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• Parameters to be estimated during timetree inference.

• Building intuition to set up the time prior using fossil/geological evidence.

• Building intuition to set up the rate prior.

• Why do we care about evolutionary timelines?

• Software for timetree inference.

• Approximating the likelihood calculation with MCMCtree.

What will we be covering during this session?
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WHERE ARE WE

in the phylogenetics workflow?



1. COLLECTING THE DATA

DOWNLOAD ORTHOLOGS  
FROM DATABASES

Raw reads

Filtered reads

2. FILTER RAW READS AND
    QUALITY CONTROL (QC)

3. ASSEMBLE FILTERED
    READS AND QC

1. SEQUENCE SAMPLES AND OBTAIN RAW READS

5. INFER AND KEEP ONLY
    ORTHOLOGOUS GENES

Orthologs

SEQUENCE ALIGNMENT

...

4. GENE ANNOTATION
Genome assembly

Gene A Gene B Gene C Gene D

MODEL SELECTION

Apply preferred partitioning scheme if needed

Autocorrelated rate 
evolution

Independent rate 
evolution

How does the evolutionary rate evolve?

PHYLOGENY RECONSTRUCTION

INFERRING EVOLUTIONARY TIMELINE
(divergence times)

+
Species 1

Species 2 

Species 3

Species 4

Species 5

   ...

Species 1

Species 2 

Species 3

Species 4

Species 5

   ... ...

Species 1

Species 2 

Species 3

Species 4

Species 5

   .........
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𝐿
Ñ
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β β · α

β β α ·

K80

𝐿𝐿𝐹𝐹𝐹𝐿𝐿
𝐿
Ñ

·   απC βπA βπG
απT · βπA βπG
βπT βπC · απG
βπT βπC απA ·

HKY85

What substitution model do we need to use?

Some examples for nucleotide data:

...
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Revisiting 
The Bayes’ Theorem

with a focus on timetree inference
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𝑷 𝒑𝒂𝒓𝒂𝒎 𝒅𝒂𝒕𝒂 =
𝑷(𝒑𝒂𝒓𝒂𝒎)𝑷(𝒅𝒂𝒕𝒂|𝒑𝒂𝒓𝒂𝒎)

𝑷(𝒅𝒂𝒕𝒂)

𝒇 𝜽 𝑫 =
𝒇(𝜽)𝒇(𝑫|𝜽)

𝒇(𝑫)
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The Bayes’ Theorem in timetree inference



𝑷 𝒑𝒂𝒓𝒂𝒎 𝒅𝒂𝒕𝒂 =
𝑷(𝒑𝒂𝒓𝒂𝒎)𝑷(𝒅𝒂𝒕𝒂|𝒑𝒂𝒓𝒂𝒎)

𝑷(𝒅𝒂𝒕𝒂)

𝒇 𝜽 𝑫 =
𝒇(𝜽)𝒇(𝑫|𝜽)

𝒇(𝑫)

𝜽 = ?

The Bayes’ Theorem in timetree inference
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If available, fossils can be informative about times!

If available, phylogenies (topology+branch lengths) can 
be informative about the rate!
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C

0.1𝐔𝐧𝐤𝐧𝐨𝐰𝐧 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬

What could 𝜽 be?

E.g., divergence times, evolutionary rate, tree topology, etc.



What could 𝜽 be?

E.g., divergence times, evolutionary rate, tree topology, etc.

𝜽 = ? 𝐔𝐧𝐤𝐧𝐨𝐰𝐧 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬

What could 𝑫 be?

E.g., molecular alignment, fixed tree topology, etc.

𝐷 = 𝐃𝐚𝐭𝐚

𝑷 𝒑𝒂𝒓𝒂𝒎 𝒅𝒂𝒕𝒂 =
𝑷(𝒑𝒂𝒓𝒂𝒎)𝑷(𝒅𝒂𝒕𝒂|𝒑𝒂𝒓𝒂𝒎)

𝑷(𝒅𝒂𝒕𝒂)
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0.1
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0.2

A

B
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0.1

Prior information on 𝜃

The Bayes’ Theorem in timetree inference

𝒇 𝜽 𝑫 =
𝒇(𝜽)𝒇(𝑫|𝜽)

𝒇(𝑫)



What could 𝜽 be?

E.g., divergence times, evolutionary rate, etc.

𝜽 = ? 𝐔𝐧𝐤𝐧𝐨𝐰𝐧 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬

𝐷 = 𝐃𝐚𝐭𝐚

𝑷 𝒑𝒂𝒓𝒂𝒎 𝒅𝒂𝒕𝒂 =
𝑷(𝒑𝒂𝒓𝒂𝒎)𝑷(𝒅𝒂𝒕𝒂|𝒑𝒂𝒓𝒂𝒎)

𝑷(𝒅𝒂𝒕𝒂)
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0.1

0.1

0.2

A

B

C

0.1

Prior information on 𝜃

Fossils can be data in tip-dating analyses, but we 
will not cover tip dating due to time limitations

What could 𝑫 be?

E.g., molecular alignment, fixed tree topology, etc.

