0,0)0(z,1)|0 > | Hol ? (2mmr)~Y/2e=™" (5.14) in [1]

|5

The author of [1] then remind us that for a correlation function of local fields
one should put Hy =0 = ﬁ so that the asymptotic formula above is well de-
fined for arbitrary s. Formula (1.13) in [1] gives us Hy = < 0|¢(0)|0 > = 0
and H; = < 0[¢(0)|8 > = % So combining these seemed to imply that the

™" which is the same form

correlation function would be of the form: 5 r 7

as I expected for the scalar field.

A fit of this kind to the Sinh-Gordon data was seeked by the process of least
square minimisation with some success in the course of this paper. However the
fit was poor to the Sin-Gordon data, and the fits didn’t indicate any relations
between the Sin-Gordon and Sinh-Gordon data, as was found in section 7. This
was a little perplexing, but I know little on the topic of Form Factors and with
further research and more time I would have liked to investigate whether some
agreement between theory and simulation could have been found.

8.4 S-Matrices

In [8], using the action previously stated, it is stated that the two particle sine-
Gordon S-matrix for the scattering of fundamental bosons (lowest breathers)
is:
() = sinh(#) + i sin(7v)
~ sinh(f) — isin(7v)

where @ is the rapidity difference defined by p;p» = m?cosh(f) and v is

related to the coupling constant by v = Sffﬂg.
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In [9] the Sinh-Gordon model with the following action is considered:
2

S = /d% [;(6M¢)2—2T;2cosh(g¢)

The two particle S-matrix for the Sinh-Gordon theory is then stated to be
given by:

tanh(2 — ZB
s6.p) = 2o
tanh(§ + ZT)
where B is the following function of the coupling constant g: B(g) = sji; .

S-Matrices are a rich topic to be researched in their own right [14,15], and I
would have liked to explore the topic more thoroughly as I had barely begun to
scratch the surface with my own reading.

8.5 Wave function Renormalization

In [4] the finite sine-Gordon wave function renormalization constant is deter-
mined exactly. The paper utilises the same action as in this paper:

156 = %(am)"‘ + %[cos(ﬂ@—l]

The purpose of having cos(8¢) — 1 in the potential as opposed to simply
cos(B¢) is so that the potential is equal to zero” when ¢ = 0.

In [4] Weisz determines exactly the Sine-Gordon wavefunction renomalization
constant, defined on A > 1 by < 0]¢(0)|by > = /Z()), where A = g—’; —1,0r

< ¢(x)p(y) > = Z(ANA,(z —y,m}) + contributions from larger masses

After some calculation he concludes that:

Z(\) = (1 + %) (% sin [27;])1 exp [_; /07T/A dmsirf:(x)]

and for A — oo, which corresponds to 8 — 0, the SG theory becomes free and :

Z (;7; - 1) =1- (5;)2 (; - 2147r2> +0(8°)

For arbitrary A with 1 < A < oc, i.e. 0 < 82 < 4w, wehave 0 < Z(\) < 1
which is a general consequence of positivity. The Z in my simulation were in-
deed found to obey the property 0 < Z < 1, but were in poor agreement with

"This is analogous to having 1 — cosh(8¢) in the potential for the Sinh-Gordon model as
opposed to cosh(8¢).
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this formula. T would think that this is because, in my simulation, the smallest
B usedis B = i which corresponds to A = 400, and the relation above holds
for A — 00, so perhaps I should have investigated smaller values of 5. Better

agreement between theory and prediction was expected.

From [4] a simple transformation » = 1/\ gives the result from [8]:

<0|¢(0)p> = VZ with Z = (1+,,)"£V] exp [‘%/OW ; dt}

sin[Sv sin(t)

which is the normalization of a fundamental bose field annihiliating a one-
particle state, where Z = 1 + O(3*) is the wave function renormalization con-

stant calculated in [4]. This gives the normalisation constant Nl(l) = @ for the
form factors of the fundamental bose field.

