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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
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r Yellow 2 3

Blue 10 5
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3

Blue 10 5

20

We take one marble randomly out of the box

What is the probability that it is yellow and made of wood?

P (C = Y, M = W ) = P (Y, W ) = ?



Introduction Joint, conditional, marginal probability

Marbles in a box

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 5 / 63

Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3

Blue 10 5

20

We take one marble randomly out of the box

What is the probability that it is yellow and made of wood?

P (C = Y, M = W ) = P (Y, W ) = ?



Introduction Joint, conditional, marginal probability

Marbles in a box

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 6 / 63

Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3

Blue 10 5

20

P (Y, W ) = 2/20 = 0.1 or 10%

P (Y, W ) is known as the joint probability of Y and W
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3

Blue 10 5

20

We place the marble back in the box, shuffle and take out
another marble

What is the probability that it is blue?

P (B) =?
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

P (B) = 15/20 = 0.75

P (B) is known as the marginal probability of W
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

Note that:
P (B) = 10/20 + 5/20 = 0.75

or

P (B) = P (B, W ) + P (B, P )

The marginal is the sum over the joints
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

Suppose we took out a blue marble, what is the probability
that it is wooden?

P (W | B) = ?
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

P (W | B) = 10/15 = 0.667

P (W | B) is the conditional probability of W given B
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

P (W | B) vs P (W, B)

Conditional: we have information. One variable is not random

Joint: both are random
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

Note that:
P (W | B) = 10/15

P (W | B) = (10/20)/(15/20) = 0.667 or
P (W | B) = P (W, B)/P (B)
The conditional is the joint over the marginal
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Suppose there are twenty marbles inside a box:

Material

Wooden Plastic

Co
lo

r Yellow 2 3 5

Blue 10 5 15

12 8 20

Note we can reverse the conditional:

P (B | W ) = P (B, W )/P (W )

P (B | W ) = (10/20)/(12/20) = 0.833
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Bayes Theorem

P (W ) P (B)P (W ∩ B)

From the definition of conditional probability:
P (B | W ) = P (B, W )/P (W )
P (W | B) = P (B, W )/P (B)

We obtain:
P (B, W ) = P (W ) × P (B | W )
P (B, W ) = P (B) × P (W | B)
P (W ) × P (B | W ) = P (B) × P (W | B)

Therefore:

P (B | W ) = P (B) × P (W | B)
P (W )

This is known as the Bayes theorem
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Introduction Bayes theorem

Marginal Probability

P (W ) = P (Y, W ) + P (B, W )
P (W ) = P (W | Y )P (Y ) + P (W | B)P (B)

Suppose there are marbles of n differnet colours in the box, then::
P (W ) = P (W | C1)P (C1) + . . . + P (W | Cn)
P (W ) =

∑n
i P (W | Ci)P (Ci)

P (W ) =
∫

P (W | X)P (X)dX if X is continuous
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

We have a billiard table (or flat plane)

A white ball is thrown onto the table at an unknown position (x, y)

The position (x, y) is unknown to us (not revealed)

A second black ball is thrown randomly onto the table and we are told if:
The ball lands to the left or right of the unknown position x

The ball lands to the front or behind of the unknown position y

After n throws of the black ball, can we guess the position of the white ball?
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

Thomas Bayes showed how to estimate the probability of the white ball’s
location based on observed data (inverse probability problem)

He further showed that with sufficient throws (data), we would eventually
become almost certain of the white balls’s position

We will go through the example
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Rev. Mr. Bayes thought experiment (modified)

We throw the white ball

0 1

1

f(x, y) =?

x

y

White
ball

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 19 / 63



Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2
0.4

0.6
0.8

1.0

f(x, y)

0.0

0.5

1.0

1.5

2.0

We assume a uniform distribution over x and y: f(x, y) = 1
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

0 1

1

P (L, F | x, y) =?

x

y

White
ball

L: Left
R: Right
F: Front
B: Back
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

0 1

1

x

y

White
ball

The probability, after one throw, is the
landing area:

P (L, F | x, y) = xy

P (L, B | x, y) = x(1 − y)
P (R, F | x, y) = (1 − x)y
P (R, B | x, y) = (1 − x)(1 − y)
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

