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What will we be covering during this session?

* Parameters to be estimated during timetree inference.
* Building intuition to set up the time prior using fossil/geological evidence.
* Building intuition to set up the rate prior.

 Why do we care about evolutionary timelines?

e Software for timetree inference.

* Approximating the likelihood calculation with MCMCtree.



WHERE ARE WE

in the phylogenetics workflows
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Revisiting
The Bayes’ Theorem

with a focus on timetree inference



The Bayes’ Theorem in timetree inference

__P(4) P(B|A)  P(param)P(datalparam)
P(A|B) = P(B) P(param|data) = Pdata)
f6|D) = J9) D16) posterior = prior x likelihood

f(D) (marginal likelihood)



The Bayes’ Theorem in timetree inference

__ P(A) P(B|A) _ P(param)P(data|param)
P(A|B) = P(B) P(param|data) = P(data)

_f(6)f(D|6) . prior Xlikelihood
f(0ID) = f(D) posterior = (marginal likelihood)

What could 0 be?
E.g., divergence times, evolutionary rate, tree topology, etc.

0 = {"?\ Unknown parameters ' [ |
g

c If available, Fossils can be informative about times!

If available, phylogenies (topology+branch lengths) can
be informative about the rate!



The Bayes’ Theorem in timetree inference

__ P(A) P(B|A) _ P(param)P(data|param)
P(A|B) = P(B) P(param|data) = P(data)

_f(6)f(D|6) . prior Xlikelihood
f(0ID) = f(D) posterior = (marginal likelihood)

What could 0 be?
E.g., divergence times, evolutionary rate, tree topology, etc.

Prior information on @

0 = {Kﬁx Unknown parameters g

B 94 oa [~ A
What could D be?
E.g., molecular alignment, fFixed tree topology, etc.

0.2 c

D = #@l= Data



The Bayes’ Theorem in timetree inference

__ P(A) P(B|A) _ P(param)P(data|param)
P(A|B) = P(B) P(param|data) = P(data)

_f(6)f(D|6) . prior Xlikelihood
f(0ID) = f(D) posterior = (marginal likelihood)

What could 6 be?
E.g., divergence times, evolutionary rate, etc.

Prior information on @

0.1
0.1 A
0.1

0 = {?} Unknown parameters
N

0.2

What could D be?
E.g., molecular alignment, fFixed tree topology, etc.

D = gill™= Dpata & . Fossils can be data in tip-dating analyses, but we

will not cover tip dating due to time limitations




The Bayes’ Theorem in timetree inference

B P(A) P(B|A) _ P(param)P(data|param)
P(A|B) = P(B) P(param|data) = P(data)

_f(6)f(D|6) . prior Xlikelihood
f(0ID) = f(D) posterior = (marginal likelihood)

Prior information on 8

EXAMPLE: 01 [ %" A

0.1
0.2

Unknown parameters. E.g. in node-dating analyses: divergence times, evolutionary rate

D = @i Data.E.qg., in node-dating analyses: molecular data, fixed tree topology




Bayesian statistics applied to timetree inference analyses

/CONDITIONAL PROBABILITY IN BAYES' THEOREM A
S prior X likelihood
osterior — : . -
P (marginal likelihood)
- /
D = molecular data
(t,1,0|D) = fOFf(r|t o) f(Dltr,0) t = vector of divergence times
Jr, B f(D) r = vector of molecular rates

6 = vector of other unknown parameter/s
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Bayesian statistics applied to timetree inference analyses

/CONDITIONAL PROBABILITY IN BAYES' THEOREM A
S prior X likelihood
osterior = . p .
P (marginal likelihood)
o /
D = molecular data
f(t r 0|D) = fOFf(r|t o) f(Dltr,0) t = vector of divergence times
Y B f(D) r = vector of molecular rates
6 = vector of other unknown parameter/s
f(t.r|D) = fFfr|t) fDlt,r)

[[ O f(r|t) f(DIt,r) dr dt
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Bayesian statistics applied to timetree inference analyses

/CONDITIONAL PROBABILITY IN BAYES' THEOREM A
S prior X likelihood
osterior — : : E
P (marginal likelihood)
N /
D = molecular data
(t,1,0|D) = fOFf(r|t o) f(Dltr,0) t = vector of divergence times
Jr, B f(D) r = vector of molecular rates

6 = vector of other unknown parameter/s
ff|t) f(Dlt,T)

Markov Chain Monte Carlo (MCMC)
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Markov Chain Monte Carlo - how does it work?

=

W 0o N oo

Set initial value For model parameters to be estimated. In addition, specify number of iterations, n, and create vector
theta to collect sampled values.

Calculate prior, 1 (6).
Calculate likelihood, f (x|6).
Calculate unnormalised posterior (i.e., f(0]|x) = f(0) X f(x|0)). - v

Proposal: sample a random parameter value under a uniform | L
distribution (or another) to get the new proposal 8. If § < 0, then § = —0. omwiz O ovw2

Calculate prior’,/ (9), likelihood', f(x|0), and unnormalised posterior’ with new proposed value 8, f(8]x).

Accept or reject 8 value. If accepted, 8 € 8. Otherwise, keep initial value for the next iteration 6 < 6.
Save value of @in vector theta.

Repeat 1-7 n times with final & according to step 7.

Return vector theta with sampled & values. Plot traces, histograms, etc. to assess chain mixing, efficiency, and
convergence).