The Bayes’ Theorem in timetree inference

𝒇 𝜽 𝑫 =
𝒇(𝜽)𝒇(𝑫|𝜽)

𝒇(𝑫)



𝑷 𝒑𝒂𝒓𝒂𝒎 𝒅𝒂𝒕𝒂 =
𝑷(𝒑𝒂𝒓𝒂𝒎)𝑷(𝒅𝒂𝒕𝒂|𝒑𝒂𝒓𝒂𝒎)

𝑷(𝒅𝒂𝒕𝒂)

𝜽 = ?
𝐷 =

𝒇  =
𝒇  𝒇  

𝒇  

Unknown parameters. E.g. in node−dating analyses: divergence times, evolutionary rate

Data. E.g., in node−dating analyses: molecular data, fixed tree topology

EXAMPLE:
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? ? ?
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Prior information on 𝜃

The Bayes’ Theorem in timetree inference

𝒇 𝜽 𝑫 =
𝒇(𝜽)𝒇(𝑫|𝜽)

𝒇(𝑫)



Introduction

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 =
𝒑𝒓𝒊𝒐𝒓 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

(𝒎𝒂𝒓𝒈𝒊𝒏𝒂𝒍 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅)

CONDITIONAL PROBABILITY  IN BAYES’ THEOREM

𝒇 𝒕, 𝒓, 𝜽 𝐷 =
𝒇 𝜽 𝒇 𝒕 𝒇 𝒓 𝒕, 𝜽) 𝒇 𝐷 𝒕, 𝒓, 𝜽

𝒇(𝐷) 

Bayesian statistics applied to timetree inference analyses
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𝐷 = molecular data
𝒕 = vector of divergence times
𝒓 = vector of molecular rates
𝜽 = vector of other unknown parameter/s

𝒇  =
𝒇  𝒇  

𝒇  ? ? ?
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Introduction

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 =
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CONDITIONAL PROBABILITY  IN BAYES’ THEOREM

Μarkov Chain Monte Carlo (MCMC)

Bayesian statistics applied to timetree inference analyses
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0.    Set initial value for model parameters to be estimated. In addition, specify number of iterations, n, and create vector 
theta to collect sampled values.

1. Calculate prior, 𝑓(𝜃).

2. Calculate likelihood, 𝑓 𝑥 𝜃 .

3. Calculate unnormalised posterior (i.e., 𝑓 𝜃 𝑥  = 𝑓(𝜃) × 𝑓 𝑥 𝜃 ).

4. Proposal: sample a random parameter value under a uniform

distribution (or another) to get the new proposal ෠𝜃. If ෠𝜃 < 0, then ෠𝜃 = − ෠𝜃.

5. Calculate prior’,𝑓( ෠𝜃), likelihood’, 𝑓 𝑥 ෠𝜃 , and unnormalised posterior’ with new proposed value ෠𝜃, 𝑓 ෠𝜃 𝑥 .

6. Accept or reject ෠𝜃 value. If accepted, 𝜃  ෠𝜃. Otherwise, keep initial value for the next iteration 𝜃  𝜃.

7. Save value of θ in vector theta.

8. Repeat 1-7 n times with final θ  according to step 7.

9. Return vector theta with sampled θ  values. Plot traces, histograms, etc. to assess chain mixing, efficiency, and 

convergence).

Markov Chain Monte Carlo – how does it work?

θ

w

θ + w / 2 θ – w  / 2 

෠𝜃
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Our parameters of interest θ  are now divergence times, 𝒕,  and evolutionary rates, 𝒓 ! 



How can we estimate

rates and times?

SO…
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Understanding the molecular clock

Divergence times(t)

When two species are biologically distinct, they have diverged

Evolutionary rate (r)

How often do mutations accumulate through time?

Branch lengths are like a 
“clock”: they help us 
understand when and at 
which rate evolution has 
taken place

Hominidae
(hominids)

Human

Gorilla

Orangutan

bH-C

Chimpanzee
Hominini

Homininae

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Past Present

bH-Hu

bHo-H

bHo-G

bHd-Ho

bHd-O
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Understanding the molecular clock

Hominidae
(hominids)

Human

Gorilla

Orangutan

Chimpanzee
Hominini

Homininae

PROBLEM: current methods 
estimate branch lengths, and so 
times and rates are confounded! 

6 = rH-C x tH-C

6 = 1 x 6

6 = 6 x 1

6 = 2 x 3
. . .

Let’s imagine there are 6 mutations per site 
per time unit:

More than one 
plausible solution…

We need additional 
info to estimate rates 
and times separately!

bH-C Branch length Hominini-Chimpanzee
bH-C = rH-C x tH-C

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Past Present
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Hominidae
(hominids)

Human

Gorilla

Orangutan

Chimpanzee
Hominini

Homininae

Calibrating the molecular clock

EXAMPLE
▪ †Sahelanthropus, common ancestor

of chimpanzee and human
▪ Minimum age: 5.333 Ma 
▪ Maximum age: 7.246 Ma
▪ If more than one specimen, we use the 

oldest! 

Thanks to a priori information, we 
can integrate the uncertainty about 
estimates of divergence times, 
evolutionary rates, and branch 
lengths through the usage of PRIORS

bH-C

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Past Present

PHYLOGENIES CAN BE USEFUL!

We can estimate 
the evolutionary 
rate or use other 
people’s 
estimated values!

FOSSIL/GEOLOGICAL EVIDENCE CAN BE USEFUL!
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TIME PRIOR
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Where can we get fossil information?

➢Search the literature. E.g., relevant papers published about the fossil specimen you want to 
incorporate in your study

➢Collaborate with experts (palaeontologists, geologists, etc.)

