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Outline

• Pedigree, genealogy and coalescent

• Multispecies coalescent (MSC)

• Estimation of parameters under the MSC
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Fisher-Wright model & coalescent
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(a) Fisher-Wright model 
(Constant population size, non-
overlapping generations, random 
mating)

(b) Coalescent process.
The process of lineage joining 
when one traces the 
genealogical history of the 
sample backwards in time.
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Classic population genetics studies the changes of 
allele frequencies in a population with time running 
forward (e.g., diffusion approximation)

Ronald A. Fisher (1890-1962)
Galton Professor, UCL (1933-1943)

Sewall Wright (1889-1988)JBS Haldane (1892-1964)
Weldon Professor, UCL (1933-1956)

“Three giants in population genetics, two in UCL”



John Kingman (1939-)

Coalescent runs the time machine backwards



The coalescent: 2 genes
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The probability that two genes share a common ancestor (parent) in the 
previous generation is 1/(2N).  The probability that two genes share a 
common ancestor j generations back is 

This is known as a geometric distribution and has mean 2N:  
it takes on average 2N generations for two genes to coalesce.

t2 = T2/(2N)
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Let t2 = T2/(2N) so that one time unit is 2N
generations.  Then t2 is exponential with mean 1:

N: population size of a diploid species
2N: number of sequences at any locus in the population



Genetic diversity in a population is measured by  = 
4N (where  is the mutation rate), the average 
difference per site between two sequences.

For the human, H = 0.0006: two sequences taken at random 
from the human population are different at 0.06% of sites.  
This means N ~ 10,000 (using g = 15y, µ = 10–9/site/year).

Average coalescent time is 2N generations.

Average sequence distance is  = 2N    2.



Coalescent time scale, Poisson & exponential
If an event occurs as a Poisson process at the rate , the waiting time has 
an exponential distribution with probability density function

f(t) = eି௧

and mean 1/.  The probability for no event before time t is 

Pr(X > t) = eି௧.

Any 2 sequences coalesce like a Poisson process with rate .

Time unit Rate () Mean waiting time

(i) Generation 1/(2N) 2N

(ii) 2N generations 1 1

(iii) 1 mutation per site 2/ /2



The coalescent: n = 3 sequences

• There are 3 possible gene trees for a sample of 3 sequences, 
each with probability 

ଵ
ଷ
.  

• The first waiting time has mean
ଵ
ଷ

while the second has mean 1

(One time unit is 2N generations).
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The coalescent: n = 4 sequences

• There are 18 possible labelled histories 
(ranked gene trees) for n = 4, each with 
probability 

ଵ
ଵ଼

.  

• There are 15 gene trees, with probability 
ଵ

ଵ଼
for each unbalanced tree or 

ଶ
ଵ଼

for each 

balanced tree.
Each balanced tree is compatible with two 
labelled histories while each unbalanced 
tree is compatible with one.

• Coalescent waiting times are independent 
exponential variables 
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A labelled history (or ranked gene tree) is a (rooted) gene tree 
with interior nodes ranked by age

The balanced gene tree ((a, b), (c, d)) is compatible with two labelled 
histories and so has probability  

ଶ
ଵ଼

.

c d a ba b c d

tcdtab tcd

tab

In left tree:   tab < tcd.  Sequences a & b coalesce first.
In right tree:  tcd < tab.  Sequences c & d coalesce first.



The coalescent: n sequences

It takes on average ~2  2N (2.15N) generations 
for the whole sample to coalesce, and 2N
generations for the last two lineages to coalesce.
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(i) Each of the 𝐻𝑛 ൌ 
ଶ

ିଵ
ଶ … ଶ

ଶ labelled histories (Gi) 
has equal probability,  𝑃 𝐺𝑖 ൌ ଵ

ு
.

(ii) Coalescent rate is ଵ
ଶே

for each pair of sequences.
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Poisson process & exponential waiting time
If an event occurs as a Poisson process at the rate , the waiting time has 
an exponential distribution with probability density function

f(t) = eି௧.