In [2] another expression (formula 4.38) for the wavefunction renormalization
constant Z is given:

2y~ TBR=B) [_1 /

8sin[ZE] T

nB
2

z
d
Zsin(z)}
where B = —2 8

3 (and once again A = == 1) makes it conincide exactly with
the result from [4].

The values of Z that were found during my simulation did not agree with
these formulae from the literature. I believe the non-agreement is due to the
fact that all my simulations had a lattice spacing a = 1. In the limit a — 0
the results from simulation should approach the theoretical predictions of these
formulae. This is something I would have liked to investigate further.

8.6 Mass Renormalization

This is another topic that consistently appeared in the literature during my
research, but that I didn’t have time to pursue as fully as I would have liked.
In [8,18] it has been found that the quantum sine-Gordon field equations hold
with an exact relation between the ”bare” mass and the renormalized mass.

156 — %(am)u%[cosw@ —1]

is the action being considered, and if v is related to the coupling constant by
2
v = snﬁfﬁg, then the “bare” mass y/a is related to the renormalized mass by

a=m? sinﬂ(-;jru) where m is the physical mass of the fundamental boson. The fac-
tor % has to be considered as a quantum correction to the classical equation.

Note, in particular at the ”free fermion point” v — 1 or 32 — 4, this factor di-
verges, a phenomenon which is to be expected by short distance investigations.
For fixed bare mass square a and v — 2, 3,4, - - - the physical mass goes to zero.
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The authors go on to state that in lowest order the relation between the bare
and the renormalized mass « is given by:

m? = [1—(13(%)2 + 08

Other papers [7,19] use the slightly different euclidean action for the sine-
Gordon model:

s = / iz [ﬁ(a,,as)?—zucosw)]

This is invariant w.r.t. the field translations ¢(z) — ¢(x) =+ %7’ where ¢ is
a real Bose field. The spectrum of this model includes the soliton, anti-soliton
and some number (depending on the coupling constant g) of their bound states
names breathers.

[19] goes on to give an exact relation between the soliton mass M and the
parameter p in the action:

oy [uve (39777
= A0 | e (3)

where £ = 57

I briefly attempted to find correlation between the masses found in my Sine-
Gordon simulations and those predicted by these theories, again with little
success. The study of breathers (or kinks), solitons and instantons in the Sine-
Gordon model is widespread, for example in [10] breather form factors are cal-
culated starting with the general formula for the soliton form factors.

8.7 Conclusion

I hope this paper has served to show the validity of the Monte Carlo approach to
investigation of quantum field theories. With the limited processing power of my
home computer, only the simplest of scenarios could be considered. Where the
method comes into it’s own is in the investigation of a field known as Quantum
Chromodynamics. Here a hypercubic space-time lattice is used, where quarks
are defined at lattice sites and gluons are defined by eight dimensional integrals
on the links between lattice sites. More sophisticated updating algorithms are
used, and the fine tuning of the simulation to deal with systematic discretization
errors is a mammoth task. Clearly, that is beyond the scope of this paper.
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9 Appendix A - Graphs

9.1 One Dimensional Harmonic Oscillator
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T

Figure 5: Leading Behaviour of < ¢(0)¢(T) > for am = 0.25
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Figure 6: Leading Behaviour of < ¢(0)¢(T) > for a =1
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Figure 7: Probability Distribution of Lattice Site values.
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Figure 8: Plot of the whole Correlation Function < ¢(0)@(T) > for am = 0.25