Our parameters of interest @ are now divergence times, 7, and evolutionary rates,

11



SO...

How can we estimate
rates and times?



Understanding the molecular clock

bH-Hu
Human branch length = evolutionary rate x divergence time

I:)Ho-H

b Hgminini Chimpanzee

Hd-Ho b

— H-C

Homininae
Gorilla

Hominidae ¢ bio-c
(hominids)

bigo

Orangutan

Past ——— Present

Branch lengths are like a
“clock”: they help us

Divergence times(¢) understand when and at
When two species are biologically distinct, they have diverged which rate evolution has

taken place

Evolutionary rate (r)
How often do mutations accumulate through time?

13



Understanding the molecular clock

Human branch length = evolutionary rate x divergence time

bi.c = Mh.c X tyc

Hgaminini

Chimpanzee
b.c

Branch length Hominini-Chimpanzee

Homininae
Gorilla by.c = M- X by
Hhoml[ll%ae 2 Let’s imagine there are 6 mutations per site
(hominids) per time unit:
Orangutan

6=rycXtyc

Past ——————— Present More than one

6=1x6 plausible solution...
6=6x1
PROBLEM: current methods 6=2x3 We need additional
estimate branch lengths, and so info to estimate rates

times and rates are confounded! and times separately!

14



Calibrating the molecular clock

Human branch length = evolutionary rate x divergence time

bic = ryc X byc

Chimpanzee
— bic
Hgmininae Gorilla Thanks to a prioriinformation, we
Hominidae ¢ can integrate the uncertainty about
(hominids) estimates of divergence times,
Orangutan evolutionary rates, and branch
Past =————) Present lengths through the usage of PRIORS
FOSSIL/GEOLOGICAL EVIDENCE CAN BE USEFUL! PHYLOGENIES CAN BE USEFUL!
EXAMPLE b (tree height) = 0.08 .
= tSahelanthropus, common ancestor vominini [ - —-00 "mer We can estimate

of chimpanzee and human Homininae crimpanzee CNE €VOlUtiONArY
= Minimum age: 5.333 Ma bowere = J03 1T 002 rate or use other
1 Gorill !
= Maximum age: 7.246 Ma oy o= 0,03 erilla peqple S |
= If more than one specimen, we use the ~ femnids) oranguian €StiMated values!

|:)root-O =0.08

oldest!

15



TIME PRIOR



Where can we get fossil information?

> Search the literature. E.g., relevant papers published about the fossil specimen you want to
incorporate in your study

> Collaborate with experts (palaeontologists, geologists, etc.)

> Use the Paleobiology Database (PBDB): this is the main database that you can use to track
the many fossil specimens that have been discovered and catalogued and is the main site to
store fossil information! URL: https://paleobiodb.org/

g me Paleobiology Database

'J Revealing the history of life

l\g “ Learn ~ ‘ User Guide Data v Join & Support » ‘
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Where can we get fossil information?

> Search the literature. E.g., relevant papers published about the fossil specimen you want to

incorporate in your study

> Collaborate with experts (palaeontologists, geologists, etc.)

> Use the Paleobiology Database (PBDB): this is the main database that you can use to track
the many fossil specimens that have been discovered and catalogued and is the main site to
store fossil information! URL: https://paleobiodb.org/

Search the database

g me Paleobiology Database

J Revealing the history of life
- [ ]
| Learn~ User Guide Data Join & Support ~
. ‘\ |
2 Viev t chang

TSahelanthropus Brunet et al. 2002 (ape)
Mammalia - Primates - Hominidae

Full reference: M. Brunet, F. Guy, D. Pilbeam, H. T. Mackaye, A. Likius, D. Ahounta, A. Beauvilain, C. Blondel, H. Bocherens, J.-R
Boisserie, L. De Bonis, Y. Coppens, J. Dejax, C. Denys, P. Duringer, V. Eisenmann, G. Fanone, P. Fronty, D. Geraads, T.
Lehmann, F. Lihoreau and A. Louchart. 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145-
151

Parent taxon: Hominini according to D. Strait et al. 2015

See also Brunet et al. 2002 and Cela-Conde and Ayala 2003

Sister taxa: Ardipithecus, Australopithecus, Homo, Panina

Subtaxa: Sahelanthropus tchadensis

View classification

Type: Sahelanthropus tchadensis

Ecology: ground dwelling omnivore

Distribution: found only at Toros-Menalla (TM 266) (Miocene of Chad)

Show more details

o
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Where can we get fossil information?

> Search the literature. E.g., relevant papers published about the fossil specimen you want to
incorporate in your study

> Collaborate with experts (palaeontologists, geologists, etc.)

