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Felsenstein’s maximum-likelihood approach for inferring phylogeny from DNA 
sequences assumes that the rate of nucleotide substitution is constant over different 
nucleotide sites. This assumption is sometimes unrealistic, as has been revealed by 
analysis of real sequence data. In the present paper Felsenstein’s method is extended 
to the case where substitution rates over sites are described by the I distribution. 
A numerical example is presented to show that the method fits the data better than 
do previous models. 

Introduction 

Felsenstein ( 198 1) presented a maximum-likelihood method for inferring phy- 
logeny from homologous DNA sequences. This method has a firm statistical basis 
(Felsenstein 198 1; Goldman 1990) and is powerful in recovering correct tree topologies 
in computer simulation studies (Fukami-Kobayashi and Tateno 199 1; Hasegawa et 
al. 199 1). Felsenstein’s method, however, assumes that the rate of substitution is the 
same at different nucleotide sites. This assumption is unrealistic, and accumulated 
evidence of rate variation over sites is now overwhelming (e.g., Fitch and Margoliash 
1967; Uzzell and Corbin 197 1; Holmquist et al. 1983; Fitch 1986). 

One attempt to take into account such spatial rate variation is to assume that 
some sites are invariable while all others evolve at a single rate (Hasegawa et al. 1985; 
Hasegawa and Kishino 1989). However, as noted by those authors, there should be 
a continuum of variability of sites in real sequences. Using globin-gene sequence data, 
Yang ( 1992) compared several continuous distributions for this purpose and suggested 
the r distribution as an adequate approximation. The r distribution has been used 
in constructing estimates of sequence divergence by Nei and Gojobori ( 1986), Jin 
and Nei (1990), and Li et al. (1990). 

In the present paper a maximum-likelihood approach for phylogenetic inference 
will be presented, under the assumption that substitution rates over sites follow the l-’ 
distribution. Other assumptions are the same as those in Felsenstein ( 198 1)) such as 
the independence of nucleotide substitutions at different sites and possible variation 
of substitution rates along different lineages. 

Theory 

We will derive the likelihood function for an example tree topology as shown in 
figure 1, by using a simple model of nucleotide substitution (Felsenstein 198 1). The 
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FIG. 1 .-Example tree of four species used for deriving the likelihood. The tree is unrooted, 
branch lengths, V’S, are measured as the average number of nucleotide substitutions per site. 

and the 

extension to arbitrary tree topologies or to more complex substitution models is 
obvious. 

According to Felsenstein’s ( 198 1) substitution model, the probability that nu- 
cleotide i changes to nucleotide j ( i # j) in an infinitesimal time interval At is h7CjAt, 
where I-nj is the equilibrium frequency of nucleotide j, and i and j take values 1, 2, 3, 
or 4 corresponding to 7’, C, A, or G, respectively. The transition probability from 
nucleotide i to j in relative time v ( =ht) is given by Felsenstein ( 198 1) as 

Pij( V) = 7tj + (&j-lIj)e-’ . (1) 

A rate factor, Q,, will be assigned to site h, while the overall rate is h as before. We 
assume that Y~‘S are independently and identically distributed according to the I’ dis- 
tribution 

f(r) = Par< a)-’ e+rra-l, Y > 0 , (2) 

with mean E(Y) = a/p and variance Var( r) = a/P*. p is a trivial scale factor, and to 
avoid the use of too many parameters we restrict the mean of the distribution to be 
1 and set p = a. Thus the I? distribution is related to a single parameter a, which 
determines the ex .tent of rate variation. A small a suggests that rates differ significantly 
over sites, while a very large a means roughly equal rates. 

For the tree in figure 1 there are four sequences (species). Suppose that the length 
of the sequence is n. Let xh = ( x1, x2, x3, x4} T be the observed nucleotides at site h 
in the four sequences (h = I, 2, . . . , n)., where the superscript “T” denotes transpose. 
Here we write xlh, x2h, . . . , as x1, x2, . . . , for simplicity. We also use x5 and x6 to 
designate possible nucleotides at internal nodes 5 and 6, although they are not observed. 
Let v = (v,, v2,. . . , v5 } T be the five branch lengths in the tree. For data of site h, 
we multiply Vj (j = 1, 2, . . . , 5) by a rate factor rh. 

Because of the reversibility of the substitution scheme, we can take any internal 
node, say node 5 in figure 1, as the ancestor (Felsenstein 198 1). The conditional 
probability of observing xh, given that the rate factor of site h is Q, will be 
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where Y is the product of the five transition probabilities in the square bracket. The 
unconditional probability of observing xh is thus 

P@; v, a) = E{P(x,; VIQ)} = i i 7c,, l E(Y). (4) 
x5=1 x6=1 

The expectation E( l ) is taken over the random variable Ye, and an explicit form of 
E(Y) is given in the Appendix. The log likelihood is now obtained as 

I= i log{P(xh; v,a)} = 5 log 2 ; 7rx,*E(Y) . 
h=l h=l x5=1 x6=1 I 

To maximize I over v and a, a nonlinear programming algorithm can be used (e.g., 
Gotfiied and Weisman 1973, pp. 84-l 12). The iteration is stopped when changes in 
I and in v and a are small enough and when the gradient of the likelihood function 
is sufficiently close to zero. The same process is repeated for other tree topologies, and 
the tree with the highest likelihood is chosen as the maximum-likelihood tree (Fel- 
senstein 198 1). 