This has mean 1/.  The probability for no event before time t is 

Pr(X > t) = eି௧.

Coalescent.  Two sequences coalesce according to a Poisson process, at 
the rate of  

ଵ
ଶே

per generation.  The average waiting time until the 

coalescent is 2N generations.



The coalescent (n = 20)



Coalescent time fluctuates across the genome 
according to an exponential distribution, with 
mean 2N (generations).

1000-bp 
segments

# differences1 2 0 1 0

Time



Multispecies coalescent (MSC)
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Multispecies coalescent (MSC, Liu et al. 2009) or  
censored coalescent (Rannala and Yang 2003) or

inter-specific coalescent (Takahata 1989)

Rannala & Yang (2003 Genetics 164:1645-1656)

• Parameters: divergence times () and population sizes ().
• Lineages join independently in different populations.
• Coalescent rate is reset when lineages enter a new species.
• Genes split before species (gene trees fit inside species tree).
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Model, data, and inference

A CB
b1 b2 c1 c2a1 a2

(a) Species tree (b) Gene trees

(c) Multi-locus sequence data

Chromosome

a1 AAGCTTCACC …
a2 AAGCTTCACC …
b1 AAGCTTCACC …
b2 AAGCTTCACC …
c1 AAGCTTCATC …
c2 AAGCTTCATC …

a1 GCTATCACCA …
b1 GCTATCACCA …
c1 GCTATCACCG …

a1 TAGCATCACC …
a2 TAGCATCACC …

a1 a2 b1 b2 c1 c2 a1 b1 c1 a1 a2

MSC provides a framework for analyzing 
genomic data from different species



Comments about compiling multilocus sequence data

Two ways of generating multilocus sequence alignments for analysis 
under the MSC.
• Reduced representation data: ddRAdseq, transcriptomes, etc.
• Short genomic segments compiled from sequenced genomes.  Loci are short 

genomic segments that are far apart (e.g., <2kb with 10kb gaps).  You may write or 
edit your own pipelines (see Thawornwattana, et al. 2022. Syst. Biol. 71:1159-1177).

Do’s
• For species tree estimation, one sequence per species is fine.  
• For inference of gene flow, include multiple samples per species, especially from 

the species receiving migrants.
• A few good-quality samples may be better than many low-coverage samples.

Don’ts
• Avoid haploid consensus sequences, which resolve the phase of heterozygote 

sites at random, creating chimeric sequences that do not exist in nature.   Use 
ambiguities to represent heterozygotes (Y for T/C, R for A/G, etc.)

• Beware of possible biases due to data filtering (e.g., according to bootstrap 
support values for gene trees).



Information content in the data may depend on the problem

L: number of loci
S: number of sequences
N: sequence length (# of sites)
: mutation rate (exons vs. introns)

Huang J, Flouri T, Yang Z. 2020. Mol. Biol. Evol. 37:3211-3224.

For most problems, the number of loci is the most important factor.  
For inference of gene flow, it is important to have multiple samples per 
species (S > 1) as otherwise there may be problems with unidentifiability



Multispecies coalescent
Two species
• Gillespie, J. H., and C. H. Langley (1979. J. Mol. Evol. 13:27-34) 

The number of substitutions [between 2 species] is the sum of 
a Poisson and a geometric random variable.

• Takahata, N. (1986. Genet. Res. 48:187-190)
The variance in H-C sequence divergence among loci was used to estimate the ancestral 
population size HC 

Three species
• Hudson R.R. (1983 Evolution 37:203-217) 

derived the gene tree-species tree mismatch probability for 3 species.
• Chen & Li (2001 AJHG 68:444-456) used it to estimate HC.
• Takahata, N., et al. (1995 TPB 48:198-221): ML for 3 species

Structured coalescent
• Li, W.-H. 1976.  TPB 10, 303-308.
• Griffiths, R. C. 1981. J. Math. Biol. 12:251-261.
• Slatkin, M. 1987. TPB 32:42-49.
• Notohara, M. 1990. J. Math. Biol. 29:59-75.