> Use the Paleobiology Database (PBDB): this is the main database that you can use to track
the many fossil specimens that have been discovered and catalogued and is the main site to
store fossil information! URL: https://paleobiodb.org/

TSahelanthropus Brunet et al. 2002 (ape)

Search the database

Mammalia - Primates - Hominidae

Full reference: M. Brunet, F. Guy, D. Pilbeam, H. T. Mackaye, A. Likius, D. Ahounta, A. Beauvilain, C. Blondel, H. Bocherens, J.-R
Boisserie, L. De Bonis, Y. Coppens, J. Dejax, C. Denys, P. Duringer, V. Eisenmann, G. Fanone, P. Fronty, D. Geraads, T.
Lehmann, F. Lihoreau and A. Louchart. 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145-
151

Parent taxon: Hominini according to D. Strait et al. 2015

Qes alen Rrunat ot al 2002 and Cala.Cande and Avala 2002

g me Paleobiology Database

y Revealing the history of life w

J.g | ‘ ‘ _ Sahelanthropus
| Learn v User Guide Data v Join & Support »
- | J |

Mammalia - Primates - Hominidae

Age range: Messinian or 7.24600 to 5.33300 Ma

Collections: one only

Time intervalMa Country or stateOriginal ID and collection number
Messinian 7.246 - 5.333 Chad S. tchadensis (59839)

17



Setting the time prior

— Human

Hgminini Chimpanzee
b.c

Gorilla

Homininae

Hominidae ¢
(hominids)

Orangutan

E.g.: possible
“priors” to
integrate the

i uncertainty about
i the Fossil record

'5.333Ma

branch length = evolutionary rate x divergence time

bic = ryc X byc

Thanks to a prioriinformation,
we can integrate the
uncertainty about estimates of

divergence times, evolutionary
rates, and branch lengths
through the usage of PRIORS

18



Setting the time prior

branch length = evolutionary rate x divergence time

More plausible divergence times, t, .

} —_Human by.c = Muc X tuc

N\

Hominini

Chimpanzee
posterior < priors X likelihood

Less plausible divergence times, t, . f(t’ 1‘|D) X f(t) X f(rlt) X f(Dlt' 1‘)

Probability decreases with a tail
percentage of ~2.5%!

TIME PRIOR (t)

7.246Ma  5.333 Ma

Uncertainty in the fossil

record to estimate t o



Setting the time prior

branch length = evolutionary rate x divergence time

bic = ryc X byc

L. Human
Hominini \_
i Chimpanzee posterior < priors X likelihood
f@,r|D) o< f(t) X f(r|t) X f(DI|t,T)
L. Human —_—
Hominini L

tyc~ 6.29 Myr

Chimpanzee

TIME PRIOR (t)

By using ONLY our knowledge on the t ~ 6.29 Myr

Fossil record, our mean estimated

|
7.246Ma  5.333 Ma

divergence time is t . = 6.29 Myr before
we add molecular data in the analysis

Uncertainty in the fossil
record to estimate ¢

20



Setting the time prior

branch length = evolutionary rate x divergence time

by.c = Mhc X by

. o s Human
Hominini \_
i Chimpanzee posterior « priors X likelihood
f&r|D) < f(t) X f(r(t) X f(D|t,1)
Human —_—

Hominini 4 l \_

Chimpanzee NOTE: this is just an example to
build intuition on how you could
gain some prior information on
the divergence times of a node

TIME PRIOR (t)

without using sequence data; the
time prior we use in timetree
inference is actually more
complicated than that!

By using ONLY our knowledge on the

%\ £~ 6.29 Myr
Fossil record, our mean estimated -

/| \

|
7.246Ma  5.333 Ma

divergence time is t . = 6.29 Myr before
we add molecular data in the analysis

Uncertainty in the fossil

record to estimate t 20



RATE PRIOR



Setting the rate prior

branch length = evolutionary rate x divergence time

+ Phylogeny Inference Software

byc = My X tyec
b (tree height) = 0.08

< [
< >

Human
Hominini} b, , =0.02
~ [budi=0.01 : posterior < priors X likelihood
Homininae Chimpanzee
%03 f(t,7|D) o f(t) X f(r|t) X f(D|t,T)

Gorilla

bye.g = 0.0 By combining our prior

on times (Z,.c) and our | | RATE PRIOR (r)
recently gained

knowledge on the

branch lengths

(by.c ), our estimated

mean rate before we

include molecular data

My.c = 0.002 subst/site/Myr 27 tuc~629Wy | | in the analysis is Uncertainty in e.g. data,

—— branch lengths, etc. used
7.246 Ma !5\.333 Ma Tu.c =0.002 s/s/Myr to estimate r 22

Hominidae




Setting the rate prior

+ Phylogeny Inference Software

b (tree height) = 0.08

<
<

[
>

Hominini} b, , =0.02
budy =0.01
Homininae

€ b, =0.02
b =do3 ™€

root-He —

< b, . =0.03
Hominidae He-C

(hominids)

Human

Gorilla

broot—O =0.08

Orangutan

The clock only holds for closely-related species,
otherwise, it is violated -- not a good hypothesis!

Current approaches use relaxed-clock models to

allow For the Fact that species in a phylogeny may

evolve at different rates!

Chimpanzee

branch length = evolutionary rate x divergence time

bi.c = Mh.c X tyc

posterior < priors X likelihood

f&,r|D) o f(t) X f(r[t) X f(D[E,T)

By combining our prior
on times (£, ..) and our
recently gained
knowledge on the
branch lengths

(by.c ), our estimated
mean rate before we
include molecular data
in the analysis is

Ty.c =0.002 s/s/Myr

RATE PRIOR (1)

2s/s/t

Uncertainty in e.g. data,
branch lengths, etc. used
to estimate r 23



Setting the rate prior

b (tree height) = 0.08

[
»

<

Hominini ‘I b, =0.02
b,d, =0.01 .
Homininae " Chimpanzee

@

Hominidae
(hominids)

broot—He = C'

® . buc=002

bye.c = 0.03

Human

Gorilla

Orangutan

b

root-O —

0.08

The clock only holds for closely-related species,
otherwise, it is violated -- not a good hypothesis!