0 1

1

x

y

White
ball

The probability, of a sequence of ball
throws, is the product of the single
throw probabilities:

Data (ball throws):

D = {(L, F ), (L, F ), (R, B)}

Probability of observing data given
(x, y):

P (D|x, y) = P (L, F | x, y)2P (R, B | x, y)
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

The probability of a sequence of throws is the product of the
single throw probabilities:

D = {(L, F ), (L, F ), (R, B)}
P (D | x, y) = P (L, F | x, y)2P (R, B | x, y)
P (D | x, y) = (xy)2(1 − x)(1 − y)

In general, the probability after n throws is:

P (D | x, y) = xa(1 − x)(n−a)yb(1 − y)(n−b)

|D| = n: number of throws (size of data)
a: number of left landings
b: number of front landings
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

We have defined the marginal density of x and y, and calculated
the conditional probability of D given x, y:

f(x, y) = 1
P (D | x, y) = xa(1 − x)(n−a)yb(1 − y)(n−b)

Therefore, we can now define the joint density of D, x, y:

f(D, x, y) = f(x, y)P (D | x, y)
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (modified)

According to the Bayes theorem:

f(x, y | D) = f(x, y)P (D | x, y)
P (D)

The difficulty is in calculating the marginal probability P (D)

Recall that the marginal probability is the sum over the joint prob-
abilities. Here, x and y are continuous, so instead of a double sum,
we have a double integral:

P (D) =
∫∫

f(D, x, y) dx dy

= a!(n − a)!b!(n − b)!
((n + 1)!)2
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (simulation)

Simulation for the modified Bayes thought experiment:

1 Sample x and y from the join uniform f(x, y). This is the
position of the white ball

2 Initilize a = b = n = 0
3 Sample two numbers, w and z, from the joint uniform. This

is the position of the ball after one throw.
4 Set a = a + 1 if w < x (ball is at left)
5 Set b = b + 1 if z < y (ball is at front)
6 Repeat steps 3 to 5
7 Calculate f(x, y | D). Note: Our data is D = {a, b, n}
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Bayesian inference Thought experiment

Rev. Mr. Bayes thought experiment (simulation)
Posterior distribution:

FRONT

0.0
0.2

0.4
0.6

0.8
1.0

RIGHT
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1.0

f(x, y | Tn)

0

5

10

15

20

25

30

a: 0 # left
b: 0 # fronts
n: 0 # throws

No data

f(x, y | D) = xa(1 − x)(n−a)yb(1 − y)(n−b)

P (D)
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Bayesian inference Terminology

Bayesian Terminology

f(x, y | D) = f(x, y)f(D | x, y)
P (D)

The marginal of x and y, f(x, y), is known as the prior
distribution of x and y

The prior f(x, y) reflects our prior knowledge about x and
y before any data has been observed

The conditional f(D | x, y) is known as the likelihood of
the data D

P (D) is known as the marginal likelihood
P (x, y | D) is the posterior distribution of x and y

The posterior f(x, y | D) reflects our updated (posterior)
knowledge after the data has been observed
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Bayesian inference Terminology

Marginal likelihood
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fu: unnormalised density — has the same shape as the normalised density f

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 31 / 63

fu(x | D) = xa(1 − x)(n−a)



Bayesian inference Terminology

Marginal likelihood

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

fu: unnormalised density — has the same shape as the normalised density f

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 31 / 63

fu(x | D) = xa(1 − x)(n−a)

f(x | D) = xa(1−x)(n−a)

C

C = a!(n−a)!
(n+1)!



Bayesian inference Terminology

Marginal likelihood

Can we ignore the marginal likelihood P(T)?

