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A codon-based model for the evolution of protein-coding DNA sequences is presented for use in phylogenetic 
estimation. A Markov process is used to describe substitutions between codons. Transition/transversion rate bias 
and codon usage bias are allowed in the model, and selective restraints at the protein level are accommodated 
using physicochemical distances between the amino acids coded for by the codons. Analyses of two data sets 
suggest that the new codon-based model can provide a better fit to data than can nucleotide-based models and can 
produce more reliable estimates of certain biologically important measures such as the transition / transversion rate 
ratio and the synonymous / nonsynonymous substitution rate ratio. 

Introduction 

The importance of having accurate models for the 
evolution of molecular sequences is increasingly clear. 
First, accurate models can help clarify some of the most 
important processes of evolution, by the biological in- 
terpretation of their parameters. Second, it is becoming 
apparent that the reliability of phylogenetic analyses is 
strongly dependent on having accurate models (Thorne 
et al. 199 1, 1992; Yang et al. 1994). Until recently, very 
few attempts were made to test the adequacy of models. 
This is no longer the case, as statistical tests have been 
described and improved on until they are accurate and 
practical (Ritland and Clegg 1987; Navidi et al. 199 1; 
Reeves 1992; Goldman 1993a, 1993b; Yang et al. 1994), 
and consequently it can no longer be acceptable for 
models to be used without test and improvement when 
this is needed and is possible. Virtually all studies that 
have used appropriate tests to check the fit of models 
for the evolution of coding DNA and protein sequences 
have found the models to be statistically unacceptable 
(Reeves 1992; Goldman 1993b). 

Previous models for the evolution of protein-coding 
sequences that are used in phylogenetic analysis work 
either on the mononucleotide level in DNA sequences 
(e.g., see Jukes and Cantor 1969; Kimura 1980; Felsen- 
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stein 198 1; Hasegawa et al. 1985) or on the amino acid 
level in protein sequences (e.g., see Kishino et al. 1990). 
The unit of data under consideration is either the nu- 
cleotide or the amino acid, and these nucleotides or 
amino acids are assumed to evolve independently. At 
the DNA level more information is present, and closely 
related sequences can be more easily distinguished, e.g., 
by substitutions that are synonymous and thus invisible 
at the amino acid level (Miyata and Yasunaga 1980; Li 
et al. 1985; Nei and Gojobori 1986; Li 1993). For more- 
distantly related species, amino acid sequences might be 
more useful than DNA: the translation of DNA to amino 
acids by using knowledge of the genetic code may act 
as a filter in which some stochastic noise is removed. 
Information is lost, too (Li et al. 1985), and it is not 
clear at what levels of divergence the removal of noise 
might outweigh the loss of information and increase the 
accuracy of phylogenetic estimation. 

Obviously, nucleotide sequence studies should be 
preferable (Miyata and Yasunaga 1980), and to this end 
we have devised a model of nucleotide substitution that 
uses simultaneously the nucleotide-level information in 
DNA sequences and knowledge of the genetic code and 
hence the amino acid-level information of synonymous 
(silent ) and nonsynonymous (replacement ) nucleotide 
substitutions. This is achieved by modeling at the codon 
level, instead of at the nucleotide or amino acid levels. 
In addition to the advantage that more of the informa- 
tion in the sequences is used, this model enables us to 
build more-realistic models incorporating previously ig- 
nored effects, e.g., the lack of independence at neigh- 
boring sites within a codon triplet and differences in 
evolutionary rate at different codon positions. 
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In this paper we characterize our codon-based 
model, which incorporates biologically meaningful fac- 
tors such as transition / transversion bias, variability of 
a gene (e.g., as indicated by synonymous and nonsy- 
nonymous substitutions rates), and amino acid differ- 
ences. We describe the model’s use in maximum-like- 
lihood (m.1.) estimation of phylogenies and apply the 
model to two sample data sets. The results are discussed 
in comparison with previous nucleotide-based models, 
and we emphasize the importance of m.1. parameter es- 
timation and testing of the adequacy of models as tools 
for understanding molecular-sequence evolution. 

Methods 
A Markov-Process Model of Codon Substitution 

instantaneously, as mutations involving more than 
one position (as well as those involving more than 
one change at one position) will have probabilities 
of occurrence of order (Al) 2 and should be ignored. 
However, from equation ( 1 ), substitution between 
any two codons is possible for any t > 0. Each codon 
has at most nine “neighbors” to which it may change 
instantaneously (fig. 1). The rate at which each par- 
ticular allowed substitution occurs is proportional to 
the (equilibrium) frequency (xi) of the codon (j) 
being changed to; this allows either different nucleo- 
tide frequencies at the three codon positions or codon 
usage information to be incorporated in analyses. 
Rates of substitutions involving a transition (A-G 
or C+-+T) are multiplied by a factor K, as with the 

Our model is suitable for homologous protein-cod- nucleotide-based models of Kimura ( 1980) and Ha- 

ing DNA sequences with no gaps (insertions/deletions) segawa et al. ( 1985 ). The parameter K directly affects 

or with such gaps removed. It does not incorporate any the ratio of transition and transversion substitutions 

processes for insertion or deletion. While these are part and is incorporated to allow for the empirical finding 

of the biological process of sequence evolution and that transitions often occur more frequently than do 

should ideally be included in models in order to use the transversions (Brown et al. 1982). 

information contained in patterns of gaps (Thorne et To account for selective restraints at the amino acid 

al. 199 1, 1992), this would add greatly to the complexity level, substitution rates are further modified by a mul- 

of analysis, and we have chosen to omit it in this initial tiplicative factor if the two codons code for different 

study. It is our hope that if the new model proves useful 
it could be modified to allow for insertions and deletions. 