Current approaches use relaxed-clock models to
allow for the Fact that species in a phylogeny may
evolve at different rates!

branch length = evolutionary rate x divergence time

by.c = Mhc X by

posterior « priors X likelihood
f@,r|D) o< f(t) X f(r|t) X f(DI|t,T)

NOTE: this is just an

example to build RATE PRIOR (r)
intuition on how you

could gain some prior

information on a given

branch rate; the rate

prior we use in

timetree inference is

actually more Uncertainty in e.g. data,

complicated than that! branch lengths, etc. used
to estimate r 23




Likelihood

Human branch length = evolutionary rate x divergence time

— bic = ryc X byc
Haminini

Chimpanzee

Homininae

Gorilla . . . ;
Hominidae ¢ posterior < priors X likelihood

(hominids) f(t,r|D) < f(t) X f(r|t) X f(D|t, 1)

Orangutan

BRANCH LENGTH
UNCERTAINTY

RATE PRIOR (1)

|
|
I

TIME PRIOR (t)

F ~ 0.002 s/s/t b ~0.02s/s

t ~ 6.29 Myr

|

|
7.246Ma 5333 Ma

o ti.c=8.25 Myr
° Iy.c=0.02 s/s/Myr

L .. Uncertainty in e.g. data, Combined uncertainty
Uncertainty in the fossil  pranch lengths, etc. used in estimates of ¢ and r

record to estimate ¢ ko estimate r (i.e, b=7xt) 24



Likelihood

Human branch length = evolutionary rate x divergence time

— by.c = Mhc X by
Hagminini

Chimpanzee

Homininae .
Hominidae < Gorilla posterior < priors X likelihood
(hominids) F(&7ID)  f(£) X f(r|t) X f(D]t,7)

Orangutan

BRANCH LENGTH
UNCERTAINTY

NOTE: this is just an
example to build intuition
on how you could calculate
the likelihood given your

RATE PRIOR ()

N\

TIME PRIOR (¢)

:"1‘.’ s t ~ 6. 29 Myr

b ~0.02s/s

t,..c = 8.25 Myr
° Iy.c=0.02 s/s/Myr

¥ ~ 0.002 s/s/t

‘AV_\ ‘ a-% - Y
A’d‘ . 7»“;’“
\ S s

SR

updated knowledge on rates
and times; the likelihood
Function we use in timetree

inference is actually more

complicated than that! Uncertainty in the fossil |, 35ch lengths, etc. used in estimates of ¢ and r
record to estimate ¢ ko estimate r (i.e, b=1Xxt) 2

?

|
7.246Ma 5333 Ma

Uncertainty in e.g. data, Combined uncertainty




Estimating posterior densities (rates and times)

POSTERIOR ¢, .~ 5.5 Myr _ . . .
ﬁ Foc~ 0.003 s/s/Myr branch length = evolutionary rate x divergence time

bic = ryc X byc
Hominini Wi
PRIOR

frc ™ 6.29 Myr Chimpanzee
FH-C ~ 0.002 S/S/Myr

Human

posterior < priors X likelihood

ft,r|D) o f(t) X f(r[t) X f(D[E,T)

BRANCH LENGTH
UNCERTAINTY

RATE PRIOR (1)
Posterior (¢, r) , SRR |
| t

'b ~0.02 s/s
th.c =8.25 Myr

t ~ 6.29 Myr

| = T
| T o

/!\ l } ? My.c = 0.02 s/s/Myr
|
7.246Ma 5333 Ma : :
Estimate mean posterior ¢ and — - Uncertainty in e.g. data, Combined uncertainty
r, and corresponding Cls! Uncertainty in the fossil  pranch lengths, etc. used in estimates of t and r

record to estimate ¢ ko estimate r (i.e, b=7rxt) 25



Estimating posterior densities (rates and times)

NOTE: as mentioned before, this example has been branch length = evolutionary rate x divergence time

used with the aim to build intuition on how you
could gain prior information on the rates and the
times for a specific lineage, calculate the likelihood
given your updated knowledge on the rate and the

by.c = Mhc X by

divergence time, and, lastly, put everything
together to estimate the posterior densities of our
parameters of interest. Nevertheless, estimating t D) < f(t) X f(rlt) X f(DIt. r
these parameters in timetree inference is of course f( ' | ) f( ) f( | ) f( | ’ )
much more convoluted than that!

posterior « priors X likelihood

BRANCH LENGTH
UNCERTAINTY

RATE PRIOR ()

N\

Posterior (¢, r)
TIME PRIOR ()

7 ~ 0.002 s/s/t b ~0.02s/s

% /-% e = ‘;\)
\/ el
e

W oay t~6.29 Myr

o tuc=8.25 Myr
° Iy.c=0.02 s/s/Myr

|
7.246Ma 5333 Ma

Estimate mean posterior ¢t and Uncertainty in e.g. data, Combined uncertainty

r, and corresponding Cls! Uncertainty in the fossil  pranch lengths, etc. used in estimates of t and r
record to estimate ¢ to estimate 1 (e, b=rxt)

25



BUT...

Why do we want to infer
evolutionary timelines?

Are they useful at all?



Why are evolutionary timelines useful?
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Article ‘ Published: 22 December 2021

A species-level timeline of mammal evolution
integrating phylogenomic data

Sandra Alvarez-Carretero, Asif U. Tamuri, Matteo Battini, Fabricia F. Nascimento, Emily Carlisle, Robert J.