No.
The density must be normalised because the probability is
the area under the curve:
P (a < x < b) =

∫ b

a
f(x | D) dx

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1
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5

f(x
|D

)

Note:
P (0 ≤ x ≤ 1) = 1

For multi-dimensional
densities, the probability is
the volume under the
surface
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Bayesian inference Terminology

General Bayesian Model

Posterior︷ ︸︸ ︷
f (θ | D) =

Prior︷ ︸︸ ︷
f (θ)

Likelihood︷ ︸︸ ︷
f (D | θ) /

Marginal︷ ︸︸ ︷
f (D)

D is the data
θ = (θ1, θ2, . . . , θn) is the set of model parameters
f(D) =

∫
f(θ)f(D | θ) dθ is the marginal likelihood

f(D) is an n-dimensional integral
Usually, this integral does not have an analytical solution
or is hard to calculate
What do we do?
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Markov Chain Monte Carlo Histograms sampling

Sampling from histograms
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Markov Chain Monte Carlo Histograms sampling

Sampling from histograms

1 2 3
0

20

40

Algorithm:
1 Select a starting point (x)
2 Throw a coin to propose a visit to

one of the adjacent bars (x∗)
3 Accept or reject the visit:

If h(n) > h(c) then accept
Otherwise, accept with
A = h(x∗)/h(x)
If visit accepted set x = x∗

Note:
P (x) = h(x)/C

h(x∗)/h(x) = P (x∗)/P (x)
We do not need to know C

Repeat steps 2-3 many times
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Markov Chain Monte Carlo Histograms sampling

Sampling from histograms

1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.05

0.10

0.15 Works for any histogram

We can overcome gaps
(areas with h = 0) by using
proposals of different
lengths
This class of algorithms is
known as Markov Chain
Monte Carlo or MCMC
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Markov Chain Monte Carlo Algorithm

Sampling from histograms

-4.0 -3.0 -2.0 s 0.0 1.0 2.0 3.0 4.0s
x
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0.30
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g(s′ | s)

MCMC
Also works for continuous
densities
Start at some point s

Use a density g(s′ | s) to
propose the next point s′

Accept or reject with
P = min{1, f(s′)/f(s)}

Make sure that:
g(s′ | s) = g(s | s′)
This is known as the
Metropolis algorithm1

Asymmetric proposals2
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1 Metropolis et al, J. Chem. Phys., (1953) 21:1087-1092 2Hastings, Biometrika, (1970) 57:97-109



Markov Chain Monte Carlo Algorithm

Markov Chain Monte Carlo

How do we calculate P (v < x < w) =
∫ w

v
f(x) dx ?

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

P(v < x < w)

P (v < x < w) ≈ na

N

na: times red area was visited
N : total number of MCMC
iterations

x =
∫ ∞

0 xf(x) dx

x ≈ 1
N

∑N
i=1 xi

xi: MCMC sample (visited
values)

MCMC gives an approximate
answer
Answer improves with large N
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Markov Chain Monte Carlo Algorithm

Bayesian Phylogenomics
When analysing phylogenomic data, we are typically interested in
estimating:

A tree topology T

The branch lengths b given the topology T

Other model parameters θ

Our data is typically in the form of an alignment matrix D.

In a Bayesian framework, we are inferring the posterior distribution
of T, b, θ given the data D:

f(T, b, θ | D) = f(θ)P (T )f(b | T ) × P (D | θ, T, b)
P (D)

P (D) =
∑

i

∫∫
f(θ, Ti, b)P (D | θ, Ti, b) dθdb

P (D) is impossible to calculate, and so we need MCMC
For example, P (T | D) ≈ nT /N
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Markov Chain Monte Carlo Algorithm

Example: K80 model
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Data from: Yang 2014, p.7, Table 1.3
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Markov Chain Monte Carlo Algorithm

Example: K80 model
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Markov Chain Monte Carlo Algorithm

Example: K80 model
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Markov Chain Monte Carlo Algorithm

Example: K80 model
The sample from the stationary phase can be summarised to obtain
the approximation to the posterior distribution
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k ≈ 29.197
95%CI = (14.68, 53.53)

d ≈ 0.104
95%CI = (0.08, 0.13)



Markov Chain Monte Carlo Algorithm

Proposal step size

In this example, we use uniform distributions to propose new values:

d′ ∼ U(d − εd/2, d + εd/2)
k′ ∼ U(k − εk/2, k + εk/2)
εd, εk are known as the proposal step sizes

dd− εd/2 d+ εd/2

εd
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Markov Chain Monte Carlo Algorithm

Mixing and convergence rate

Mixing: refers to how quickly a chain explores the state space.
Rejecting too many proposals means we stay in the same place
too long
If we accept too many proposals usually means we are moving
slowly, remaining in the same region too long.