➢Use the Paleobiology Database (PBDB): this is the main database that you can use to track 
the many fossil specimens that have been discovered and catalogued and is the main site to 
store fossil information! URL: https://paleobiodb.org/

17
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Hominidae
(hominids)

Human

Gorilla

Orangutan

Past

Chimpanzee
Hominini

Homininae

Present

7.246Ma           5.333Ma

E.g.: possible 
“priors” to 
integrate the 
uncertainty about 
the fossil record

bH-C

Setting the time prior

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Thanks to a priori information, 
we can integrate the 
uncertainty about estimates of 
divergence times, evolutionary 
rates, and branch lengths 
through the usage of PRIORS
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𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

7.246Ma      5.333 Ma

Uncertainty in the fossil 
record to estimate 𝒕 

TIME PRIOR (𝒕) 

Human

Chimpanzee

Hominini

More plausible divergence times,  tH-C

Setting the time prior

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
Less plausible divergence times, tH-C 

Probability decreases with a tail 
percentage of ~2.5%!
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Human

Chimpanzee

Hominini

By using ONLY our knowledge on the 
fossil record, our mean estimated 
divergence time is ҧ𝒕

 H-C  = 6.29 Myr before 

we add molecular data in the analysis

Setting the time prior

Human

Chimpanzee

Hominini

Uncertainty in the fossil 
record to estimate 𝒕 

TIME PRIOR (𝒕) 

ҧ𝒕
 H-C ≈ 𝟔. 𝟐𝟗 Myr

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

ҧ𝒕 ≈ 𝟔. 𝟐𝟗 Myr

7.246Ma      5.333 Ma

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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Human
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By using ONLY our knowledge on the 
fossil record, our mean estimated 
divergence time is ҧ𝒕

 H-C  = 6.29 Myr before 

we add molecular data in the analysis
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Hominini
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 H-C ≈ 𝟔. 𝟐𝟗 Myr

branch length = evolutionary rate x divergence time
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𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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NOTE: this is just an example to 
build intuition on how you could 
gain some prior information on 
the divergence times of a node 
without using sequence data; the 
time prior we use in timetree 
inference is actually more 
complicated than that!



RATE PRIOR
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RATE PRIOR (𝒓) 

ത𝒓 ≈ 0.002 s/s/t

Gorilla

Setting the rate prior

+ Phylogeny Inference Software

7.246 Ma      5.333 Ma

ҧ𝒕
 H-C ≈ 𝟔. 𝟐𝟗 Myr

rH-C = bH-C / tH-C = 0.02 subst/site / 8.25 Myr 

Hominidae
(hominids)

Human

Orangutan

Homininae Chimpanzee

broot-O = 0.08

broot-He = 0.03

bHe-G = 0.03

Hominini

bHe-H = 0.01

bH-C = 0.02

b (tree height) = 0.08

bH-Hn = 0.02

rH-C = 0.002 subst/site/Myr 

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

bH-C = rH-C x tH-C

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

By combining our prior 
on times ( ҧ𝒕

 H-C ) and our 

recently gained 
knowledge on the 
branch lengths 

( ෡𝒃H-C ), our estimated 

mean rate before we 
include molecular data 
in the analysis is
ത𝒓H-C  = 0.002 s/s/Myr

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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RATE PRIOR (𝒓) 

ത𝒓 ≈ 0.002 s/s/t

Gorilla

Setting the rate prior

+ Phylogeny Inference Software

Hominidae
(hominids)

Human

Orangutan

Homininae Chimpanzee

broot-O = 0.08

broot-He = 0.03

bHe-G = 0.03

Hominini

bHe-H = 0.01

bH-C = 0.02

b (tree height) = 0.08

bH-Hn = 0.02

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

By combining our prior 
on times ( ҧ𝒕

 H-C ) and our 

recently gained 
knowledge on the 
branch lengths 

( ෡𝒃H-C ), our estimated 

mean rate before we 
include molecular data 
in the analysis is
ത𝒓H-C  = 0.002 s/s/Myr

The clock only holds for closely-related species, 
otherwise, it is violated -- not a good hypothesis!

Current approaches use relaxed-clock models to 
allow for the fact that species in a phylogeny may 
evolve at different rates!

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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RATE PRIOR (𝒓) 
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b (tree height) = 0.08

bH-Hn = 0.02

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

The clock only holds for closely-related species, 
otherwise, it is violated -- not a good hypothesis!

Current approaches use relaxed-clock models to 
allow for the fact that species in a phylogeny may 
evolve at different rates!

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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NOTE: this is just an 
example to build 
intuition on how you 
could gain some prior 
information on a given 
branch rate; the rate 
prior we use in 
timetree inference is 
actually more 
complicated than that!



Hominidae
(hominids)

Human

Gorilla

Orangutan

Chimpanzee
Hominini

Homininae

RATE PRIOR (𝒓) 

Uncertainty in the fossil 
record to estimate 𝒕 

BRANCH LENGTH 
UNCERTAINTY

ഥ𝒃 ≈ 0.02 s/s

Combined uncertainty 
in estimates of 𝒕 and 𝒓 
(i.e., 𝒃 = 𝒓 x 𝒕) 

TIME PRIOR (𝒕) 

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

tH-C = 8.25 Myr
rH-C = 0.02 s/s/Myr?

ത𝒓 ≈ 0.002 s/s/t

Likelihood

ҧ𝒕 ≈ 𝟔. 𝟐𝟗 Myr

7.246Ma      5.333 Ma

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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Hominidae
(hominids)

Human

Gorilla

Orangutan

Chimpanzee
Hominini

Homininae

RATE PRIOR (𝒓) 

Uncertainty in the fossil 
record to estimate 𝒕 

BRANCH LENGTH 
UNCERTAINTY

ഥ𝒃 ≈ 0.02 s/s

Combined uncertainty 
in estimates of 𝒕 and 𝒓 
(i.e., 𝒃 = 𝒓 x 𝒕) 

TIME PRIOR (𝒕) 

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

tH-C = 8.25 Myr
rH-C = 0.02 s/s/Myr?