We use a continuous-time Markov process to model 
substitutions among the codons within a protein-coding 
sequence. The general genetic code is used in this study, 
but the principle can be applied to other genetic codes, 
such as the code for the mammalian mitochondrial ge- 
nome. The states of the Markov process are the 6 1 sense 
codons. The three nonsense (stop) codons are not con- 
sidered in the model, as mutations to or from stop co- 
dons can be assumed to affect drastically the structure 
and function of the protein and therefore will rarely sur- 
vive. We use a 6 1 X 6 1 rate matrix Q = ( QO), where 
Q,At (i # j) represents the probability that codon i will 
change to codon j in a small time interval At. (Through- 
out this paper, codons are written as i taking values from 
1 to 6 1, corresponding to the triplet ili2i3, where each 
of il, i2, and i3 is a nucleotide A, C, G, or T). In the 
usual manner, elements Qii are fixed so that the row 
sums of Q equal zero, allowing the solution 

p(t) = ew(tQ) (1) FIG. 1 .-Example of the “neighbors” to which a codon (here 
TCG) may evolve instantaneously through a nucleotide substitutior 
at one position. TCG has eight neighbors, substitution of A for C a 

for the matrix P(t) whose elements PO(t) give the prob- the second position being disallowed, as it results in the stop codor 

abilities that codon j replaces codon i after time t (Cox TAG. Transitions are marked with black arrows, transversions wit1 

and Miller 1977 ) . gray arrows. Substitutions involving no change in amino acid (generall! 

We assume that mutations occur at the three 
occurring at a higher rate in this model) are marked with thicker arrows 
The size of each circle (except the stop codon TAG) represents the 

codon positions independently, and therefore only ( equilibrium) frequency of that codon, in this case taken from the 

single-nucleotide substitutions are permitted to occur pooled a- and P-globin gene sequences. 



amino acids. In defining these factors, we use the matrix 
of physicochemical distances between the 20 amino acids 
given by Grantham ( 1974). These distances are 
based on the side-chain composition, polarity, and mo- 
lecular volume of the amino acids and range from 5 for 
the pair Ile-Leu to 2 10 for the pair Cys-Phe, with an 
average of 100. We multiply the rate of substitution from 
codon i to codonj by exp( - &,i,aa,/ I’), where, following 
Li et al. ( 1985), aai represents the amino acid coded 
for by codon i, and &i,aai is the distance between amino 
acids aai and aaj, as given by Grantham ( 1974). We 
set d,,i,,,i = 0. V is a parameter representing the vari- 
ability of the gene or its tendency to undergo nonsy- 
nonymous substitution: V is negatively correlated with 
the synonymous/ nonsynonymous substitution rate ra- 
tio. Codons that code for very different amino acids will 
rarely substitute for one another (large &ai,crccJ gives a 
low exponential term), whereas more-similar amino 
acids replace each other more readily (small daai,aaj 
gives a relatively high exponential term). The term 
exp( - d,,i,,aj/ V) also implicitly enables the model to ac- 
count for different substitution rates and nonindepend- 
ence of substitutions at different codon positions; for 
example, changes at third positions are less likely to lead 
to amino acid alterations than are changes at first or 
second positions. 

Last, elements Qi; are fixed so that row sums of Q 
equal zero, and Q is scaled so that the average rate of 
substitution at equilibrium equals 1: 

-2 7CiQii = 1 s (2) 
i= 1 

This scaling means that time t and branch lengths in a 
tree are effectively measured as expected numbers of 
nucleotide substitutions per codon. 

Formally, for codons i = i 1 i2i3 andj = ji j, j, ( if j), 
we set 

if 2 or 3 of the pair 
(6 ,ji), U2,j2), (i3,j3) 

are different 

if exactly 1 of the pairs 
(&,jJ, (i2,j2), U3,j3) 

is different, and that 
difference is a 
transversion 

if exactly 1 of the pairs 
(iI ,jl), (i2J2), (i3J3) 

is different, and that 
difference is a 
transition 

(3) 
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and Qii = - Cj +i Q,. The scaling factor p. is chosen to 
satisfy equation ( 2). 

The Markov process specified by equation ( 3) is 
reversible, as Q is a special form of the rate matrix for 
a general reversible process (Yang 1994)) and the equi- 
librium distribution is given by the frequencies ‘Icj; that 
is, XiQu = ZjQji for any i and j. Furthermore, Q appears 
to have no complex eigenvalues and eigenvectors, as 
claimed (but not proved) by Yang ( 1994). We use stan- 
dard numerical algorithms for the diagonalization (ei- 
gensolution) of Q, to calculate P(t) in equation ( 1). 

To demonstrate the effect of the parameter V, we 
calculate the ratio of the instantaneous rates (per codon) 
of synonymous and nonsynonymous nucleotide substi- 
tutions. The synonymous substitution rate per codon is 

61 61 

i=l j=l 

j#i 
UUi=aaj 

Similarly, the nonsynonymous rate per codon pa can be 
calculated by summing ZiQu over all codons i, j coding 
for different amino acids. In fact, since the overall rate 
is normalized by equation ( 2)) we have pa = 1 -ps. This 
allows the calculation of the ratio p,/p, as a function of 
V and of K and the codon frequencies Zi. An example 
is shown in the left-hand panel of figure 2, which 
uses the observed codon frequencies of the a- and 
P-globin genes studied below. Values as I/+co, i.e., 
exp( - daa,,a(l,l V) = 1, are equal to expected values of p,/ 
pa if there are no selective effect caused by amino acid 
differences and if synonymous and nonsynonymous 
substitutions occur at equal rates. 

