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Models of sequence evolution Genetic distance

Genetic distance

Genetic distance is a measure of how different two sequences are to each
other.

In the simplest form, genetic distance can be measured by counting changes
between sequences, and dividing by the number of sites (pairwise distance)

ATTACGAC
TCTACGAC

p-distance = 2/8 = 0.25

(also known as observed or uncorrected distance)
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Models of sequence evolution Genetic distance

Multiple substitutions problem
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Models of sequence evolution Genetic distance

Multiple substitutions

over a long time, many substitutions
will occur and the nucleotide at any
particular position will be essentially
random

25% of nucleotide sites are expected
to be identical by chance
A C G T A A A C C C G G G T T T
A C G T C G T A G T A C T A C G

Therefore, if we take two unrelated
sequences, they should have an
observed genetic distance of 0.75
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Models of sequence evolution Genetic distance

Multiple substitutions

When divergence is low,
the observed proportion of
differences (p) is a good
estimator of genetic
distance (d)

When divergence is high, p
underestimates d and a
correction statistic is
required 0
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Models of sequence evolution Genetic distance

Multiple substitutions – Summary

The observed proportion of differences p is the fraction of
sites that differ between two sequences

However, due to multiple substitutions at the same site over
time (e.g., A → G → T), p underestimates the actual number
of substitutions that have occurred

Problem: How can we estimate the true evolutionary distance
d which accounts for hidden substitutions?

Tomas Flouri (University College London) March 3, 2025 6 / 60



Models of sequence evolution Substitution models

Substitution models
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Models of sequence evolution Substitution models

Nucleotide substitution models

Modelled as a time-reversible
Markov process

T C

A G

a

f

b edc

a,b,c,d,e,f = relative rate parameters
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Models of sequence evolution Substitution models

Jukes-Cantor model
Simplest nucleotide substitution model (JC69)
Corrects for multiple hits
Q is called the generator matrix or instantaneous rate
matrix of the Markov process

Q = {qij} =

−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ







A

C

G

T

A C G T
T C

A G

Rate of change λ is the same among all nucleotides
Total substitution rate for any nucleotide is 3λ

Distance d = 3λt, where t is the time that separates two
sequences (time and rate confounded).
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Models of sequence evolution Substitution models

Transition probability (JC69)
The transition probability matrix P(t) gives the probability of
changing from one state to another over time t:

P(t) = eQt

P (t) = {pij(t)} =
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where pij(t) is the probability a site will be in state j time t later,
given it is in state i at time 0.
Note: The matrix consists of two unique terms:

pii(t) = 1
4 + 3

4 e−4λt (diagonal elements)
pij(t) = 1

4 − 1
4 e−4λt (off-diagonal elements)
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Models of sequence evolution Substitution models

Corrected distance

We can calculate the JC69 corrected distance between two sequences:
pij(t) = 1

4 − 1
4 e−4λt : probability of change from i to j after time t

d = 3λt: expected number of substitutions per site (distance)
p: observed proportion of different sites between two sequences

We assume the p-distance approximates the probability of change:
1 p ≈ 3pij(t)
2 p = 3

4 (1 − e−4λt)

3 p = 3
4 (1 − e− 4d

3 )

4 e− 4d
3 = 1 − 4

3 p
5 − 4

3 d = log(1 − 4
3 p)

6 d̂ = − 3
4 log(1 − 4

3 p) (corrected distance)
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Models of sequence evolution Substitution models

Distance between two sequences
Suppose two sequences consist of n sites and differ at i sites. The proportion of
different sites is p = i/n.
Distance based on observed data (uncorrected).

d̂ = p

Corrected distance (Jukes-Cantor model).

d̂ = −3
4 log(1 − 4

3p)

Example:

Observed p 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Actual d 0.11 0.23 0.38 0.57 0.82 1.21 2.03

p must be strictly less than 0.75, as we expect 25% of sites to be identical by
chance.
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Models of sequence evolution Substitution models

Jukes Cantor (JC69)