ത𝒓 ≈ 0.002 s/s/t

Likelihood

ҧ𝒕 ≈ 𝟔. 𝟐𝟗 Myr

7.246Ma      5.333 Ma

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)
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NOTE: this is just an 
example to build intuition 

on how you could calculate 
the likelihood given your 
updated knowledge on rates 
and times; the likelihood 
function we use in timetree 
inference is actually more 
complicated than that!



RATE PRIOR (𝒓) 

Uncertainty in the fossil 
record to estimate 𝒕 

BRANCH LENGTH 
UNCERTAINTY

ഥ𝒃 ≈ 0.02 s/s

Combined uncertainty 
in estimates of 𝒕 and 𝒓 
(i.e., 𝒃 = 𝒓 x 𝒕) 

TIME PRIOR (𝒕) 

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

tH-C = 8.25 Myr
rH-C = 0.02 s/s/Myr?

ത𝒓 ≈ 0.002 s/s/t

Posterior (𝒕, 𝒓) 

Estimate mean posterior 𝒕 and 
𝒓, and corresponding CIs!

Human

Chimpanzee

Hominini

PRIOR
 ҧ𝒕

 H-C ≈ 𝟔. 𝟐𝟗 Myr

 ത𝒓
 H-C ≈  𝟎. 𝟎𝟎𝟐 s/s/Myr

POSTERIOR    ҧ𝒕
 H-C ≈ 𝟓. 𝟓 Myr

                        ത𝒓
 H-C ≈  𝟎. 𝟎𝟎𝟑 s/s/Myr

+ ҧ𝒕 ≈ 𝟔. 𝟐𝟗 Myr

7.246Ma      5.333 Ma

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)

Estimating posterior densities (rates and times)
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RATE PRIOR (𝒓) 

Uncertainty in the fossil 
record to estimate 𝒕 

BRANCH LENGTH 
UNCERTAINTY

ഥ𝒃 ≈ 0.02 s/s

Combined uncertainty 
in estimates of 𝒕 and 𝒓 
(i.e., 𝒃 = 𝒓 x 𝒕) 

TIME PRIOR (𝒕) 

Uncertainty in e.g. data, 
branch lengths, etc. used 
to estimate 𝒓

tH-C = 8.25 Myr
rH-C = 0.02 s/s/Myr?

ത𝒓 ≈ 0.002 s/s/t

Posterior (𝒕, 𝒓) 

Estimate mean posterior 𝒕 and 
𝒓, and corresponding CIs!

Human

Chimpanzee

Hominini

PRIOR
 ҧ𝒕

 H-C ≈ 𝟔. 𝟐𝟗 Myr

 ത𝒓
 H-C ≈  𝟎. 𝟎𝟎𝟐 s/s/Myr

+ ҧ𝒕 ≈ 𝟔. 𝟐𝟗 Myr

7.246Ma      5.333 Ma

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)

Estimating posterior densities (rates and times)
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NOTE: as mentioned before, this example has been 
used with the aim to build intuition on how you 
could gain prior information on the rates and the 
times for a specific lineage, calculate the likelihood 
given your updated knowledge on the rate and the 
divergence time, and, lastly, put everything 
together to estimate the posterior densities of our 
parameters of interest. Nevertheless, estimating 
these parameters in timetree inference is of course 
much more convoluted than that!

branch length = evolutionary rate x divergence time

bH-C = rH-C x tH-C



Why do we want to infer 
evolutionary timelines?

Are they useful at all?

BUT…

26



Why are evolutionary timelines useful?

Ecology

Conservation

Evolution

Test macroevolutionary 
hypotheses

Study 

biodiversity

27



Evolutionary
timelines can help

us understand
Earth’s evolutionary

history!

© Pablo Carlos Budassi
https://pablocarlosbudassi.com/

28



© Pablo Carlos Budassi
https://pablocarlosbudassi.com/

Moon’s formation ~4.5 Ga

~66,500,000 years

LUCA(*)

Last Universal Common Ancestor

~4.2 Ga

~4,200,000,000 years

Homo sapiens
~300,000 years

2025

~66.5 Ma
K-Pg

~4,500,000,000 years
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Evolutionary timeline of LUCA

GBM = Geometric Brownian Motion (Autocorrelated rates model)
ILN = Independent lognormal (Independent rates model)

Our results look like that: time probability distributions! 
We take the mean of these distributions across all nodes in 
the phylogeny as well as the confidence intervals, which help 
us integrate the uncertainty of our time estimates!

Mean time estimate for LUCA 

~4.2 Ga

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓𝒔 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇(𝒕, 𝒓|𝑫) ∝ 𝒇(𝒕) × 𝒇(𝒓|𝒕) × 𝒇(𝑫|𝒕, 𝒓)

Posterior (𝒕, 𝒓) 

30



▪ The molecular clock has been key to understanding the relationship between 
evolutionary rates and divergence times.

▪ The clock only holds for closely-related species, and thus relaxing the clock is required 
for most current analyses with large genomic datasets.

▪ Bayesian approaches are the main chosen methods for clock-dating analyses given 
how easy it is to integrate the uncertainty on model parameters (e.g., rates and times) 
through the usage of priors.

▪ Studying Earth’s biodiversity and testing contentious macroevolutionary questions 
within the fields of evolution, ecology, and even conservation are the main applications 
of evolutionary timelines.

Why are evolutionary timelines useful?
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Which software can we use to 
infer evolutionary timelines?

32



➢ MCMCtree (part of PAML, Yang 2007).

➢ McmcDate (Schrempf et al. [unpublished]; see Harris et al. 2022 for first application).

➢ PhyloBayes (Lartillot and Philippe, 2004; but see also Lartillot 2020).