The relationship of the parameter K to the ratio of 
instantaneous transition rate to transversion rate, T,/ 
TV, is shown similarly, by summing ZiQu over all codons 
i, j differing by a transition ( TS) and differing by a trans- 
version ( T,) . (Again, TV = 1 - T, .) An example is shown 
in the right-hand panel of figure 2. 

Figure 2 clarifies the relationship between param- 
eters V and K and the biologically meaningful quantities 
pslpa and K/T,. W e d raw attention to the interpretation 
of V as a measure of the variability of the gene: high 
values of V giving low p,/p, (high variability gives rel- 
atively many replacement substitutions) and vice versa. 
We prefer the use of these instantaneous rate ratios to 
the use of estimates of the numbers of silent/replacement 
substitutions or transitions/ transversions derived from 
“most parsimonious” character-state reconstructions, 
which will almost certainly underestimate numbers of 
changes. 
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16 

14 

FIG. 2.-Left, Ratio of synonymous to nonsynonymous substitution rates per codon, osloa, plotted as a function of the parameter V, for 
various values of the parameter K. The curves are for (bottom to top) K = 0.2, 1, 4, and 10. Right, Transition/transversion rate ratio, T,/ TV, 
plotted as a function of the parameter K, for various values of the parameter V. The curves are for (top to bottom) V = 10, 30, 50, and 80. 
Both types of ratios depend also on the frequency parameters Xi, which in these examples were taken from the observed codon frequencies for 
the a- and Bglobin gene data set (see text for details) I 

From the probabilities P(t) given by equation ( 1 ), 
the log-likelihood for a given tree topology can be cal- 
culated following Felsenstein ( 198 1) . The differences 
are that we have now 6 1 states in the Markov process 
instead of 4, that one “site” means one codon (triplet ) , 
and that much more computation is involved. As usual, 
we can obtain estimates of 7tl ,7r2, . . . , %jl from the 
averages of the observed codon frequencies. The other 
parameters, K, V, and branch lengths in the tree, are 
estimated by maximizing the likelihood, and standard 
deviations may be estimated by the curvature method 
(Felsenstein 198 1). The same process can be repeated 
for other tree topologies, and the tree corresponding to 
the highest likelihood is the m.1. tree. As we assume that 
the substitution process is homogeneous and stationary, 
and as we do not assume the existence of a molecular 
clock (i.e., we do not assume rate constancy over lin- 
eages) , only unrooted trees can be estimated ( Felsenstein 
198 1; Goldman 199 1). As with almost every phyloge- 
netic estimation method, the assumptions of homoge- 
neity and stationarity are made more for expediency 
than for their accurate reflection of molecular evolution. 

Test of Goodness-of-Fit of Models 

Statistical tests are available for examining the ad- 
equacy of models used for phylogenetic estimation while 
allowing for nonindependence of sequences due to their 
common ancestry. The test proposed by Goldman 
( 1993b) (see also Navidi et al. 199 1; Reeves 1992) com- 
pares the log-likelihood for an estimated phylogeny at- 
tained under the model in question with that attained 
under an “unconstrained” model that has no phyloge- 
netic components. The difference in log-likelihoods rep- 
resents the cost of the phylogenetic inferences drawn. 
Too high a cost implies that the model is inadequate to 
explain the data. An accurate statistical test is achieved 

by using Monte Carlo methods to simulate data sets 
according to the estimated phylogeny and parameters 
and analyzing each of these to estimate the distribution 
of the test statistic under the null hypothesis. Data sets 
are simulated by random generation of ancestral se- 
quences, according to the equilibrium codon frequencies, 
and by the simulated evolution of these sequences along 
descendant lineages according to the model under eval- 
uation (see Goldman 1993b for full details). 

This test is very time consuming, because of the 
analysis performed on each simulated data set. A. von 
Haeseler (personal communication) has suggested to us 
a time-saving approximation, which is to evaluate the 
likelihood of simulated data sets by using the original 
estimated tree, instead of finding the m.1. tree for each. 
This means that the simulated values of the log-likeli- 
hood difference statistic may be too high, affecting the 
statistical size and power of the test (Hall and Wilson 
199 1) . If these approximate values imply rejection of a 
model, however, it is certain that the correct values would 
do so also. Only in the case of acceptance of a model by 
the approximate test would full reanalysis be necessary. 
In our experience, the approximation is very good. This 
approximation is used on one occasion below, as noted. 

Diagnostic Tests 

Goldman ( 1993a) shows how the probabilities of 
observing each site pattern, in light of the estimated tree 
and parameters, may be used to perform diagnostic sta- 
tistical tests to determine reasons for failure of models 
to fit data. Two statistics that have been found partic- 
ularly useful are the number of different site patterns 
observed in the data and the number of constant sites 
(Goldman 1993a). In this study we have used the ob- 
served number of different codon-site patterns as a di- 
agnostic statistic. However, instead of considering the 
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number of constant codon sites, we have divided the 
possible patterns into 33 categories, according to the 
number of different nucleotides observed at each codon 
position. The categories are shown in table 1. The lower- 
numbered categories represent patterns with few sub- 
stitutions (especially at second and first codon positions), 
and higher-numbered categories represent patterns with 
many changes. Category 1 contains all the “constant” 
patterns. We have found it informative to compare the 
observed numbers of codon sites, in these categories, 
with the expected numbers under the model’s assump- 
tions. 

For nucleotide-based models, there are 4’ possible 
site patterns observable for s sequences, and it is often 
possible to calculate the frequencies of each site pattern 
expected under the model, to derive the theoretical dis- 
tributions of the test statistics. For our codon-based 
model, this number rises to 6 1 “-for s = 5, this is equal 
to approximately 8.45 X 108. This is too large a number 
to analyze in the manner described by Goldman 
( 1993a). Instead, Monte Carlo simulations can be used 
to estimate the distributions of these statistics under the 
model’s assumptions. 