Asher, Ziheng_Yang, Philip C. J. DonogwE & Mario dos Reis &

Nature 602, 263-267 (2022)

».
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hypotheses
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history!
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Evolutionary timeline of LUCA

posterior « priors X likelihood

f(&,7|D) < f(t) X f(r|t) X f(D[t,T)

/

Mean time estimate for LUCA

Posterior (¢, r)

~4.2 Ga \ +.

Our results look like that: time probability distributions!

We take the mean of these distributions across all nodes in
the phylogeny as well as the confidence intervals, which help
us integrate the uncertainty of our time estimates!
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GBM = Geometric Brownian Motion (Autocorrelated rates model)

ILN = Independent lognormal (Independent rates model)
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Why are evolutionary timelines useful?

= The molecular clock has been key to understanding the relationship between
evolutionary rates and divergence times.

= The clock only holds for closely-related species, and thus relaxing the clock is required
for most current analyses with large genomic datasets.

= Bayesian approaches are the main chosen methods for clock-dating analyses given
how easy it is to integrate the uncertainty on model parameters (e.g., rates and times)
through the usage of priors.

= Studying Earth’s biodiversity and testing contentious macroevolutionary questions

within the fields of evolution, ecology, and even conservation are the main applications
of evolutionary timelines.
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Which software can we use to
infer evolutionary timelines?



Software for timetree inference

» MCMCtree (part of PAML, Yang 2007).

» McmcDate (Schrempf et al. [unpublished]; see Harris et al. 2022 for First application).
» PhyloBayes (Lartillot and Philippe, 2004; but see also Lartillot 2020).

» MrBayes (Huelsenbeck and Ronquist, 2001).

» BEAST (Suchard etal., 2018) and BEAST2 (Bouckaert et al., 2019).

» RevBayes (Hoéhna et al,, 2016).
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https://academic.oup.com/mbe/article/24/8/1586/1103731
https://github.com/dschrempf/mcmc-date
https://www.nature.com/articles/s41559-022-01885-x#MOESM1
https://academic.oup.com/mbe/article/21/6/1095/1050747?login=false
https://hal.science/hal-02535342/file/chapter_1.5_lartillot_tool.pdf
https://academic.oup.com/bioinformatics/article/17/8/754/235132
https://academic.oup.com/ve/article/4/1/vey016/5035211?login=true
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006650
https://academic.oup.com/sysbio/article/65/4/726/1753608

Software for timetree inference

» MCMCtree (part of PAML, Yang 2007).

» McmcDate (Schrempf et al. [unpublished]; see Harris et al. 2022 for first application).
» PhyloBayes (Lartillot and Philippe, 2004; but see also Lartillot 2020).

» MrBayes (Huelsenbeck and Ronquist, 2001).

» BEAST (Suchard etal.,2018) and BEAST2 (Bouckaert et al., 2019).

» RevBayes (Hoéhna et al,, 2016).

MCMCtree and McmcDate are the only two software (at the time of writing)
that have implemented an approximation to the likelihood calculation that

enables large phylogenomic datasets to be analysed using a reasonable
number of computational resources for a reasonable amount of time (e.g.,
from days to a month or few months, depending on data size).

NOTE: we will learn how to run MCMCtree during the next practical session! g


https://academic.oup.com/mbe/article/24/8/1586/1103731
https://github.com/dschrempf/mcmc-date
https://www.nature.com/articles/s41559-022-01885-x#MOESM1
https://academic.oup.com/mbe/article/21/6/1095/1050747?login=false
https://hal.science/hal-02535342/file/chapter_1.5_lartillot_tool.pdf
https://academic.oup.com/bioinformatics/article/17/8/754/235132
https://academic.oup.com/ve/article/4/1/vey016/5035211?login=true
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006650
https://academic.oup.com/sysbio/article/65/4/726/1753608

SO...

How does this approximation
work in MCMCtree!



Bayesian statistics applied to molecular-clock dating analyses

posterior X prior X likelihood

f(t,r|D) x fDlt,r)

WHY DOES IT TAKE SO LONG TO ESTIMATE THE POSTERIOR
WITH PHYLOGENOMIC DATA?

D = molecular data

t = vector of divergence times

r = vector of molecular rates

0 = vector of other unknown parameter/s
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Bayesian statistics applied to molecular-clock dating analyses

posterior X prior X|likelihood
f@,r|D) o f(O)f(r| ) f(DIt, 1)

BECAUSE THE TIME TO CALCULATE THE LIKELIHOOD
IS PROPORTIONAL TO THE NUMBER OF
SITE PATTERNS IN THE ALIGNMENT!