➢ MrBayes (Huelsenbeck and Ronquist, 2001).

➢ BEAST (Suchard  et al., 2018) and BEAST2 (Bouckaert et al., 2019).

➢ RevBayes (Höhna et al., 2016).

Software for timetree inference

33

https://academic.oup.com/mbe/article/24/8/1586/1103731
https://github.com/dschrempf/mcmc-date
https://www.nature.com/articles/s41559-022-01885-x#MOESM1
https://academic.oup.com/mbe/article/21/6/1095/1050747?login=false
https://hal.science/hal-02535342/file/chapter_1.5_lartillot_tool.pdf
https://academic.oup.com/bioinformatics/article/17/8/754/235132
https://academic.oup.com/ve/article/4/1/vey016/5035211?login=true
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006650
https://academic.oup.com/sysbio/article/65/4/726/1753608


➢ MCMCtree (part of PAML, Yang 2007).

➢ McmcDate (Schrempf et al. [unpublished]; see Harris et al. 2022 for first application).

➢ PhyloBayes (Lartillot and Philippe, 2004; but see also Lartillot 2020).

➢ MrBayes (Huelsenbeck and Ronquist, 2001).

➢ BEAST (Suchard  et al., 2018) and BEAST2 (Bouckaert et al., 2019).

➢ RevBayes (Höhna et al., 2016).

Software for timetree inference

MCMCtree and McmcDate are the only two software (at the time of writing) 

that have implemented an approximation to the likelihood calculation that 
enables large phylogenomic datasets to be analysed using a reasonable 
number of computational resources for a reasonable amount of time (e.g., 
from days to a month or few months, depending on data size).

NOTE: we will learn how to run MCMCtree during the next practical session!
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https://academic.oup.com/mbe/article/24/8/1586/1103731
https://github.com/dschrempf/mcmc-date
https://www.nature.com/articles/s41559-022-01885-x#MOESM1
https://academic.oup.com/mbe/article/21/6/1095/1050747?login=false
https://hal.science/hal-02535342/file/chapter_1.5_lartillot_tool.pdf
https://academic.oup.com/bioinformatics/article/17/8/754/235132
https://academic.oup.com/ve/article/4/1/vey016/5035211?login=true
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006650
https://academic.oup.com/sysbio/article/65/4/726/1753608
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SO…

How does this approximation 
work in MCMCtree?



Introduction

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇 𝒕, 𝒓 𝐷 ∝ 𝒇 𝒕 𝒇 𝒓 𝒕) 𝒇 𝐷 𝒕, 𝒓

WHY DOES IT TAKE SO LONG TO ESTIMATE THE POSTERIOR 

WITH PHYLOGENOMIC DATA?

Bayesian statistics applied to molecular-clock dating analyses

𝐷 = molecular data
𝒕 = vector of divergence times
𝒓 = vector of molecular rates
𝜽 = vector of other unknown parameter/s
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BECAUSE THE TIME TO CALCULATE THE LIKELIHOOD 

IS PROPORTIONAL TO THE NUMBER OF 

SITE PATTERNS IN THE ALIGNMENT! 

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

𝒇 𝒕, 𝒓 𝐷 ∝ 𝒇 𝒕 𝒇 𝒓 𝒕) 𝒇 𝐷 𝒕, 𝒓

Bayesian statistics applied to molecular-clock dating analyses

𝐷 = molecular data
𝒕 = vector of divergence times
𝒓 = vector of molecular rates
𝜽 = vector of other unknown parameter/s
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HOW CAN WE SPEED THINGS UP WITH PHYLOGENOMIC DATA?

APPROXIMATE THE LIKELIHOOD CALCULATION

𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 ∝ 𝒑𝒓𝒊𝒐𝒓 × 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅

Bayesian statistics applied to molecular-clock dating analyses

𝒇 𝒕, 𝒓 𝐷 ∝ 𝒇 𝒕 𝒇 𝒓 𝒕) 𝒇 𝐷 𝒕, 𝒓

𝐷 = molecular data
𝒕 = vector of divergence times
𝒓 = vector of molecular rates
𝜽 = vector of other unknown parameter/s

38



Use Taylor expansion of the log-likelihood:

a) Vector of branch lengths (substitutions/site): 𝐛 = 𝑏𝑖 = 𝑡𝑖𝑟𝑖

    Molecular rate on branch i : 𝑟𝑖

      Time duration of i-th branch: 𝑡𝑖

b) Log-likelihood as a function of branch lengths: 𝑙 𝐛 = log 𝑓(𝐷| 𝐭, 𝐫)

c) Taylor expansion around MLEs of branch lengths: 

𝒇 𝐷 𝐭, 𝒓 → 𝑙 𝐛 ≈ 𝑙 መ𝐛 + 𝐠𝑇(𝐛 − መ𝐛) +
1

2
∆𝐛𝑇𝐇(𝐛 − መ𝐛)

MLEs branch lengths:: መ𝐛
Vector of first derivatives, gradient: 𝐠 = {𝑔𝑖}

Matrix of second derivatives, Hessian: 𝐇 = {𝐻𝑖𝑗}

Approximating the likelihood calculation
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Things to consider when approximating the likelihood calculation:

▪ Remove taxa and/or partitions with very long (“infinite”) branches.
Infinite values are outside the parameter space

▪ Re-estimate branch lengths, Hessian, and gradient if testing another tree 
topology.

▪ Co-estimation of tree topology and divergence times is not possible.