Results 
Mammalian a- and P-Globin Genes 

We have analyzed the o- and P-globin genes of pri- 
mate (human), artiodactyl (goat for a-globin and cow 
for P-globin ) , lagomorph ( rabbit), rodent ( rat), and 
marsupial (the eastern quoll, Dasyurus viverrinus, for 
a-globin and opossum for P-globin ) , previously studied 
by Yang et al. ( 1994). Two codons are missing at the 
beginning of the cow P-globin gene, and these codons 
in all the other species are excluded. Start and stop co- 
dons and introns are also excluded. Previous experience 
has shown these a- and P-globin genes to have similar 
evolutionary dynamics. The two genes were combined 
into one data set, with 285 codons in each combined 
sequence ( 85 5 nucleotides; 3 X 14 1 for the a-globin gene 
and 3 X 144 for the /3-globin gene). The codon fre- 
quencies in different species are very similar, implying 
that the homogeneity and stationarity assumptions are 
acceptable. 

m.1. Estimation 

We have taken the codon frequencies ni (equation 
[ 3 ] ) as 60 ( = 6 1 - 1) free parameters, restricted only by 
Ci nj = 1. A second model, using the nucleotide fre- 
quencies at each of the three codon positions to calculate 
the expected codon frequencies, was found to produce 
a much poorer fit to the data. We conclude that nucleo- 
tide frequencies at the three codon positions cannot ac- 
count for codon frequencies, and the following analyses 
are all based on the first model. 

Table 1 
The Observed Numbers of Codon-Site Patterns for the a- 
and fi-Globin Genes and Their Expected Numbers under 
Different Models 

EXPECTED, UNDER 
VARIOUS MODELS= 

CATEGORY b2 b, bj OBSERVED (1) (2) (3) 

1 . 1 1 1 
2 1 1 2 
3 . 1 1 3 
4 . 1 1 4 
5 . 1 2 1 
6 1 2 2 
7 . 1 2 3 
8 2 4 
9 3 1 

10 3 2 
11 3 3 
12 3 4 
13 1 4 1 
14 4 2 
15 1 4 3 
16 1 4 4 
17 2 1 1 
18 2 1 2 
19 . 2 1 3 
20 . . . 2 1 4 
21 2 2 1 
22 2 2 2 
23 2 2 3 
24 . . . . 2 2 4 
25 2 3 1 
26 2 3 2 
27 2 3 3 
28 2 3 4 
29 2 4 1 
30 2 4 2 
31 . . . . 2 4 3 
32 . . . . 2 4 4 
33 23 any any 
Goodness of fitb . . . . . . 

72 
79 
13 

1 
14 
25 
10 

1 
1 
1 
3 
0 
0 
0 
0 
0 
5 

12 
5 
3 
5 

12 
6 
0 
1 
2 
2 
0 
0 
0 
0 
0 

12 

42.5 93.5 79.7 
55.9 45.5 43.7 
11.4 7.3 7.2 
0.5 0.3 0.4 

33.2 27.5 22.4 
43.9 28.5 29.7 

9.1 6.9 9.8 
0.3 0.4 0.7 
7.4 4.6 4.5 
8.8 7.3 10.2 
1.7 2.2 4.0 
0.1 0.1 0.3 
0.3 0.2 0.3 
0.4 0.7 0.8 
0.1 0.2 0.5 
0.0 0.0 0.0 

13.2 11.1 7.9 
18.3 11.7 12.1 
4.3 3.1 3.8 
0.2 0.2 0.4 
9.0 5.9 5.0 

12.7 11.2 13.9 
2.9 4.1 6.9 
0.1 0.2 0.6 
1.7 1.3 1.1 
2.2 3.3 5.3 
0.5 1.3 3.7 
0.0 0.1 0.2 
0.1 0.1 0.1 
0.1 0.1 0.6 
0.0 0.1 0.4 
0.0 0.0 0.0 
4.4 6.3 9.0 

136.7 118.5 79.6 

NOTE.-The possible codon-site patterns are divided into 33 categories, 
according to the numbers of different nucleotides across species at the three codon 
positions. For example, category 10 includes all sites at which the second position 
has the same nucleotide across all species (bz = 1); the first position has b, = 3 
different nucleotides; and the third position has b3 = 2 different nucleotides. 

’ The three models are as follows: (I) the new codon-based model described 
in this paper, which assumes constant rate across codon sites; (2) 1 plus a gamma 
distribution of rates, using shape parameter a = 1 and previous estimates of other 
parameters; and (3) I plus a gamma distribution of rates, with all parameters 
estimated under the discrete gamma model. 

b Pearson x2 = X(obs. - exp.)2/exp. For model (I), category 16 is omitted 
from calculation, as its expectation is indistinguishable from zero, with the accuracy 
available. 

The ml. tree using our codon-based model is shown 
in figure 3. Denoting the sequences “P” for primate, 
“A” for artiodactyl, “I” for lagomorph, and “R” for 
rodent, and assuming the marsupial (M) to be the out- 
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rodent 

makupial 

FIG. 3.-Maximum-likelihood tree for the a- and P-globin genes, 
using the codon-based model of the present paper. Branch lengths are 
expected numbers of nucleotide substitutions per codon. The param- 
eters in the model are estimated as i? = 1.45; P = 43.99. 

group, this tree may be written as (( (R,L) ,P) ,A). The 
tree conforms well with current biological thinking (e.g., 
Novacek 1993). Parameter estimates are i? = 1.45 
* 0.15 and v = 43.99 f 3.06, with E = -2915.35. The 
estimate of K agrees closely with the value 1.48 found 
by Yang et al. ( 1994) in analysis of the first and second 
codon positions of the same genes by using the model 
of Hasegawa et al. ( 1985 ) . From calculations like those 
giving the graphs in figure 2, these parameter values give 
instantaneous rate ratio estimates of T,/ T, = 1.15 and 
p,/p, = 1.05. The ratio p,/p, is 0.28 for V/-,cc, and we 
see that the ratio is raised by a factor or 1.05/0.28 
= 3.73 by selective constraints at the amino acid level. 