D = molecular data

t = vector of divergence times

r = vector of molecular rates

0 = vector of other unknown parameter/s

37



Bayesian statistics applied to molecular-clock dating analyses

posterior X prior X|likelihood
f@,r|D) o f(O)f(r| ) f(DIt, 1)

HOW CAN WE SPEED THINGS UP WITH PHYLOGENOMIC DATA?
APPROXIMATE THE LIKELIHOOD CALCULATION

D = molecular data

t = vector of divergence times

r = vector of molecular rates

0 = vector of other unknown parameter/s
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Approximate Likelihood Calculation on a
Phylogeny for Bayesian Estimation of

Approximating the likelihood calculation pivergence Times

Mario dos Reis, Ziheng Yang ™ Author Notes

Molecular Biology and Evolution, Volume 28, Issue 7, July 2011, Pages 2161-
2172, https://doi.org/10.1093/molbev/msr045

Use Taylor expansion of the log-likelihood: published: 10 February 2011

a) Vector of branch lengths (substitutions/site): b = {b; = t;7;}
Molecular rate on branch j: r;
Time duration of /-th branch: ¢;

b) Log-likelihood as a function of branch lengths: i((b) = log f(D| t, 1)

c) Taylor expansion around MLEs of branch lengths:

f(D|t,r) > I(b) = I(b) + g"(b—b) + %AbTH(b -b)

MLEs branch lengths: b
Vector of first derivatives, gradient: g = {g;}

Matrix of second derivatives, Hessian: H = {Hij}
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Approximating the likelihood calculation

Things to consider when approximating the likelihood calculation:

Remove taxa and/or partitions with very long (“infinite") branches.
Infinite values are outside the parameter space

Re-estimate branch lengths, Hessian, and gradient if testing another tree
topology.

Co-estimation of tree topology and divergence times is not possible.

Approximate Likelihood Calculation on a

Phylogeny for Bayesian Estimation of
Divergence Times
Mario dos Reis, Ziheng Yang ™ Author Notes

Molecular Biology and Evolution, Volume 28, Issue 7, July 2011, Pages 2161-
2172, https://doi.org/10.1093/molbev/msr045
Published: 10 February 2011
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b
8

H

Approximating the likelihood calculation

93
CCOCCOCCOeeeecc(tax_1: 0.349172, ((tax_2: 0.090297, tax_3: 0.100873): 0.009834, (tax_4: 0.173676, (tax_5: 0.087587 [...]

0.006541 0.014905 0.017282 0.007034 0.006182 0.023338 0.012032 0.000748 0.035520 0.019296 0.010760 0.021452[...]
0 0.030360 0.009750 -0.010872 0.011271 -0.013595 -0.008532 0.010353 0.007271 0.000000 -0.005711 -0.013245 -0.018805 [...]

Hessian

-1.335e+05 -5756 -4287 -3683 -3929 -3297 -3530 -705.1 -898.9 -1087 -88.77
-5756 -4.899e+04 -2.452e+04 -1.373e+04 -1.249e+04 -8949 -9603 -5567 -4159 -3205 -3696
-4287 -2.452e+04 -6.025e+04 -1.976e+04 -1.453e+04 -1.27e+04 -8261 -7463 -6004 -3632 -2125

-3683 -1.373e+04 -1.976e+04 -1.017e+05 -3.662e+04 -2.088e+04 -9936 -7531 -6141-1.196e+04 -3645
[...]

CALCULATED BY BASEML (nuc) OR CODEML (prot)!

MLEs branch lengths: b
Vector of first derivatives, gradient: g = {g;}

Matrix of second derivatives, Hessian: H = {Hl-j}
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Approximating the likelihood calculation

MCMCtree WILL USETHATTO
APPROXIMATE THE LIKELIHOOD CALCULATION!

CALCULATED BY BASEML (nuc) OR CODEML (prot)!

MLEs branch lengths: b

Vector of first derivatives, gradient: g = {g;}
Matrix of second derivatives, Hessian: H = {Hl-j}
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Time for questions
©



Let’s get ready for the
practical session !



PAML GitHub:
https://github.com/abacus-gene/paml

oAV doc:
BAYESIAN TIMETREE INFERENCE
with MCMCtree
MCMCtree

https://groups.google.com/g/pamlsoftware
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https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf

To learn more and see other examples, please check:

Step 0: data formatting =) PAML Wik

PAML docs

To ease the analyses with MCMCtree, we need to format the raw data:

= Tree Ffile:

o Calibrated tree (MCMCtree): Newick format without branch lengths or other types
of labels except for the calibrations (e.g., soft bounds, skew-t, etc.).

4 1
(spl1, ((sp2,sp3)'B(4.12,4.52)"',sp4))"'ST(5.83,0.059,0.112,109.124)°;

o Uncalibrated tree (BASEML or CODEML): Newick format without branch lengths or
any type of label (i.e., just the tree topology).

4 1
(spl, ((sp2,sp3),sp4));
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https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf

To learn more and see other examples, please check:

Step 0: data formatting PAML Wiki

PAML docs

To ease the analyses with MCMCtree, we need to format the raw data:

= Types of calibrations (brief overview!):

Calibration _______ Nottion ______

Lower/Minimum bound (L) ‘>0.06’ equals to ‘L(0.06)’
* There are other notations
Upper/Maximum bound (U) >0.08’ equals to ‘U(0.08)’
*There are other notations
Lower+Upper/Min+Max bounds (B) >0.06<0.08’ equals to ‘B(0.06,0.08)’
*There are other notations
Gamma (G) ‘G(alpha, beta)’
Sew normal (SN) ‘SN(location, scale, shape)’
Skew t (ST) ‘ST(location, scale, shape, df)’
S2N (Swek 2 normal) ‘SN2(p1, locl, scalel, shapel, locs2,

scale2, shape2)’
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https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf

Step 0: data formatting

To learn more and see other examples, please check:
PAML Wiki
PAML docs

To ease the analyses with MCMCtree, we need to format the raw data:

= Tree file:

o Calibrated tree (MCMCtree): Newick format without branch lengths or other types
of labels except for the calibrations (e.g., soft bounds, skew-t, etc.).

o Uncalibrated tree (BASEML or CODEML): Newick format without branch lengths or

any type of label (i.e., just the tree topology).