Approximating the likelihood calculation
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Use Taylor expansion of the log likelihood:

a) Vector of branch lengths (substitutions/site): 𝐛 = 𝑏𝑖 = 𝑡𝑖𝑟𝑖

Molecular rate on branch i : 𝑟𝑖

Time duration of i-th branch: 𝑡𝑖

b) Log-likelihood as a function of branch lengths: 𝑙 𝐛 = log 𝑓(𝐷| 𝐭, 𝐫)

c) Taylor expansion around MLEs of branch lengths: 

𝑙 𝐛 = 𝑙 መ𝐛 + 𝐠𝑇∆𝐛 +
1

2
∆𝐛𝑇𝐇∆𝐛

MLEs branch lengths:: መ𝐛
Vector of first derivatives, gradient: 𝐠 = {𝑔𝑖}

Matrix of second derivatives, Hessian: 𝐇 = {𝐻𝑖𝑗}

መ𝐛
𝐠

𝐇

93
((((((((((((((((tax_1: 0.349172, ((tax_2: 0.090297, tax_3: 0.100873): 0.009834, (tax_4: 0.173676, (tax_5: 0.087587 […]

0.006541  0.014905  0.017282  0.007034  0.006182  0.023338  0.012032  0.000748  0.035520  0.019296  0.010760  0.021452 […]
 0  0.030360  0.009750 -0.010872  0.011271 -0.013595 -0.008532  0.010353  0.007271  0.000000 -0.005711 -0.013245 -0.018805  […]

Hessian
 -1.335e+05      -5756      -4287      -3683      -3929      -3297      -3530     -705.1     -898.9      -1087     -88.77
 -5756 -4.899e+04 -2.452e+04 -1.373e+04 -1.249e+04      -8949      -9603      -5567      -4159      -3205      -3696 
-4287 -2.452e+04 -6.025e+04 -1.976e+04 -1.453e+04  -1.27e+04      -8261      -7463      -6004      -3632      -2125
-3683 -1.373e+04 -1.976e+04 -1.017e+05 -3.662e+04 -2.088e+04      -9936      -7531      -6141 -1.196e+04      -3645
[…]

CALCULATED BY BASEML (nuc) OR CODEML (prot)!

Approximating the likelihood calculation
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Use Taylor expansion of the log likelihood:

a) Vector of branch lengths (substitutions/site): 𝐛 = 𝑏𝑖 = 𝑡𝑖𝑟𝑖

Molecular rate on branch i : 𝑟𝑖

Time duration of i-th branch: 𝑡𝑖

b) Log-likelihood as a function of branch lengths: 𝑙 𝐛 = log 𝑓(𝐷| 𝐭, 𝐫)

c) Taylor expansion around MLEs of branch lengths: 

𝑙 𝐛 = 𝑙 መ𝐛 + 𝐠𝑇∆𝐛 +
1

2
∆𝐛𝑇𝐇∆𝐛

MLEs branch lengths:: መ𝐛
Vector of first derivatives, gradient: 𝐠 = {𝑔𝑖}

Matrix of second derivatives, Hessian: 𝐇 = {𝐻𝑖𝑗}

CALCULATED BY BASEML (nuc) OR CODEML (prot)!

𝒇 𝐷 𝒕, 𝒓 → 𝑙 𝐛 ≈ 𝑙 መ𝐛 + 𝐠𝑇∆𝐛 +
1

2
∆𝐛𝑇𝐇∆𝐛

MCMCtree WILL USE THAT TO 

APPROXIMATE THE LIKELIHOOD CALCULATION!

Approximating the likelihood calculation
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Time for questions
☺
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Let’s get ready for the 

practical session !

44



BAYESIAN TIMETREE INFERENCE

with MCMCtree

45

PAML Wiki
PAML docs

PAML GitHub:
https://github.com/abacus-gene/paml

PAML Discussion Group:
https://groups.google.com/g/pamlsoftware

https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf


To ease the analyses with MCMCtree, we need to format the raw data:

▪ Tree file: 

o Calibrated tree (MCMCtree): Newick format without branch lengths or other types 

of labels except for the calibrations (e.g., soft bounds, skew-t, etc.).

 4 1
 (sp1,((sp2,sp3)'B(4.12,4.52)',sp4))'ST(5.83,0.059,0.112,109.124)’;

o Uncalibrated tree (BASEML or CODEML): Newick format without branch lengths or 

any type of label (i.e., just the tree topology).

 4 1
 (sp1,((sp2,sp3),sp4));

Step 0: data formatting

46

To learn more and see other examples, please check:
PAML Wiki
PAML docs

https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf


To ease the analyses with MCMCtree, we need to format the raw data:

▪ Types of calibrations (brief overview!): 

Step 0: data formatting

47

Calibration Notation

Lower/Minimum bound (L) ‘>0.06’ equals to ‘L(0.06)’
* There are other notations

Upper/Maximum bound (U) ‘>0.08’ equals to ‘U(0.08)’
*There are other notations

Lower+Upper/Min+Max bounds (B) ‘>0.06<0.08’ equals to ‘B(0.06,0.08)’
*There are other notations

Gamma (G) ‘G(alpha, beta)’

Sew normal (SN) ‘SN(location, scale, shape)’

Skew t (ST) ‘ST(location, scale, shape, df)’

S2N (Swek 2 normal) ‘SN2(p1, loc1, scale1, shape1, locs2, 
scale2, shape2)’

To learn more and see other examples, please check:
PAML Wiki
PAML docs

https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf


To ease the analyses with MCMCtree, we need to format the raw data:

▪ Tree file: 

o Calibrated tree (MCMCtree): Newick format without branch lengths or other types 

of labels except for the calibrations (e.g., soft bounds, skew-t, etc.).

o Uncalibrated tree (BASEML or CODEML): Newick format without branch lengths or 

any type of label (i.e., just the tree topology).