Because of the lack of reliable methods, we make 
no attempt here to evaluate the significance of the m.1. 
tree and suggest that the support from the data for this 
tree is probably insignificant. We point out that any test 
of positivity of middle branches in the m.1. tree, effec- 
tively a comparison between the m.1. tree and the star 
tree, is not an evaluation of the reliability of the m.1. 
tree (Yang et al. 1994); for example, the likelihood-ratio 
test suggests that at least the five best trees for these data 
are all “significantly better” than the star tree (star tree 
t = -2930.29 with I? = 1.44, v = 45.92; other results 
not shown). Similar to the findings of Yang et al. ( 1994), 
estimates of parameters K and Vobtained from different 
tree topologies are very similar. Over all 15 possible bi- 
furcating trees, the range oft? is 1.42- 1.48, and the range 
of V is 43.99-47.17. 

The Adequacy of the Model 

We assess the goodness of fit of the model to data Second, the 285 codon sites of the a- and P-globin 

by using the statistical test of Goldman ( 1993b). When genes were placed in categories according to the numbers 

the unconstrained model is applied to the observed co- 
don-site pattern frequencies, the maximum possible log- 
likelihood for a codon-based model is - 1493.92. Com- 
pared with -29 15.35, the value attained using our new 
model, we obtain the goodness-of-fit statistic 6 
= -1493.92 - (-2915.35) = 1421.43. The distribution 
against which this value is compared was obtained by 
Monte Carlo means as described above, and the results 
are shown in the top panel of figure 4. This indicates 
rejection of the model. 

To place this result in context, we performed an anal- 
ysis of these data, using the nucleotide-based model of 
Hasegawa et al. ( 1985). This model supports a different 
topology, (( (P,L) ,A) ,R) , with marsupial as the outgroup, 
which conforms less well with current biological thinking 
(e.g., Novacek 1993). Goldman’s ( 19933) goodness-of-fit 
test not only indicates rejection of the model, but implies 
rejection by a much greater margin (fig. 4, bottom). The 
codon-based model fits better to these data than does the 
nucleotide model of Hasegawa et al. ( 1985 ) . 

Diagnostic Tests 
One of the major features of molecular sequence 

evolution unaccounted for in previous models is the 
variation of substitution rates over nucleotide sites. 
This was found to have a profound effect on models’ 
fits to data (Yang et al. 1994). Our codon-based 
model allows for different rates at the three positions 
within a codon, by its use of genetic code information, 
as, for example, changes at third codon positions are 
least likely to cause amino acid replacements and so 
are effectively given higher rates than are second- or 
first-position changes. However, it does not make any 
allowance for different rates at different codon sites. 
As selective restraints exerted on amino acids in dif- 
ferent domains of the protein must be very different 
owing to the different roles of these amino acids in 
the structure and function of the protein (e.g., see 
Overington et al. 1992), we expect that rate hetero- 
geneity over codon sites is a major reason for the 
rejection of the model. 

To search for the reasons for the discrepancy be- 
tween the model and the data, we used two diagnostic 
tests. The first considers the observed number of different 
(codon) site patterns. For the a- and P-globin genes, 223 
patterns are observed at the 285 sites. The theoretical 
distribution of this statistic, estimated by generating 500 
Monte Carlo samples and using parameter estimates ob- 
tained from the codon-based model, has mean 254.9 
and 95% confidence interval (244,265). The data exhibit 
too few different patterns, compared with expectations 
under the model’s assumptions. 
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FIG. ~-TOP, Statistical test of the adequacy of the codon-based model for the a- and P-globin genes. The test statistic (6 = 142 1.43) falls 
above the 95% point of the simulated distribution, and the model is rejected. Bottom, Statistical test of the adequacy of the HKY85 model 
(Hasegawa et al. 1985) for the same data set: the test statistic falls beyond the 95% point of the simulated distribution, and the model is rejected 
by a greater margin than in the test of the codon-based model. 

of bases observed at each position (see Methods) and 
were compared with expected numbers given the esti- 
mated tree and parameter values, again found by Monte 
Carlo simulations (table 1). The results show that the 
model predicts too few constant or very slowly evolving 
codon sites and too few quickly evolving codon sites. 
This clearly indicates rate variation across codon sites, 
not accounted for by the model. 

Accounting for Rate Heterogeneity across Codon Sites 

Following the successful use of a gamma distribu- 
tion to model rate variation across nucleotide sites (e.g., 
see Yang 1993; Yang et al. 1994), we studied the effect 
of allowing rate variation across codon sites according 
to a gamma distribution. The computational burden of 
a full m.1. treatment of the gamma distribution in the 
manner of Yang ( 1993) is too great for us to attempt. 

Instead, we took the estimated tree (and associated pa- 
rameter estimates) from figure 3 and simulated data sets 
using this tree but adding a gamma distribution with 
shape parameter a = 1 (selected by trial and error). 
Ideally, parameters K and V and branch lengths should 
be estimated from a full m.1. reanalysis of the data, by 
assuming the gamma distribution. Even without this, 
these parameter values appear to provide a better fit to 
the data (table 1). The expected number of different 
codon-site patterns has mean 2 19.4 and 95% confidence 
interval (204.5, 236), obtained from 100 simulations. 