= Alignment file: PHYLIP format, one sequence per row/line.

4

spl
Sp2
sp3
sp4

609

TTTAGTGTGCTTATTAGGTTAGAATTATCGGCT
TTTAGTATGTTAATTAGATTAGAGTTGTCTGGC
TTTAGTTTATTGATAAGATTAGAGCTATCAGGA
TTTAGTGTGCTTATTAGGTTAGAATTATCGGCT

r—m . 0
. . . .
. . . .
. . . .
—_ e e
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https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf

Step |:calculating bl, gradient, and Hessian (BASEML template)

seed = -

1

seqfile = ALN

treefile

mcmcfile = mcmc.txt

outfile

ndata = 1

seqtype
usedata

model
alpha
ncatG

uvi® pH

TREE

out.txt

(V)

x* X X X% *

X X X %

Seed number. If -1, use time stamp
Path to alignment file
Path to tree file
Path to file where MCMC samples will be saved
Path to where output file will be saved
Number of partitions in the alignment It running (EODEML: . .
©: nucleotides; 1:codons; 2:Aas * Add option aaRatefile with
@: no data (prior); 1:exact likelihood; the path to the file with the
2:Approx 1nL; 3:out.BV (in.BV) rate matrix.

* Variable model:

* 0:3C69, 1:K80, 2:F81, 3:F84, 4:HKY85 * O:poisson
* alpha for gamma rates at sites « 1:proportional
* No. categories in discrete gamma . :Empirical

2
3:Empirical+F

* 6:FromCodon
8:REVaa_0
9:REVaa(nr=189)
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Step 2: running MCMCtree without data

seed = -1

seqfile = ALN
treefile = TREE
mcmcfile = mcmc.txt
outfile = out.txt

ndata = 1
seqtype = ©
usedata = 0

BDparas =11 0.1
rgene_gamma = ALPHA BETA
sigma2_gamma = ALPHA BETA
print = 1

burnin = 100000
sampfreq = 1000
nsample = 20000

x* X X X% *

X X X %

X X %X %X % * X X

Seed number. If -1, use time stamp

Path to alignment file

Path to tree file

Path to file where MCMC samples will be saved
Path to where output file will be saved

Number of partitions in the alignment
©: nucleotides; 1l:codons; 2:Aas

@: no data (prior); 1l:exact likelihood;
2:Approx 1nL; 3:out.BV (in.BV)

birth, death, sampling

gammaDir prior for rate for genes

gammaDir prior for sigma”2 (for clock=2 or 3)
@: no mcmc sample; 1: everything except
branch rates 2: everything

Samples to discard as part of burn-in phase
Sampling frequency

Total number of samples to collect during the MCMC
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Step 3:assessing chain convergence and ESS

Frequency
w 5 @ @ ~
<] & ] 2 =]
3 5] 3 53 ]

0
=}
<

=]
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o

02

Bad and slow mixing

Ll

aQ)

03 0.35 04 045
m{2}

Better and more efficient

meanRate

25

0.5

Bad convergence

Orun1
Orun 2
Erun 3
Erun 4
EMrun5
Hrun 6

Alpha(7]

35

5000

30001

2000

Better convergence

Orun 1
O run 2
Brun 3
B run 4
Brun5
Hrun 6

run 2, mean divergence times

run 2, mean divergence times

Bad convergence

™ e ®9
e ]
e () ® [ ]
[ ]
L ]
L oo Py
[ ]

0.5 1

run 1, mean divergence times

Better convergence
' A

&%

0.5 —

0 0.5 1

run 1, mean divergence times
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Step 4: comparing calibration densities VS marginal densities

—— Calibration density
— Marginal density

—— Calibration density
—— Marginal density

AN
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Step 5: timetree inference with MCMCtree (approx.InL)

seed = 1

seqfile = ALN
treefile = TREE
mcmcfile mcmc . txt
outfile out.txt

ndata = 1

seqtype
usedata

Il
(oY)

2 ./in.BV

clock
model
alpha
ncatG =
cleandata =
BDparas =1 0.1
rgene_gamma ALPHA BETA
sigma2_gamma = 1 10
print = 1

o n
Ui oo b W
Ul

n =

burnin = 100000
sampfreq = 1000
nsample = 20000

X ¥ % X *

X ¥ ¥ X X X X X ¥ K A K X X % X *

Seed number. If -1, use time stamp
Path to alignment file

Path to tree file

Path to file where MCMC samples will b
Path to where output file will be save

Number of partitions in the alignment
©: nucleotides; 1l:codons; 2:Aas

@: no data (prior); 1l:exact likelihood
2:Approx 1nL; 3:out.BV (in.BV)

1: STR; 2: ILN; 3: GBM

0:3JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha for gamma rates at sites

No. categories in discrete gamma
remove sites with ambiguity data (1:ye
birth, death, sampling

gammaDir prior for rate for genes
gammaDir prior for sigma”2 (for clock=
@: no mcmc sample; 1: everything excep
branch rates 2: everything

Samples to discard as part of burn-in
Sampling frequency

Total number of samples to collect dur

If running the exact likelihood (i.e.,

Felsenstein’s approach):

* You will not run BASEML or CODEML
(ignore step 1).