The graph above is shown as an example of how one can find a fit to the
entire correlation function across the whole lattice, in this case 64 sites. The
rest of the graphs in this Appendix will be of the form of Figure 1 and Figure
2 showing only the leading behaviour as this is what we are interested in.
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9.2 Two Dimensional Free Scalar Field
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Figure 9: Long Distance Behaviour of < ¢(0)¢(T") > for Case 7.
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Figure 10: Long Distance Behaviour of < ¢(0)¢(T") > for Case 8.
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Figure 11: Long Distance Behaviour of < ¢(0)¢(T) > for Case 9.
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Figure 12: Long Distance Behaviour of < ¢(0)¢(T") > for Case 10.
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Figure 13: Long Distance Behaviour of < ¢(0)¢(T) > for Case 11.
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Figure 14: Long Distance Behaviour of < ¢(0)¢(T") > for Case 12.
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Figure 16: Probability Distribution for a = 1.
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9.3 Two Dimensional Sinh-Gordon Field
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Figure 17: Long Distance Behaviour of < ¢(0)¢(T") > for Case 13.
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Figure 18: Long Distance Behaviour of < ¢(0)¢(T") > for Case 14.
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Figure 19: Long Distance Behaviour of < ¢(0)¢(T) > for Case 15.
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Figure 20: Long Distance Behaviour of < ¢(0)¢(T") > for Case 16.
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Figure 21: Long Distance Behaviour of < ¢(0)¢(T) > for Case 17.
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Figure 22: Long Distance Behaviour of < ¢(0)¢(T") > for Case 18.
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Figure 23: A plot of my;; against 2.
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Figure 24: A plot of < ¢(0)> > against 42
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Figure 25: A plot of Z against 32.
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9.4 Two Dimensional Sin-Gordon Field
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Figure 26: Long Distance Behaviour of < ¢(0)¢(T") > for Case 19.
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Figure 27: Long Distance Behaviour of < ¢(0)¢(T") > for Case 20.
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Figure 28: Long Distance Behaviour of < ¢(0)¢(T) > for Case 21.
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Figure 29: Long Distance Behaviour of < ¢(0)¢(T") > for Case 22.
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Figure 30: Long Distance Behaviour of < ¢(0)¢(T) > for Case 23.
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Figure 31: Long Distance Behaviour of < ¢(0)¢(T") > for Case 24.
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Figure 32: A plot of my;; against 2.
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Figure 33: A plot of < ¢(0)> > against 4.
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10

Appendix B - Tables

Throughout this section the following conventions hold:

a is the lattice spacing as it appears in the discrete lattice action.
m is the mass parameter as it appears in the discrete lattice action.

B is an extra parameter that appears in the actions for the Sinh-Gordon
and Sin-Gordon fields only.

M is the length of the lattice, corresponding to the number of discrete
time steps.

o is the standard deviation of the normal distribution which the random
numbers are chosen from.

€ is the number of lattice sweeps ignored between calculations.

< 22 >p is the discrete expectation value of z2 as calculated in sections
3.5 and 4.4.

For the simple harmonic oscillator, my;; is the m from the ﬁe‘mw fit to
the simulation correlation function calculated during the simulation.

i PR
For the free scalar field, my; is the m from the meﬁ fit to the long
distance behaviour of the simulation correlation function calculated during
the simulation.

For the Sin-Gordon and Sinh-Gordon fields, m;; and Z are as they appear
mm piq)e

in the Z2& fit to the long distance behaviour of the simulation
correlation function calculated during the simulation by the process of
least square minimisation.

< z? > it is the average value of x2, averaged across all lattice sites and
all lattices in a particular case. In relation to the correlation function, it
is given by < ¢(0)* >.
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10.1 One Dimensional Harmonic Oscillator
Simulation Parameters

Case H a \ m \ M \ o \ Acceptance Rate \ €
1 1.00 | 0.25 | 64 1.40 49.6796% 200
2 0.50 | 0.50 | 64 1.00 49.5541% 200
3 0.25 | 1.00 | 64 0.70 49.8902% 200
4 0.50 | 1.00 | 64 0.95 49.7535% 100
5 1.00 | 0.50 | 64 1.30 50.7090% 100
6 1.00 | 1.00 | 64 1.15 50.2543% 50