Proposal step size affects mixing:
Step is too big: we reject most proposals
Step is too small: we accept most proposals (baby steps)

Convergence rate: refers to how quickly the chain moves into the
stationary phase

Proposal step size also affects convergence rate
Small sizes lead to low convergence rate
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Markov Chain Monte Carlo Algorithm

Example: K80 model
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Mixing (acceptance %): Small: 82%, Medium: 34%, Large: 7%
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Markov Chain Monte Carlo Algorithm

Mixing and fine tuning

Fine-tuning: The process of adjusting step sizes to achieve optimal
mixing

Analysis of normal distribution indicates that mixing is best at
∼ 23.4% (20% – 40%)1,2

Most MCMC software will do this automatically, but
sometimes it is useful to do it manually:

is too high: increase step size
is too low: decrease step size

Recall MCMC estimates are approximate, e.g. d ≈
∑

i di/N

For two chains of the same length, the errors in the estimates
are larger for the chain with poorest mixing

Note: calculations are done after removing burn-in samples

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 48 / 63

1 Gelman et al, Ann. Appl. Probab. 7(1):110-120, 1997 2 Roberts and Rosenthal, Statist. Sci 16(4):351-367, 2001
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Markov Chain Monte Carlo Algorithm

Autocorrelation

MCMC samples are autocorrelated because accepted values
are modifications of the previous values
K80 example, rL = corr(di, di+L)
L indicates the lag. Plots below are for L = 1
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Large step:
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Mixing (acceptance %): Small: 82%, Medium: 34%, Large: 7%
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Markov Chain Monte Carlo Algorithm

Autocorrelation Function
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Autocorrelation on d (medium step size)

Chains that mix well have ACF that decays fast!
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Markov Chain Monte Carlo Algorithm

Efficiency

Chains that lead to estimates with small errors with respect to the
chain’s size are said to be efficient

Efficiency relates to the autocorrelation of the chain:

Eff = 1
1 + 2(r1 + r2 + r3 + . . .)

High (+) autocorrelation: Low efficiency
Moderate (+) autocorrelation: Efficient chain
No autocorrelation: Independent sampling (very efficient)
(-) autocorrelation: Super-efficient chain

Eff = 1: as efficient as independent sampling
Eff = 0.2: 20% as efficient as independent sampling

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 51 / 63



Markov Chain Monte Carlo Algorithm

Efficiency

Chains that lead to estimates with small errors with respect to the
chain’s size are said to be efficient

Efficiency relates to the autocorrelation of the chain:

Eff = 1
1 + 2(r1 + r2 + r3 + . . .)

High (+) autocorrelation: Low efficiency
Moderate (+) autocorrelation: Efficient chain
No autocorrelation: Independent sampling (very efficient)
(-) autocorrelation: Super-efficient chain

Eff = 1: as efficient as independent sampling
Eff = 0.2: 20% as efficient as independent sampling

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 51 / 63



Markov Chain Monte Carlo Algorithm

Efficiency

Chains that lead to estimates with small errors with respect to the
chain’s size are said to be efficient

Efficiency relates to the autocorrelation of the chain:

Eff = 1
1 + 2(r1 + r2 + r3 + . . .)

High (+) autocorrelation: Low efficiency
Moderate (+) autocorrelation: Efficient chain
No autocorrelation: Independent sampling (very efficient)
(-) autocorrelation: Super-efficient chain

Eff = 1: as efficient as independent sampling
Eff = 0.2: 20% as efficient as independent sampling

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 51 / 63



Markov Chain Monte Carlo Algorithm

Effective Sample Size
Effective Sample Size is the chain size × efficiency

ESS = N × Eff

Example:
We have an MCMC chain with N = 1000 samples and
Eff = 20%
Then, ESS = 200, meaning the chain has the same estimate
error as an equivalent, independent chain of size 200

Stachastic simulation theory recommendation:
N should be between 1 000 to 10 000 for independent sampling
Thus, ESS should be between 1 000 to 10 000
This is typically hard to achieve in Bayesian phylogenomics
We aim to have at least ESS > 200
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Markov Chain Monte Carlo Algorithm