All bases evolve independently

All bases are at equal frequency (1
4 each)

Each base can change with equal probability

· λ λ λ

λ · λ λ

λ λ · λ

λ λ λ ·







T

C

A

G

T C A G
T C

A G

Free parameters: 0
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Models of sequence evolution Substitution models

Kimura’s (1980) two-parameter model (K80)

All bases evolve independently
All bases are at equal frequency (1

4 each)
Transitions and transversions evolve at different rates

· α β β

α · β β

β β · α

β β α ·







T

C

A

G

T C A G
T C

A G

Another definition is κ = α/β. This is 1 for no rate difference.
Free parameters: 1
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Models of sequence evolution Substitution models

Felsenstein 1981 (F81)

All bases evolve independently

Bases are at unequal frequency

Each base can change with equal probability

· λπC λπA λπG

λπT · λπA λπG

λπT λπC · λπG

λπT λπC λπA ·







T

C

A

G

T C A G
T C

A G

Free parameters: 3
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Models of sequence evolution Substitution models

Hasegawa, Kishino & Yano (HKY85)

All bases evolve independently

Bases are at unequal frequency

Transitions and transversions evolve at different rates

· απC βπA βπG

απT · βπA βπG

βπT βπC · απG

βπT βπC απA ·







T

C

A

G

T C A G
T C

A G

Free parameters: 4
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Models of sequence evolution Substitution models

Tamura & Nei (TN93)

All bases evolve independently

Bases are at unequal frequency

Transitions and transversions evolve at two different rates

· α1πC βπG βπT

α1πT · βπG βπT

βπT βπC · α2πT

βπT βπC α2πG ·







T
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A

G

T C A G
T C

A G

Free parameters: 5
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Models of sequence evolution Substitution models

General Time Reversible model (GTR)

All bases evolve independently

Bases are at unequal frequency

All changes occur at different (reversible) rates

· aπC bπA cπG

aπT · dπA eπG

bπT dπC · fπG

cπT eπC fπA ·







T

C

A

G

T C A G
T C

A G

Free parameters: 8
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Models of sequence evolution Site rate variation

Likelihood on tree: partitioned analysis

t1

t2

t3

t4

t5

t6

Gene A Gene B Gene C Gene D Gene E

GTR+ Γ4

P1(r1t) = eQr1t

P2(r2t) = eQr2t

P3(r3t) = eQr3t

P4(r4t) = eQr4t

· aπC bπA cπG

aπT · dπA eπG

bπT dπC · fπG

cπT eπC fπA ·
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P4(r4t) = eQr4t
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Models of sequence evolution Site rate variation

The rate of substitution often varies among sites

In all models we assumed rate homogeneity over site (all sites evolve at the same rate)

Rate may be heterogeneous due to different evolutionary pressures across sites or loci
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Models of sequence evolution Site rate variation

Distances between primate mitochondrial genes

(a) Codon position 1 (JC69)
Human1
Human2 0.0053
Chimp1 0.0552 0.0543
Chimp2 0.0543 0.0534 0.0014
Gorilla1 0.0689 0.0692 0.0680 0.0671
Gorilla2 0.0689 0.0698 0.0683 0.0674 0.0025

(b) Codon position 2 (JC69)
Human1
Human2 0.0011
Chimp1 0.0190 0.0184
Chimp2 0.0182 0.0176 0.0014
Gorilla1 0.0274 0.0268 0.0251 0.0236
Gorilla2 0.0254 0.0248 0.0230 0.0216 0.0025

(c) Codon position 3 (JC69)
Human1
Human2 0.0099
Chimp1 0.2711 0.2695
Chimp2 0.2711 0.2695 0.0017
Gorilla1 0.3362 0.3366 0.3193 0.3184
Gorilla2 0.3353 0.3358 0.3206 0.3197 0.0048
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Models of sequence evolution Site rate variation

Among-site rate heterogeneity – Gamma model

Problem: Some sites evolve slowly, other evolve quickly
(codon positions/variable vs. conserved regions)