Simulation Results

Case H a \ m \ am \ Myt \ <z’ >p \ <z >4
1 1.00 | 0.25 | 0.25 | 0.250938 1.984561 1.978293
2 0.50 | 0.50 | 0.25 | 0.249665 0.992278 0.993108
3 0.25 | 1.00 | 0.25 | 0.250095 0.496139 0.499263
4 0.50 | 1.00 | 0.50 | 0.499702 0.485701 0.484769
5 1.00 | 0.50 | 0.50 | 0.509858 0.970143 0.969370
6 1.00 | 1.00 | 1.00 | 0.984252 0.447214 0.445382

10.2 Two Dimensional Scalar Free Field
Simulation Parameters

Case H a \ m \ M \ o \ Acceptance Rate \ €
7 1.00 | 1.00 | 32 0.90 49.8075% 50
8 0.25 | 2.00 | 32 0.49 49.6744% 100
9 0.50 | 1.00 | 32 0.68 50.2764% 100
10 1.00 | 0.50 | 32 0.95 50.6501% 100
11 2.00 | 0.25 | 32 1.35 50.5265% 100
12 1.00 | 0.25 | 32 1.00 49.7313% 200

Simulation Results

Case | a [ m [ am | mypy | <22>p | <2® >jit
7 1.00 | 1.00 | 1.00 | 0.999702 0.254050 0.254101
8 0.25 | 2.00 | 0.50 | 0.502317 0.0942138 0.0943046
9 0.50 | 1.00 | 0.50 | 0.510632 0.188428 0.188510
10 1.00 | 0.50 | 0.50 | 0.498932 0.376855 0.377874
11 2.00 | 0.25 | 0.50 | 0.506295 0.753711 0.753927
12 1.00 | 0.25 | 0.25 | 0.256921 0.493300 0.492872

49




10.3 Sinh-Gordon Field and Sin-Gordon Field

Sinh-Gordon Simulation Parameters

Case H B \ a \ M \ o \ Acceptance Rate \ €
13 1/4 [1.00] 32 0.95 50.6749% 100
14 | 1/+/5]1.00 | 32 0.95 50.6618% 100
15 || 1/v/3]1.00]| 32 0.95 50.5953% 100
16 2/3 [ 1.00 | 32 0.95 50.6191% 100
17 || V3/2 ] 1.00 | 32 0.95 50.5842% 100
18 1 [1.00] 32 0.95 50.8143% 100

Sinh-Gordon Simulation Results

Case H B \ m \ B2 \ 7 \ m it \ <z? >
13 1/4 0.50 | 1/16 | 0.488102 0.929103 0.375146
14 | 1/v/5 | 050 | 1/5 | 0.436893 0.938673 0.373273
15 1/\/3 0.50 | 1/3 | 0.483481 0.949182 0.369512
16 2/3 0.50 | 4/9 | 0.484669 0.945426 0.368844
17 \/5/2 0.50 3/4 0.481734 0.991326 0.364855
18 1 0.50 1 0.481613 1.022455 0.361443

Sin-Gordon Simulation Parameters

Case | B [ a [ M | o | Acceptance Rate | €
19 1/4 | 1.00 32 0.95 50.6749% 100
20 l/\/g 1.00 32 0.95 50.6618% 100
21 2/3 1.00 32 0.95 50.5953% 100
22 1/\/5 1.00 32 0.95 50.6191% 100
23 \/3/2 1.00 32 0.95 50.5842% 100
24 1 1.00 32 0.95 50.8143% 100

Sin-Gordon Simulation Results

Case H B \ m \ 52 \ 7 \ Mt \ <z >y
19 1/4 0.50 | 1/16 | 0.488502 0.903478 0.377710
20 1/\/3 0.50 | 1/5 | 0.491839 0.893782 0.380548
21 2/3 0.50 | 4/9 | 0.491773 0.898104 0.382430
22 || 1/v2 | 050 | 1/2 | 0.490612 0.865773 0.383731
23 \/?:/2 0.50 | 3/4 | 0.495527 0.852991 0.389088
24 1 0.50 1 0.496349 0.805654 0.393396
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