» After step 0 and steps 2-4, go to step 5,
but set usedata = 1.

* You will need to add two variables in
the control file after BDparas:

* kappa_gamma (prior on
transition/transversion ratio, k).
Requires ALPHA and BETA as
rgene_gamma & sigma2_gamma.

* alpha_gamma (prior on o, gamma
shape parameter for variable rates
among sites). Requires ALPHA and
BETA as rgene_gamma &
sigma2_gamma.

* You will run only MCMCtree, feasible
with short alignments (will take longer
than the approx. method).
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Step 5: timetree inference with MCMCtree (approx.inlL)

93

: 1:0.349172, 2:0.090297, 3:0.100873): 0.009834, 4:0.173676,
Seed number. If -1, use time stamp (tttea (fx i ’ (fox

0.006541 0.014905 0.017282 0.007034 0.006182 0.023338 0.012032 0.000748 0.035520 0.019296...]

. .
Path to ali gnmen t file 0 0.030360 0.009750-0.010872 0.011271 -0.013595 -0.008532 0.010353 0.007271 0.000000 -0.005711 - [...]

seed = 1
seqfile = ALN

X ¥ % X *

treefile = TREE Path to tree file e
mcmcfile = mcmc.txt Path to file where MCMC samples will b iasees sme o oo e s s gses aow s H
outfile = out.txt Path to where output file will be save i;‘élié 13736404 1 976er08 L O17er05 56026004 20806004 935 753 -6L41-L1960008 3645
ndata = 1 * Number of partitions in the alignment
seqtype = © * @: nucleotides; 1:codons; 2:Aas A T 1 T
usedata = 2 * @: no data (prior); 1l:exact likelihood; [(b) = l(b) + 8 Ab"’EAb HADb
* 2:Approx 1nL; 3:out.BV (in.BV)
clock = 3 * 1: STR; 2: ILN; 3: GBM Options model, alpha,
4 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85 and ncatG are ignored if
0. * alpha for gamma rates at sites an in.BV fileis used -
5 * No. categories in discrete gamma

BASEML/CODEML

cleandata = @ remove sites with ambiguity data (l:yes, ©:no)? .

BDparas = 1 1 0.1 birth, death, sampling estimated the br‘-fmCh
rgene_gamma = ALPHA BETA * gammaDir prior for rate for genes lengths, the gradient,
sigma2_gamma = 1 10 gammaDir prior for sigma”2 (for clock=2 or 3) and the Hessian under
print = 1 ©: no mcmc sample; 1: everything except these settings already!

branch rates 2: everything

Samples to discard as part of burn-in phase
Sampling frequency

Total number of samples to collect during the MCMC

burnin = 100000
sampfreq = 1000
nsample = 20000

X ¥ ¥ X X ¥ X ¥
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Step 6: assessing chain convergence and ESS
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Better convergence
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Bad convergence
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[ ]
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Better convergence
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0.5 —

0 0.5 1

run 1, mean divergence times
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LET’S DO THIS!

https://github.com/abacus-gene/paml-tutorial/tree/main/mcmctree-approxlnL-aa

1. Clone and save the repository in your preferred location both in your PC and the server:

git clone https://github.com/abacus-gene/paml-tutorial/

2. IFyou goinside the new cloned repository (I E I ERRI IS EN) and type I, you will see
various folders for different tutorials. Please access folder by typing

ool I J=T-BFTs] ]I ANIREF] Lo check the tutorial for today’s practical session.

3. Ifyou had already cloned it, please go to directory BEINERILI =N and type (SRR to
update the content —just in case there have been some changes in the code since the last time

you cloned the repository!

4. Lastly, follow the README.md from your laptop (e.g., text or
source code editor such as Visual Studio Code) or from the —
web browser and... Happy timetree inference! ‘

56



Further reading k. |

-8 -
GLILCER  © Zhens e
Hige = [Volecular

8y Cvolution

> "“Molecular Evolution: a statistical approach”, Yang (2014); see chapter 10.

o ceo)
it

» Check Nascimento, dos Reis, and Yang (2017, Nat Ecol Evol, 1:1446-1454) for more details on
Bayesian phylogenetic analyses and MCMC diagnostics.

> For a general review on molecular clock-dating in the genomics era, please read
dos Reis M, Donoghue PCJ and Yang Z. (2016) Nature Reviews Genetics, 17: 71-80.

> For areview on Bayesian phylogenomic dating, please read
Alvarez-Carretero S, and dos Reis M. (2021) In: Ho S (ed.) The Molecular Evolutionary Clock:
Theory and Practice. Springer.
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https://www.nature.com/articles/s41559-017-0280-x
https://www.nature.com/articles/nrg.2015.8
https://link.springer.com/chapter/10.1007/978-3-030-60181-2_13
https://link.springer.com/chapter/10.1007/978-3-030-60181-2_13
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Resources consulted to generate these slides

CONTENT

| have assembled these slides by...
« ... adapting material and resources taught in this module in previous years.
* ... reusing material from previous seminars/workshops | have taught and/or
created from scratch For this lecture.
... consulting Prof Yang's book and the resources | was given while a participant at
the CoME workshop in 2017 (Hinxton).

IMAGES

Images used are...
 ...drawn/designed by me using Power Point or generated in R.
 ...reused from previous material and/or extracted from cited papers and/or sites.
... acombination of the above.
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