Solution: Among-site rate heterogeneity models allow the
substitution rate µ to evolve at different rates along the
sequence

One such model is the gamma model, which assumes that µ
is distributed according to a one-parameter gamma
distribution. The substitution probability is then integrated
(averaged) over this distribution.
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Models of sequence evolution Site rate variation

The gamma model of relative rates for sites
0.
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α =  0.5

α =  0.1

Gamma distribution
Γ(α, β)

PDF f (x) = βα

Γ(α) xα−1e−βx

Mean α
β

Variance α
β2

All distributions have a mean of 1 (we
set β = α)
The shape parameter α determines how
variable the rates are
Small α means more variable rates
α = ∞ means one rate for all sites

In practice..

Alpha is usually estimated from the data using
maximum likelihood
Integrating the likelihood function using a continuous
gamma distribution is too expensive
Yang (1994) proposed to approximate the continuous
gamma using 4 discrete categories of rates, each one
with equal probability
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Models of sequence evolution Site rate variation

Models of protein evolution

DNA sequences have 4 states: A,C,G, and T.

DNA models are formulated by 4 × 4 matrices
⇒ easy to estimate params (even GTR)

Protein sequences have 20 states:
A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y.

Protein models are formulated by 20 × 20
matrices
However, parameter estimation is more
complex

⇒ empirical models are often used
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Models of sequence evolution Site rate variation

Amino acid substitution matrices

JTT derived from a range of globular proteins

mtREV from mammalian mitochondrial genes

No parameters in the models, empirically derived.
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Models of sequence evolution Site rate variation

Amino acid substitution matrices

There are many different amino acid substitution matrices:
DAYHOFF,LG,DCMUT,JTT,MTREV,WAG,RTREV,CPREV,VT,BLOSUM,
MTMAM,MTART,MTZOA,PMB,HIVB,HIVW,JTTDCMUT,FLU,STMTREV

Most are determined from empirical data, such as
physiochemical properties of the amino acids

Therefore some matrices are more appropriate for different
types of data

For example, BLOSUM, derived from pairwise comparisons of
conserved amino acids, WAG from ML estimation from
globular proteins
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Maximum Likelihood Estimation

Likelihood

Maximum likelihood – a general methodology for estimating unknown
parameters in the model

Introduced by R.A. Fisher

Closely related to the more common concept
of probability

With probability we typically refer to the
probability of observing the outcome of an
event

Likelihood tries to address the probability of
the nature of an event given some observations
of the outcome
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Maximum Likelihood Estimation Overview of probability and likelihood

Probability basics

Probabilities of different outcomes for a certain event must always add
up to 1

If there is a 20% chance of rain today, there must be an 80% chance of
no rain.

If two events are independent (that is, they in no way influence each
other), then the probability of a particular pair of outcomes will be the
product of the two individual outcomes

If we toss a coin twice, the probability of getting 2 heads is 0.5×0.5 = 0.25

The probability of either one outcome or another is the sum of
probabilities of the two individual outcomes

Six-sided die: probability of a 1 or a 2 is 1/6 + 1/6 = 1/3
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Maximum Likelihood Estimation Overview of probability and likelihood

Models and parameters
When talking about probability, we implicitely assume some kind of model
(even for simple cases of the probability of observing events such as the outcome of a
coin toss)
The model states that there is some certain, fixed probability for each outcome.

Example: Coin toss
The model has one parameter, p the probability of the coin landing on heads.

If the coin is fair, then p = 0.5

We can speak about the probability of observing an outcome, given specific
parameter values for the model

In this simple case, if p = 0.5, then the probability of the coin landing heads on any
one toss is also 0.5.

Notation:
Pr(X = heads | p = 0.5) = 0.5 Pr(X = tails | p = 0.5) = 0.5
Pr(X = heads | p) = p Pr(X = tails | p) = 1 − p
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Example: Coin toss
The model has one parameter, p the probability of the coin landing on heads.