▪ Alignment file: PHYLIP format, one sequence per row/line.

4   609

sp1      TTTAGTGTGCTTATTAGGTTAGAATTATCGGCT […]

sp2      TTTAGTATGTTAATTAGATTAGAGTTGTCTGGC […]

sp3      TTTAGTTTATTGATAAGATTAGAGCTATCAGGA […]

sp4      TTTAGTGTGCTTATTAGGTTAGAATTATCGGCT […]

Step 0: data formatting

48

To learn more and see other examples, please check:
PAML Wiki
PAML docs

https://github.com/abacus-gene/paml/wiki
https://github.com/abacus-gene/paml/blob/master/doc/pamlDOC.pdf


seed = -1                 * Seed number. If -1, use time stamp
seqfile = ALN           * Path to alignment file
treefile = TREE           * Path to tree file
mcmcfile = mcmc.txt       * Path to file where MCMC samples will be saved
outfile = out.txt         * Path to where output file will be saved 

ndata = 1                 * Number of partitions in the alignment
seqtype = 0               * 0: nucleotides; 1:codons; 2:Aas
usedata = 3               * 0: no data (prior); 1:exact likelihood; 
                          * 2:Approx lnL; 3:out.BV (in.BV)
clock = 1                 * 1: STR; 2: ILN; 3: GBM
model = 4                 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5               * alpha for gamma rates at sites 
ncatG = 5                 * No. categories in discrete gamma
cleandata = 0             * remove sites with ambiguity data (1:yes, 0:no)? 
BDparas = 1 1 0.1         * birth, death, sampling
rgene_gamma = ALPHA BETA  * gammaDir prior for rate for genes
sigma2_gamma = ALPHA BETA * gammaDir prior for sigma^2 (for clock=2 or 3)
print = 1                 * 0: no mcmc sample; 1: everything except
                          * branch rates 2: everything        
burnin = 100000           * Samples to discard as part of burn-in phase
sampfreq = 1000           * Sampling frequency
nsample = 20000           * Total number of samples to collect during the MCMC

If running CODEML:
• Add option aaRatefile with 

the path to the file with the 
rate matrix.

• Variable model:
• 0:poisson
• 1:proportional
• 2:Empirical
• 3:Empirical+F
• 6:FromCodon
• 8:REVaa_0
• 9:REVaa(nr=189)

Step 1: calculating bl, gradient, and Hessian (BASEML template)
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seed = -1                 * Seed number. If -1, use time stamp
seqfile = ALN            * Path to alignment file
treefile = TREE           * Path to tree file
mcmcfile = mcmc.txt       * Path to file where MCMC samples will be saved
outfile = out.txt         * Path to where output file will be saved

ndata = 1                 * Number of partitions in the alignment
seqtype = 0               * 0: nucleotides; 1:codons; 2:Aas
usedata = 0               * 0: no data (prior); 1:exact likelihood; 
                          * 2:Approx lnL; 3:out.BV (in.BV)
clock = 1                 * 1: STR; 2: ILN; 3: GBM
model = 0                 * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5               * alpha for gamma rates at sites 
ncatG = 5                 * No. categories in discrete gamma
cleandata = 0             * remove sites with ambiguity data (1:yes, 0:no)? 
BDparas = 1 1 0.1 * birth, death, sampling
rgene_gamma = ALPHA BETA  * gammaDir prior for rate for genes
sigma2_gamma = ALPHA BETA * gammaDir prior for sigma^2 (for clock=2 or 3)
print = 1                 * 0: no mcmc sample; 1: everything except
                          * branch rates 2: everything        
burnin = 100000           * Samples to discard as part of burn-in phase
sampfreq = 1000           * Sampling frequency
nsample = 20000           * Total number of samples to collect during the MCMC

Step 2: running MCMCtree without data
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Step 3: assessing chain convergence and ESS
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Step 4: comparing calibration densities VS marginal densities
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seed = 1                 * Seed number. If -1, use time stamp
seqfile = ALN           * Path to alignment file
treefile = TREE          * Path to tree file
mcmcfile = mcmc.txt      * Path to file where MCMC samples will be saved
outfile = out.txt        * Path to where output file will be saved

ndata = 1                * Number of partitions in the alignment
seqtype = 0              * 0: nucleotides; 1:codons; 2:Aas
usedata = 2 ./in.BV      * 0: no data (prior); 1:exact likelihood; 
                         * 2:Approx lnL; 3:out.BV (in.BV)
clock = 3                * 1: STR; 2: ILN; 3: GBM
model = 4                * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5              * alpha for gamma rates at sites 
ncatG = 5                * No. categories in discrete gamma
cleandata = 0            * remove sites with ambiguity data (1:yes, 0:no)? 
BDparas = 1 1 0.1        * birth, death, sampling
rgene_gamma = ALPHA BETA * gammaDir prior for rate for genes
sigma2_gamma = 1 10      * gammaDir prior for sigma^2 (for clock=2 or 3)
print = 1                * 0: no mcmc sample; 1: everything except
                         * branch rates 2: everything        
burnin = 100000          * Samples to discard as part of burn-in phase
sampfreq = 1000          * Sampling frequency
nsample = 20000          * Total number of samples to collect during the MCMC

If running the exact likelihood (i.e., 
Felsenstein’s approach):
• You will not run BASEML or CODEML 

(ignore step 1).
• After step 0 and steps 2-4, go to step 5, 

but set usedata = 1.
• You will need to add two variables in 

the control file after BDparas:
• kappa_gamma (prior on 

transition/transversion ratio, κ). 
Requires ALPHA and BETA as 
rgene_gamma & sigma2_gamma.