A Numerical Example 

As an example, we apply this approach to the a- plus P-globin gene sequence 
data to infer the branching order of Primates (P, human), Artiodactyla (A, goat for 
the a-globin gene and cow for the P-globin gene), Lagomorpha (L, rabbit), and Ro- 
dentia (R, rat). Only data from the first and second codon positions are used ( 570 
nucleotides total), and the model of nucleotide substitution of Felsenstein ( 198 1) is 
adopted. 

The likelihood values and estimates of the a parameter are given in table 1 for 
the four possible unrooted trees. The length of the internal branch in tree 3 approaches 
zero, and thus tree 3 approaches tree 1. The best tree is tree 2, with the branching 
order and branch lengths to be (P, 0.050; A, 0.106; central branch, 0.037; L, 0.063; 
and R, 0.185) with & = 0.286. To test the significance of tree 2, we calculate the 
bootstrap probabilities by using the approximate method of Kishino et al. ( 1990), 
which resamples the estimated log likelihoods (the RELL method) at each site. Table 
1 shows that the maximum-likelihood tree is not significantly supported by this test. 

The models’ adequacy can be compared by using their likelihood values calculated 
from the same data. Felsenstein’s ( 198 1) method, which assumes constant rates over 
sites, gives the same best tree, with log likelihood of - 1453.18. The improvement in 
log likelihood gained by assuming a F distribution of rates over sites is (- 1436.65) 
- (- 1453.18) = 16.52. The constant rate over sites is the limiting case of the l? dis- 
tribution when a approaches infinity. So we may use the likelihood-ratio test to compare 
the two models; we compare 2AZ = 33.04 with x &, = 6.63 (df = 1 ), and the difference 
is seen to be significant. 
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Table 1 
Comparison of Different Tree Topologies among Primates (P), 
Artiodactyla (A), Lagomorpha (L), and Rodentia (R)” 

Tree li li - l;! tib 

1. (P,A,L,R) - . . . . 1,440.69 -4.04 0.223 ?I 0.061 0.2 
2. ((P, A), L, R) - . . . 1,436.65 0.00 0.286 + 0.087 77.6 
3. ((P, L), A, R) . . . same as tree 1 
4. ((P, R), L, A) - . . . 1,439.43 -2.78 0.246 + 0.07 1 22.2 

’ The first- and second-union-position data of the a- and &globin genes are used. 
b Standard errors of 6 are calculated by the curvature method. 
‘P is the bootstrap probability, calculated by the RELL method (Kishino et al., 1990). See 

text for more comments. 

Assuming the constant rate over sites but adopting Hasegawa et al.% ( 1985) 
substitution scheme also produces the same best tree, with log likelihood of - 145 1 .O 1. 
The estimated transition/ transversion ratio is 1.48, and Felsenstein’s ( 198 1) substi- 
tution scheme is not seriously in error. 

The Computer Program 

A C program that implements the method described in this paper is available 
from the author. It is very slow, and computation time increases explosively with the 
number of species. With a microcomputer, it seems impractical to compare tree to- 
pologies with more than four species. 

Discussion 

The a parameter need not be estimated by iteration for each of the tree topologies. 
The estimate is rather insensitive to topologies, and therefore the estimate from the 
star tree, which involves much less computation, can be used in later calculations. 
Estimates from the parsimony method are also usable (Holmquist et al. 1983; Kocher 
and Wilson 199 1). When a is found this way, the speed of the algorithm can be 
improved considerably. 

As the present approach involves much more computation than that of Felsenstein 
( 198 1)) it is worthwhile to examine how Felsenstein’s method behaves in the presence 
of spatial rate variation. According to Jin and Nei’s ( 1990) simulations, the neighbor- 
joining method might perform poorly if spatial rate variation is not taken into account 
in the estimation of sequence divergence. It is not clear whether the same conclusion 
can apply for the maximum-likelihood method. 
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APPENDIX 
Derivation of E( Y) 

Equation ( 1) can be written as 

Pij( V) = Cijo + Cql e-’ , (Al > 

where Cd0 = 7Cj and CGl = (60 - nj). Y in eq. (3) is a product of five terms, each of 
the form of eq. (A 1). To obtain E(Y), we expand Y into the sum of 2 5 terms: E(Y) 
will then be the sum of the expectation of each of these terms. If we let Mmj be the 
jth bit (0 or 1) when (m - 1) is expressed as a binary number, we obtain E(Y) as 

where ,y = C,‘=, Mm,Vj. 
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