If the coin is fair, then p = 0.5

We can speak about the probability of observing an outcome, given specific
parameter values for the model

In this simple case, if p = 0.5, then the probability of the coin landing heads on any
one toss is also 0.5.

Notation:
Pr(X = heads | p = 0.5) = 0.5 Pr(X = tails | p = 0.5) = 0.5
Pr(X = heads | p) = p Pr(X = tails | p) = 1 − p
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Likelihood

The probability of an event X dependent on model parameters p is written

Pr(X | p)

Now we can talk about the likelihood function

L(p | X)

which gives the likelihood of the parameters given the observed data.

The likelihood of p is maximized by the value (of p) that gives the maximum
Pr(X | p) — highest probability of observing the data.
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Maximum Likelihood Estimation Overview of probability and likelihood

Likelihood vs Probability

For making predictions based on a set of solid assumptions we use
probabilities

→ the probability of certain outcomes occurring or not occurring.
→ e.g., predicting outcomes of coin tossing

For data analysis, we already observed all data: once they have been
observed, they are fixed.

We are now interested in the likelihood of the model parameters that
underlie the fixed data

Difference:

probability:
▷ we know the parameters → prediction of outcome

likelihood:
▷ observation of data → estimation of parameters
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Maximum Likelihood Estimation Overview of probability and likelihood

Maximum likelihood estimation – Example

Goal: Find the parameter values that make the observed data most likely.

Coin toss example:

Rather than assume p is a certain value, we wish to find the max likelihood estimate
(MLE) of p̂, given the observed data (coin tosses).

We toss a coin 100 times and observe 56 heads and 44 tails.
Coin tosses follow a binomial distribution:

P(h, n|p) =
(

n
h

)
ph(1 − p)n−h

n: number of coin tosses
h: number of heads observed
p: probability of obtaining a head on any one toss

Possible combinations
n = 4, h = 2
H - H - T - T
H - T - H - T
H - T - T - H
T - H - H - T
T - H - T - H
T - T - H - H

L(p = 0.5 | h = 56, n = 100) = P(h = 56, n = 100 | p = 0.5) = 0.0389
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Maximum Likelihood Estimation Overview of probability and likelihood

Maximum likelihood estimation
Tabulate or plot the likelihood L for different values of p

p L

0.48 0.0222
0.5 0.0389
0.52 0.0581
0.54 0.0739
0.56 0.0801
0.58 0.0738
0.6 0.0576
0.62 0.0378

The max likelihood estimate (MLE) of p̂ is 0.56 with a likelihood of 0.0801

The MLE for a binomial distribution is the observed proportion of heads
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Maximum Likelihood Estimation ML estimationg of phylogenies

Maximum likelihood for estimating phylogenies
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Maximum Likelihood Estimation ML estimationg of phylogenies

Likelihood calculation on tree

1 2 3 4 5 . . . i . . . n

C T C A T . . . G . . . G T A A T

C T A G T . . . G . . . C T A G T

C T A G T . . . C . . . G T A G T

C C A A C . . . G . . . C C A A T
p1 p2 . . . pi . . . pn

Site

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Probability

L = p1 × p2 × . . . × pi × . . . × pn =
n∏

i=1
pi

1 (G)

2 (G)

3 (C)

4 (G)

j k

t1

t2

t0 t3

t4

t1 t2

t4

t0

k

j

1 (G) 2 (G) 3 (C) 4 (G)

t3
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Maximum Likelihood Estimation ML estimationg of phylogenies

The probability of each site is a sum over all possible
ancestral states

T

T

G G C G

pi = Pr
C

T

G G C G

+Pr A

T

G G C G

+Pr G

G

G G C G

+ . . .+ Pr

4× 4 terms

k

j

G G C G

Pr = πj pj,G(t1) pj,G(t2) pj,k(t0) pk,C(t3) pk,G(t4)

t1 t2

t4

t0

k

j

1 (G) 2 (G) 3 (C) 4 (G)

t3
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Maximum Likelihood Estimation ML estimationg of phylogenies