• alpha_gamma (prior on α, gamma 
shape parameter for variable rates 
among sites). Requires ALPHA and 
BETA as rgene_gamma & 
sigma2_gamma.

• You will run only MCMCtree, feasible 
with short alignments (will take longer 
than the approx. method).

Step 5: timetree inference with MCMCtree (approx. lnL)
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seed = 1                 * Seed number. If -1, use time stamp
seqfile = ALN           * Path to alignment file
treefile = TREE          * Path to tree file
mcmcfile = mcmc.txt      * Path to file where MCMC samples will be saved
outfile = out.txt        * Path to where output file will be saved

ndata = 1                * Number of partitions in the alignment
seqtype = 0              * 0: nucleotides; 1:codons; 2:Aas
usedata = 2 ./in.BV      * 0: no data (prior); 1:exact likelihood; 
                         * 2:Approx lnL; 3:out.BV (in.BV)
clock = 3                * 1: STR; 2: ILN; 3: GBM
model = 4                * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5              * alpha for gamma rates at sites 
ncatG = 5                * No. categories in discrete gamma
cleandata = 0            * remove sites with ambiguity data (1:yes, 0:no)? 
BDparas = 1 1 0.1        * birth, death, sampling
rgene_gamma = ALPHA BETA * gammaDir prior for rate for genes
sigma2_gamma = 1 10      * gammaDir prior for sigma^2 (for clock=2 or 3)
print = 1                * 0: no mcmc sample; 1: everything except
                         * branch rates 2: everything        
burnin = 100000          * Samples to discard as part of burn-in phase
sampfreq = 1000          * Sampling frequency
nsample = 20000          * Total number of samples to collect during the MCMC

93
((((((((((((((((tax_1: 0.349172, ((tax_2: 0.090297, tax_3: 0.100873): 0.009834, (tax_4: 0.173676,

0.006541  0.014905  0.017282  0.007034  0.006182  0.023338  0.012032  0.000748  0.035520  0.019296[…]
 0  0.030360  0.009750 -0.010872  0.011271 -0.013595 -0.008532  0.010353  0.007271  0.000000 -0.005711 - […]

Hessian
 -1.335e+05      -5756      -4287      -3683      -3929      -3297      -3530     -705.1     -898.9      -1087     -88.77
 -5756 -4.899e+04 -2.452e+04 -1.373e+04 -1.249e+04      -8949      -9603      -5567      -4159      -3205      -3696 
-4287 -2.452e+04 -6.025e+04 -1.976e+04 -1.453e+04  -1.27e+04      -8261      -7463      -6004      -3632      -2125
-3683 -1.373e+04 -1.976e+04 -1.017e+05 -3.662e+04 -2.088e+04      -9936      -7531      -6141 -1.196e+04      -3645
[…]

መ𝐛
𝐠

𝐇

𝑙 𝐛 ≈ 𝑙 መ𝐛 + 𝐠𝑇∆𝐛 +
1

2
∆𝐛𝑇𝐇∆𝐛

Options model, alpha, 
and ncatG are ignored if 
an in.BV file is used –
BASEML/CODEML 

estimated the branch 
lengths, the gradient, 
and the Hessian under 
these settings already!

Step 5: timetree inference with MCMCtree (approx. lnL)
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Step 6: assessing chain convergence and ESS
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LET’S DO THIS!

1. Clone and save the repository in your preferred location both in your PC and the server:
git clone https://github.com/abacus-gene/paml-tutorial/

2. If you go inside the new cloned repository (cd paml-tutorial) and type ls, you will see 
various folders for different tutorials. Please access folder mcmctree-approxlnL-aa by typing 
cd mmctree-approxlnL-aa to check the tutorial for today’s practical session.

3. If you had already cloned it, please go to directory paml-tutorial and type git pull to 

update the content – just in case there have been some changes in the code since the last time 
you cloned the repository!

4. Lastly, follow the README.md from your laptop (e.g., text or
source code editor such as Visual Studio Code) or from the
web browser and… Happy timetree inference!

https://github.com/abacus-gene/paml-tutorial/tree/main/mcmctree-approxlnL-aa
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Further reading

➢ “Molecular Evolution: a statistical approach”, Yang (2014); see chapter 10.

➢ Check Nascimento, dos Reis, and Yang (2017, Nat Ecol Evol, 1:1446-1454) for more details on 
Bayesian phylogenetic analyses and MCMC diagnostics.

➢ For a general review on molecular clock-dating in the genomics era, please read
dos Reis M, Donoghue PCJ and Yang Z. (2016) Nature Reviews Genetics, 17: 71–80.

➢ For a review on Bayesian phylogenomic dating, please read

Álvarez-Carretero S, and dos Reis M. (2021) In: Ho S (ed.) The Molecular Evolutionary Clock: 
Theory and Practice. Springer.
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https://www.nature.com/articles/s41559-017-0280-x
https://www.nature.com/articles/nrg.2015.8
https://link.springer.com/chapter/10.1007/978-3-030-60181-2_13
https://link.springer.com/chapter/10.1007/978-3-030-60181-2_13


Books!
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Books!
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CONTENT

I have assembled these slides by…
• … adapting material and resources taught in this module in previous years.
• … reusing material from previous seminars/workshops I have taught and/or 

created from scratch for this lecture.
• … consulting Prof Yang’s book and the resources I was given while a participant at 

the CoME workshop in 2017 (Hinxton).

IMAGES

Images used are…

• … drawn/designed by me using Power Point or generated in R.
• … reused from previous material and/or extracted from cited papers and/or sites.
• … a combination of the above.

Resources consulted to generate these slides
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