A more satisfactory approach has been described 
by Yang (in press), in which a discrete distribution with 
k categories, each with probability 1 /k, is used to ap- 
proximate the gamma distribution. Higher values of k 
give closer approximations, and, to obtain an accurate 
estimate of the parameter a, we used k = 8. Parameter 
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estimates obtained from this “discrete gamma” model 
are i? = 1.44 f 0.20, v= 35.58 + 2.66, & = 0.76 * 0.12, 
with E = -2,850.58. The existence of rate variation over 
codon sites can be seen from the improvement in like- 
lihood on adding the discrete gamma distribution 
(2AE= 129.5; compare x:,1% =6.63). The tree and branch 
lengths are estimated to be (((R: 0.99, L: 0.38): 0.12, 
P: 0.29): 0.11, A: 0.39, M: 2.11) (numbers give the 
lengths of the branches that they follow), the same to- 
pology as before (fig. 3) but with markedly increased 
branch lengths. Using these parameter values to generate 
100 simulations by assuming a (continuous) gamma 
distribution of rates over codon sites, we obtain the ex- 
pected numbers of codon-site patterns falling within the 
33 categories shown in table 1. The distribution of the 
number of different site patterns, estimated by simula- 
tion, has mean 232.3 and 95% confidence interval (220, 
243.5). Although, owing to computational reasons, we 
have not performed a test on the general adequacy of 
the model, these two diagnostic tests suggest that the 
codon-based model, when combined with a gamma dis- 
tribution of rates over codon sites, appears to provide a 
satisfactory description of the evolution of these genes. 

ADP-Glucose Pyrophosphorylase Genes 

Smith-White and Preiss ( 1992) aligned DNA se- 
quences coding for ADP-glucose pyrophosphorylase 
proteins. Their analysis suggested that among plant 
ADP-glucose pyrophosphorylase sequences the major 
division is into large and small-subunit sequences (cre- 
ated by a duplication event) and that within the small- 
subunit sequences the major division is into monocots 
and dicots ( Smith-White and Preiss 1992). We selected 
sequences from wheat (large subunit), potato (small 
subunit; dicot ), and rice and maize (small subunit; 
monocot) as having long homologous regions. The se- 
quences are those referred to by Smith-White and Preiss 
( 1992) as “WE7,” “potato (T 0),” “rice seed,” and “bt- 
2,” respectively. After removal of codons sites involving 
insertions or deletions, the aligned sequences are 432 
codons ( 1296 nucleotides) long. We notice that codon 
frequencies are quite different in different species, a fea- 
ture not accommodated by our model. 

Maximum-likelihood phylogenetic estimation us- 
ing the codon-based model gives the tree ((rice: 0.23, 
maize: 0.28): 0.49, potato: 0.32, wheat: 5.05). This is 
in agreement with the findings of Smith-White and Preiss 
( 1992). The length of the branch leading to the (large 
subunit) wheat sequence supports the major division 
between large- and small-subunit sequences, and within 
the small-subunit sequences the division between mon- 
ocots and dicots is confirmed. Other parameter estimates 
from the codon-based model are i? = 1.65 Ifr 0.14 and 
p = 32.26 + 1.75. These values give instantaneous rate 

ratios T,/ T, = 1.35 and p,/p, = 1.50. The ratio p,/p, 
is 0.32 for V-cc ; selective constraints have raised this 
ratio by a factor of 4.64. 

For comparison, we also analyzed these data by 
using the nucleotide-substitution model of Hasegawa et 
al. ( 1985 ) . The best tree from this model has K = 2.36 
and has the same topology, but with different branch 
lengths: ((rice: 0.069, maize: 0.084): 0.12, potato: 0.098, 
wheat: 0.6 1). Note that branch lengths in the latter tree, 
measured by the number of nucleotide substitutions per 
nucleotide site, are all less than three times the corre- 
sponding branch lengths in the tree obtained from the 
codon-based model. This is presumably because the 
model of Hasegawa et al. ( 1985) fails to allow rate vari- 
ation among the three codon positions; ignoring rate 
variation over sites has been found to lead to serious 
underestimation of branch lengths (Yang et al. 1994). 

Both models were again assessed using the good- 
ness-of-fit test of Goldman ( 19933). Results are shown 
in figure 5. For the analysis of the ADP-glucose pyro- 
phosphorylase genes using our codon-based model, the 
approximate test proposed by A. von Haeseler (see 
Methods) was used. Comparison of values of the test 
statistic obtained with and without this approximation 
suggested that the effect in this case is to increase the 
test statistic by about 3.5; in other words, the true dis- 
tribution for the test of the codon-based model is ap- 
proximately that shown in the top panel of figure 5 but 
shifted 3.5 units to the left. This has a negligible effect, 
and all results remain qualitatively the same. 

Both models are rejected, that of Hasegawa et al. 
( 1985) quite dramatically but the new model only just 
so. Again, the new model appears to be preferable. 