JC69 model of substitution

Q = {qij} =

−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ







A

C

G

T

A C G T
T C

A G

P (t) = eQt = {pij(t)} =

1
4
+ 3

4
e−4λt 1

4
− 1

4
e−4λt 1

4
− 1

4
e−4λt 1

4
− 1

4
e−4λt

1
4
− 1

4
e−4λt 1

4
+ 3

4
e−4λt 1

4
− 1

4
e−4λt 1

4
− 1

4
e−4λt

1
4
− 1

4
e−4λt 1

4
− 1

4
e−4λt 1

4
+ 3

4
e−4λt 1

4
− 1

4
e−4λt

1
4
− 1

4
e−4λt 1

4
− 1

4
e−4λt 1

4
− 1

4
e−4λt 1

4
+ 3

4
e−4λt







A

C

G

T

A C G T

pT,T (t) = pC,C (t) = pA,A(t) = pG,G(t) = 1
4 + 3

4e−4λt

pT,C (t) = pT,A(t) = . . . = pG,A(t) = 1
4 − 1

4e−4λt
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Maximum Likelihood Estimation ML estimationg of phylogenies

Summary: likelihood calculation on tree

The log likelihood of a tree is the sum of log probabilities over all sites.
We assume sites evolve independently.
The probability at each site pi is a sum over all ancestral reconstructions.
For each ancestral reconstruction, the probability is a product of transition probabilities
over branches.

L(t0, t1, t2, t3, t4|X) =
n∑

i=1

log(pi)

1 (G)

2 (G)

3 (C)

3 (T)

t1

t2

t0 t3

t4

L is a function of branch lengths t0, t1, t2, t3, t4 (and any substitution parameters)

We estimate them by maximizing L (via optimization).

The optimum L corresponding to the MLEs of parameters is the score for the tree.

We repeat this process for all possible trees. The maximum likelihood tree is the
one with the highest score.
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Maximum Likelihood Estimation ML estimationg of phylogenies

Ape trees for mtDNA under K80

gorilla

orangutan

human

chimpanzee

orangutan

humanchimpanzee

gorilla orangutan

human

chimpanzee

gorilla

κ = 11.4
L = −2270.5

κ = 11.1
L = −2280.6

κ = 10.7
L = −2278.6

Brown WM, Prager EM, Wang A, Wilson AC. Mitochondrial DNA sequences of primates: Tempo and mode of evolution. J. Mol. Evol 18:225-239, 1982.
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Maximum Likelihood Estimation Model selection

Likelihood ratio test

Likelihood ratio test (LRT) compares a simpler (null) hypothesis H0 against a
more general (alternative) hypothesis H1.

LR = L1

L0

If the ratio LR > 1 then hypothesis H1 has a higher likelihood.

For nested models twice the log-likelihood difference,

2∆ = ln(LR2) = 2 ln LR = 2(ln L1 − ln L0)

is compared with the χ2 distribution.

Degrees of freedom (df) is set to the difference in number of parameters
between the two models.

We can perform a statistical test to detemine which hypothesis best describes the
data.
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Maximum Likelihood Estimation Model selection

Likelihood ratio test – Example

Example: LRT of JC69 against K80
H0: JC69 (κ = 1) ln L0 = −1710.58
H1: K80 (κ =?) ln L1 = −1637.90

2∆L = 2[−1637.90 − (−1710.58)] = 145.36

K80 has one more parameter than JC69, d.f. = 1. Compare with χ2 distribution
with 1 d.f.

df χ2 value
1 0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71 3.84 6.63 10.83
2 0.1 0.21 0.45 0.71 1.39 2.41 3.22 4.61 5.99 9.21 13.82
3 0.35 0.58 1.01 1.42 2.37 3.66 4.64 6.25 7.81 11.34 16.27
4 0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 13.28 18.47

p-value 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001

Critical values are 3.84 at 5% and 6.63 at 1% and 10.83 at 0.1%. K80 fits
the data significantly better

Data: human and orangutan mt 12s rRNA genes (D38112 and NC 001646), 943 sites.
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Maximum Likelihood Estimation Model selection

Likelihood ratio test - models must be nested

If the simpler model is not a special case of the more complex model, we cannot
use this test statistic

i.e., must be able to set the parameters of the complex model to specific
values to obtain the simpler model.