Convergence

MCMC is a class of stochastic algorithms

An MCMC histogram is just an approximation of the posterior
density

This approximation improves as N → ∞

We must use convergence diagnostics to assess whether the
MCMC sample has converged to the posterior
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Markov Chain Monte Carlo Algorithm

Convergence to Normal Distribution

4 3 2 1 0 1 2 3 4
x

0.0

0.1

0.2

0.3

0.4

f(x
)

= 0
= 0.064

ESS = 100
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Markov Chain Monte Carlo Algorithm

Convergence to Normal Distribution

4 3 2 1 0 1 2 3 4
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= 0
= 0.012

ESS = 10000
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Markov Chain Monte Carlo Algorithm

Convergence

In practice the shape of the posterior density is not known

Thus, we cannot compare the MCMC histogram to the true
posterior

The way around this is to run two or more MCMC chains
and compare their histograms, traces, posterior means, and
credibility intervals

If they are similar, it is likely we have converged

Important: The chains must start from different starting points
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Markov Chain Monte Carlo Algorithm

Convergence to Normal Distribution

3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4
f(x

)
1 = 0.015
2 = 0.024

95% CI 1: (-1.96,1.98)
95% CI 2: (-1.85,1.89)
ESS = 1000

Histograms of two chains

Chains that have converged can be merged into a larger chain

ESSL = ESS1 + ESS2
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Markov Chain Monte Carlo Algorithm

Multi-modal densities
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Markov Chain Monte Carlo Algorithm

Multi-modal densities

6 4 2 0 2 4 6
x

0.0

0.1
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)

Histogram of chains 1 and 2

No convergence! Chains failed to cross the posterior valley
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Markov Chain Monte Carlo Algorithm

Convergence

Running many chains with random starting points is a
good way to detect multi-modal posteriors

If we detect a multi-modal posterior:
Run the chains for a very long time
Eventually the chains will cross the valley back and forth and
the histograms will converge
Do not merge short chains that are stuck at different modes

Important:
Avoid using fixed starting points (or seeds)
ESS is not a measure of convergence
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Markov Chain Monte Carlo Algorithm

Thinning the chain

In phylogenomics it is difficult to construct efficient chains

That is because we usually have too many parameters in our
models

Phylogenomic MCMC chains are thus highly correlated

To get good estimates, we need to run the chains for a very
long time

If we store every chain visit, we would run out of hard disk
space very quickly.

Thinning: Writing down only a fraction of all chain visits (e.g.
every 100th or 1000th visit)
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Markov Chain Monte Carlo Algorithm

Bayesian Phylogenomics

In phylogenomics, we are interested in estimating the topology T ,
branch lengths b and model parameters θ, given the alignment D

f(T, b, θ | D) = f(T,b,θ)f(D | T,b,θ)
f(D)

f(D) =
∑ ∫∫

f(T, b, θ)f(D | T, b, θ) db dθ

f(D) is typically not available analytically and thus we use MCMC

Tomas Flouri (UCL) Bayesian statistics and Markov Chain Monte Carlo March 2, 2025 61 / 63



Markov Chain Monte Carlo Algorithm

Bayesian Phylogenomics
The likelihood of the data D[1, . . . , n] (alignment) is the product of
the likelihood of sites

f(D | T, b, θ) =
n∏

i=1
f(D[i] | T, b, θ)

D[i] is the i-th site pattern
n is the number of site patterns

MCMC algorithm:
1 Choose random initial state for T, b, θ

2 Propose topology T and accept/reject
3 Propose branch lengths b and accept/reject
4 Propose model parameters θ and accept/reject
5 Store the current values of parameters into a sample file
6 Repeat steps 2-5 many many times
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Markov Chain Monte Carlo Algorithm

Additional resources

Holder & Lewis (2003) Phylogeny estimation: Traditional
and Bayesian approaches. Nat. Rev. Genet., 4:275

Yang (2014) Molecular evolution: A statistical approach.
Oxford University Press

Chen, Kuo, Lewis (2014) Bayesian phylogenetics:
Methods, algorithms, and applications. CRC Press

Kapli et al (2020) Phylogenetic tree building in the
genomic age. Nat. Rev. Genet., 21(7):428-444

THE END

Thanks to Mario dos Reis for several lecture materials
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