Discussion 
Estimation of Synonymous and Nonsynonymous 
Rates of Substitution 

Miyata and Yasunaga ( 1980), Li et al. ( 1985), Nei 
and Gojobori ( 1986)) Li ( 1993 ), and Pamilo and Bian- 
chi ( 1993) proposed methods for estimating the numbers 
of synonymous and nonsynonymous substitutions from 
comparison of two protein-coding DNA sequences. Here 
we examine the relationship between parameters in our 
codon-based model and results from these pair-wise 
methods, which lack an explicit model of substitutions 
between codons. The method of Nei and Gojobori 
( 1986), an approximation of that of Miyata and Ya- 
sunaga ( 1980), is the simplest but normally produces 
results very similar to those obtained by the methods of 
Miyata and Yasunaga ( 1980) and Li et al. ( 1985) (Nei 
and Gojobori 1986). We thus use the method of Nei 
and Gojobori ( 1986) as an example. This method per- 
forms a codon-by-codon comparison. For each pairwise 
comparison, the 285 X 3 nucleotide sites are separated 
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FIG. S.-Top, Statistical test of the adequacy of the codon-based 
model for the ADP-glucose pyrophosphorylase genes. The test statistic 
falls above the 95% point of the simulated distribution, and the model 
is rejected. Bottom, Statistical test of the adequacy of the HKY85 model 
(Hasegawa et al. 1985) for the same data set: the test statistic falls far 
beyond the 95% point of the simulated distribution, and the model is 
rejected by a much greater margin than in the test of the codon-based 
model. 

into the numbers of synonymous and nonsynonymous 
sites, S and N. The observed differences between se- 
quences are similarly separated into the numbers of syn- 
onymous and nonsynonymous differences, Sd and Nd. 
The argument of Jukes and Cantor ( 1969) is then ap- 
plied to correct for multiple substitutions that have oc- 
curred at one site (Nei and Gojobori 1986)) giving 

KS = -3/4 log( 1-4/3 X&/S) Ua) 

K, = - 3/4 log ( 1 - 4/3 x Nd/ N) (5b) 

tutions per nonsynonymous site, respectively. In table 2, 
we list results for all the pair-wise comparisons for the a- 
and P-globin genes, obtained from the method of Nei 
and Gojobori ( 1986) and calculated using the MEGA 
package ( Kumar et al. 1993). 

We note some problems with this strategy. First, 
use of the model of Jukes and Cantor ( 1969) ignores 
transition/ transversion rate bias and differences in the 
frequencies of the four nucleotides. The methods of Li 
et al. (1985) and Li (1993), which are based on the 
model of Kimura ( 1980), also assume that all the four 
nucleotides have equal frequency y4. Second, the clas- 
sification of sites and differences into synonymous and 
nonsynonymous categories does not appear to be nat- 
ural. This is especially true when the two codons com- 
pared are quite different and there is more than one 
pathway of changing from one codon to the other; there 
is no guarantee that a site has always been a “synony- 
mous site” or “nonsynonymous site” throughout its 
evolutionary history. Third, although the correction for- 
mula of Jukes and Cantor ( 1969) is valid when the model 
is used at the mononucleotide level, equations (5a) and 
( 5 b) appear to be logically flawed when used at the codon 
level. For example, it is not reasonable to assume that 
a nonsynonymous site will have equal probability of 
changing into three other nonsynonymous sites (Le- 
wontin 1989). 

As discussed above, ps and pa represent rates of syn- 
onymous and nonsynonymous substitutions per codon 
in our codon-based model. If pp and p2 are used for 
the values of ps and oa corresponding to I’+ a, then 
op and p: represent “potentials” of synonymous and 
nonsynonymous substitutions when no selective con- 
straints exist at the amino acid level; 3pF and 3p," 
therefore represent the numbers of synonymous and 
nonsynonymous nucleotide sites per codon, respectively. 
(Under the assumption of equal rates of substitution 
between nucleotides and of equal codon frequencies, 
Ps” = 0.21 and p: = 0.79, as pointed out by Nei and 
Gojobori [ 19861. The values calculated from the a- and 
P-globin gene sequences are p? = 0.22 and pz = 0.78 
for our codon-based model.) If we write p f and p$ 

for the m.1. values (i.e., those calculated using the 
m.1. estimates of V and K), the numbers of syn- 
onymous substitutions per synonymous site and 
nonsynonymous substitutions per nonsynonymous site 
are KS = p,*/3py and K, = p,*/3p,", and KS/K, 
= p: p ," / pp p$ . KS and K, calculated in this way are 
listed in table 2. 

Our estimates of KS and K, (or ps and p,) are free 
from the problems, described above, of the method of 

as the number of synonymous substitutions per synon- Nei and Gojobori ( 1986). First, the frequency param- 
ymous site and the number of nonsynonymous substi- eters rcTci account for different nucleotide frequencies at 



734 Goldman and Yang 

Table 2 
Number of Synonymous Substitutions per Synonymous Site (K,) and Number of Nonsynonymous Substitutions per 
Nonsynonymous Site (K,) for All the Pairwise Comparisons of the Mammalian a- and j%Globin Genes, Estimated Using the 
Method of Nei and Gojobori (1986) and Using the Codon-based Model of the Present Paper 

Primate Artiodactyl Lagomorph Rodent 

Nei and Gojobori (1986): 
Artiodactyl . . . . . 
Lagomorph . . . . . . . . 
Rodent . . . . . . . . . . . . . . . . . . 
Marsupial . . . . . . . . . . 

Codon-based Model: 

4.0 17 (0.346, 0.086) . . . . . . 
3.83 1 (0.332, 0.087) 3.43 1 (0.361, 0.105) 

4.629 (0.623, 0.134) 
. . . 

4.918 (0.619, 0.126) 4.098 (0.6 11, 0.149) 
5.319 (1.025, 0.193) 5.376 (1.024, 0.191) 4.65 1 (0.979, 0.2 11) 3.725 (0:894, 0.240) 

Artiodactyl . . . . . . . . 
Lagomorph . . . . . 
Rodent . . . . . . . . . . . . . . . . . . 
Marsupial . . . . 

3.237 (0.363, 0.112) 
3.030 (0.396, 0.130) 

. . . . . . 
3.599 (0.385, 0.107) 

4.016 (0.732, 0.182) 
. . . 