Examples:

Rate heterogeneity can be set to 0
⇒ HKY is a special case of HKY+G

Substitution rates can be set equal to each other
⇒ JC69, F81, K80 are all special cases of HKY

Tomas Flouri (University College London) March 3, 2025 42 / 60



Maximum Likelihood Estimation Model selection

Likelihood ratio test

The LRT is designed to compare two nested models

Tell us whether the more complex model provides a significantly better fit to
the data than the simpler model, given the extra parameters.

It cannot tell us the best model overall, i.e., it does not provide an absolute
measure of model quality.
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Model selection

How can we compare non-nested models?

The Kullback-Leibler (K-L) divergence (or relative entropy) is a measure of the
divergence between two probability distributions:

DKL(P||Q) =
∑
x∈X

P(x) log
(

P(x)
Q(x)

)
DKL(P||Q) =

∫
P(x) log

(
P(x)
Q(x)

)
dx

Suppose our data is generated by some unknown process P.
We consider two candidate models Q1 and Q2.
If we knew P, we would calculate DKL(P||Q1) and DKL(P||Q2) and pick the
candidate that minimizes divergence.

Unfortunately, we do not know P
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Maximum Likelihood Estimation Model selection

Akaike Information Criterion

Akaike derived an approximation of KL using the MLE of the model parameters.

AIC estimates the expected, relative Kullback-Leibler divergence (information loss)
between the true model P and candidate Q.

If L is the maximum likelihood value for some model Q with K (free) parameters, then:

AIC = −2 ln(L) + 2K

In other words, we can estimate how much more (or less) information is lost by Q1
compared to Q2. The preferred model is the one with the minimum AIC value.

Example: JC69 against K80

H0: JC69 (κ = 1) ln L0 = −1710.58
H1: K80 (κ =?) ln L1 = −1637.90

H0: AIC = 2 × 1710.58 = 3421.16
H1: AIC = 2 × 1637.90 + 2 = 3277.80 Preferred model
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Maximum Likelihood Estimation Model selection

Bayesian Information Criterion

Bayesian Information Criterion (BIC)

BIC = −2 ln(L) + K ln(n)

Akaike Information Criterion (AIC)

AIC = −2 ln(L) + 2K

Bayesian Information Criterion (BIC) is similar to AIC, but penalizes models with
more parameters more heavily in particular for large sample sizes.

The penalty term for AIC is 2K , while for BIC it is K ln(n) where n is the sample
size (sites) and K the number of parameters in the model.
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Statistics for phylogenies

Measures of phylogenetic support

Bootstrap (non-parametric)
Parametric bootstrap
Bayesian posterior probabilities
Jackknifing
others....

Note: different tree topologies are not nested, and therefore χ2 approximating to
the likelihood ratio is not valid.

Tomas Flouri (University College London) March 3, 2025 47 / 60



Bootstrap

Bootstrap

What is the bootstrap?
A measure of confidence of our phylogenetic tree

Originally introduced for phylogenetics in 1985 by Felsenstein.

Can be applied to any method that starts from a sequence alignment, e.g.,
parsimony, likelihood, distance methods

For each boostrap sample:
Create a new pseudo-replicate alignment by sampling the columns of the
original alignment
Construct a tree for the pseudo-replicate alignment
Count the frequency of the nodes of the original tree in the bootstrap trees

1
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Bootstrap

Bootstrap

Task: Create a new alignment of equal size to the original by sampling sites from the original
alignment with replacement.
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Bootstrap pipeline
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Bootstrap

Bootstrap pipeline

Bootstrap replicates help us assess whether all sites support the same
topology or if there is conflicting signal

Bootstrap values vary from 0 to 100 (higher values stronger support)

Bootstrap values help us evaluate potential stochastic errors but can be
misleading under model violations
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