t



Multispecies coalescent, incomplete lineage 
sorting, gene tree-species discordance

Maddison, W.P. 1997. 
Syst. Biol. 46:523-536

Takahata, N. 1989. 
Genetics 122:957-966



MSC has many applications & extensions

• Inference of species divergences and population sizes
• Estimation of migration patterns and rates (IMa, etc.) 
• Introgression & hybridization 
• Species tree estimation (STEM, BEST, *BEAST, BPP etc.)
• Species delimitation (BPP)
• …
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(a) Species tree (b) Migration trajectory
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MSC or coalescent is the biological process of 
reproduction viewed backwards in time

Confusing terminologies in the literature:

“to distinguish hybridization from lineage sorting”
“investigate whether the conditions of applicability of coalescence-based methods are 
met …”

(Degnan JH. 2018. 
Syst. Biol. 67:786-799)



Multispecies coalescent (MSC)
(i) f(G)

Degnan, J. H., and L. A. Salter. 2005. Gene tree distributions 
under the coalescent process. Evolution 59:24-37.

Degnan, J. H., and N. A. Rosenberg. 2006. Discordance of species 
trees with their most likely gene trees. PLoS Genet. 2:e68.

Degnan, J. H., and N. A. Rosenberg. 2009. Gene tree discordance, 
phylogenetic inference and the multispecies coalescent. 
Trends Ecol. Evol. 24:332-340.

Rosenberg, N. A., and M. Nordborg. 2002. Genealogical trees, 
coalescent theory and the analysis of genetic polymorphisms. 
Nat. Rev. Genet. 3:380-390.

Rosenberg, N. A., and R. Tao. 2008. Discordance of species trees 
with their most likely gene trees: the case of five taxa. 
Systematic Biology 57:131-140.

…

Rannala, B., and Z. Yang. 
2003. Genetics 164:1645-
1656.

(ii) f(G, t)

f(G) is useful for two-step summary methods.
f(G, t) is useful for full-likelihood methods (ML & Bayesian).



Multispecies coalescent (MSC) density
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Two kinds of terms:
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• Probability of no event: e t
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Full likelihood methods of species tree estimation integrate over 
the unknown gene trees

( , ) ( | , ) ( | , )d( , | , )
i

i ii ii iGi ii
f G SL S f X S f X G         ttt

Maximum likelihood is feasible for 3 species (3 sequences) (3S)

  ( |( , , , | ) ( ) ( | ( , | ,) , )) ii i ii ii if f Xf S G X f SS S G Gf    tt t

Bayesian method averages over the gene trees 

through MCMC marginalisation (*BEAST, BP&P, …)

S: species tree.
:  and  parameters on the species tree.
Gi & ti: gene tree topology and branch lengths at locus i.

MSC density
Phylogenetic 
likelihood



Model & data
• The MSC gives the distribution of the gene tree and branch lengths (Rannala

& Yang 2003 Genetics 164:1645-1656).
• The phylogenetic likelihood is the probability of the sequence data at each 

locus (Felsenstein 1981 J. Mol. Evol. 17:368-376).

a1   TCCATTCAAG AGTCTATTAT CAGTTAATTC …
a2   TCCATTCAAG AGTCTATTAT CAGTTAGTTC …
b1   TCCATTCAAG AGTTTATTAT CAGTTAATTC …
b2   TCCATTCAAG AGTTTATTAT CAGTTAATTC …
c1   TCCATTCAAG GGTCTATTAT CAGTTAATTC …

A G

T C

JC69 model



MCMC samples from the posterior:
f(S, {s, s}, {Gi, ti} | Data)

1. Initialize S, {s, s}, {Gi, ti}.
2. Iterate

• Change parameters (s, s in the model).
• Change gene trees {Gi, ti}.
• Change species tree S (by NNI, SPR, NodeSlider).
• Save on the disk every k iterations.

S: species tree
{s, s}: parameters in the MSC
{Gi, ti}: gene trees and ages

The MCMC algorithm visits the species 
trees according to their posterior 
probabilities.
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