3.83 1 (0.664, 0.173) 3.436 (0.669, 0.195) 
4.280 (1.2 19, 0.285) 3.746 (1.055, 0.282) 3.930 ( 1.193, 0.303) 2.97 1 (0.958, 0.323) 

the three codon positions; even codon usage information 
can be incorporated in the model. The transition/trans- 
version rate bias is accounted for by the parameter K. 
Second, as the model is formulated in terms of instan- 
taneous rates of substitutions between codons, there is 
no confusion as to whether a substitution is synonymous 
or nonsynonymous. Third, since K, and K, are specified 
as functions of parameters in our model, the invariance 
property of ml. estimators ensures that our estimates of 
K, and K,, and their ratio, are also ml. estimates. We 
advocate the use of our method to calculate K,/ K,, in 
preference to that of Nei and Gojobori ( 1986). 

Estimates of KS and K, by the method of Nei and 
Gojobori ( 1986) are smaller than estimates from the 
codon-based model; particularly those of K,, leading to 
overestimation of the ratio KS/K, . Underestimation of 
both KS and K, can be attributed to the observation that 
simpler substitution models produce smaller distance 
estimates (e.g., see Yang et al. 1994). Although the dif- 
ferences between the two estimation methods described 
above may be responsible for the differences in estimates 
of KS and K,, the major factor may be the way that Nei 
and Gojobori ( 1986) count the numbers of synonymous 
and nonsynonymous sites (S and N). Li ( 1993) and 
Pamilo and Bianchi ( 1993) have ‘pointed out that ig- 
noring transition / transversion rate bias leads to smaller 
estimates of S and greater estimates of N and thus to 
overestimates of K,/ K, . 

The Distances between Amino Acids 

In this study we modeled selective constraints on 
protein-coding genes by using knowledge of the genetic 
code and the amino acid distance matrix of Grantham 
( 1974). Li et al. ( 1985, p. 165) noted that “Grantham’s 
( 1974) indices are quite adequate in predicting amino 

acid exchangeability.” Indeed, we found that for the a- 
and P-globin genes the parameter V in our model, in 
combination with Grantham’s ( 1974) distances, can ex- 
plain the rate differences among the three positions 
within a codon better than can a nucleotide-based model 
which allows independent rates at each codon position 
(results not shown). However, the distances of Gran- 
tham ( 1974) do not incorporate any information con- 
cerning the higher-dimensional structures of the amino 
acids. Distances involving Cys, Trp, etc. may not be very 
reliable, as these amino acids have special functions in 
proteins, as discussed by Grantham ( 1974). It may be 
worthwhile to improve our model by incorporating bet- 
ter distance measures. Taylor ( 1989) and Taylor and 
Jones ( 1993) discuss measures other than that of Gran- 
tham ( 1974). Looked at another way, investigation of 
alternative distance measures could indicate which most 
closely represent amino acids’ tendencies for mutual 
substitution. 

We have avoided using amino acid “interchange 
probability matrices,” e.g., the PAM matrices of Dayhoff 
et al. ( 1978), used by Kishino et al. ( 1990), and Jones 
et al. ( 1992). We are cautious about the use of matrices 
that essentially consist of amino acid substitution prob- 
abilities, P(t), averaged over large numbers of align- 
ments. These averages may be over large time scales, 
from very small t, when P(t) will be close to the identity 
matrix, to very large t, when P(t) simply reflects the 
amino acid frequencies. In these conditions, an “aver- 
age” probability has little meaning. Even if these matrices 
do represent meaningful probabilities, each only applies 
to a single evolutionary time (distance) t (Schiiniger et 
al. 1990)) and it is not clear how they may be converted 
to time-independent evolutionary rates. We consider it 
advantageous instead to work in terms of rate parame- 
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LITERATURE CITED ters, Qti, which are independent of time but from which 
probabilities, P(t), may be calculated for any value 
oft. 

The Codon-based Model of Nucleotide Substitution 

Our codon-based model of nucleotide substitution 
provides a better fit to the example data sets we have 
studied than do the nucleotide-based models. Both in- 
tuition and recent research (Yang et al. 1994) show that 
this improvement is likely to lead to more accurate es- 
timation of phylogenetic relationships, and for this rea- 
son we suggest that the new model is of value in the 
analysis of protein-coding sequences. We believe that 
this improvement is due to the model’s ability to use 
information from both the nucleotide- and amino acid- 
level interpretations of protein-coding sequences. Other 
advantages of this model are its relative biological plau- 
sibility and its use of parameters controlling biologically 
important features of DNA sequence evolution, e.g., 
transition/ transversion rate bias, codon usage, and si- 
lent/replacement substitution rate bias, including a 
measure of the difference between amino acids. These 
parameters implicitly allow rate variation and lack of 
independence of substitutions within codons to be in- 
corporated. In addition, the model permits the separa- 
tion of the effects of rate variation within codons and 
between codons. Our results indicate that both these ef- 
fects are important. 

Allied with maximum-likelihood estimation, our 
model is computationally very slow, especially when the 
(discrete) gamma distribution is used to describe rate 
variation over codon sites. Even when a full m.1. analysis 
is not possible, we suggest that the model may still be 
used to evaluate a few candidate trees obtained by other 
methods, to perform a finer comparison of the tree to- 
pologies and to obtain more reliable estimates of param- 
eters. Noting that improved models sometimes give quite 
different, presumably also improved, estimates of evo- 
lutionary distances, we suggest that our model could also 
be of practical use in pairwise sequence comparison, e.g., 
to produce better distance estimates for use in distance- 
matrix methods. The importance of good distance mea- 
sures is known to be high (DeBry 1992; Charleston et 
al. 1993). 
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