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SUMMARY

Models of DNA nucleotide substitution are important for the estimation of phylogenetic trees
and for thc understanding of the evolution of DNA sequences.  Statistical tests of the
accuracy of commonly used models often indicate that simple models are inadequate. We have
considered problems of assessing the adequacy of models and of distinguishing good models
from bad ones, and questions of the levels of confidence we can have in inferences derived
using the models. We conclude that it is relatively easy to assess models and 1o estimate
their parameters. The primary aim of most researchers, however, is to reconstruct
phylogenetic trees and we have much less confidence in our ability to do this. Unusual
results arise, suggesting that less accurate models can give better discrimination between

candidate trees.

Introduction

Mathematical models of nucleotide substitution are important for the estimation of
phylogenetic trees and for understanding the evolution of DNA sequences. As more sequences
are detcrmined, attempts to refine models scem ever more worthwhile.  Better models should
lead to more-accurate estimates of the evolutionary history of the species concerned and to
a better understanding of the forces that affected thie evolution of the sequences.

The most successful and widcly-used models for DNA aucleotide substitution arc continuous
time Markov chains. The model is defined by a 4 x 4 matrix Q whose 12 off-diagonal elements
represent instantaneous rates of substitution and whose diagonal clements arc fixed so that
row sums arc all zero, permitting solution for probabilities of all possible changes over
any time period (2 00 P() = exp(1Q). Variants of the model are defined by the

retationships bewween the off-diagonal clements.  Common modcls include those denoted JC69,
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where all 12 rates are equal (Jukes and Cantor, 1969); K80, with nucleotide transition (A &
G. C & T) rates greater than transversion (AL G & C T) rates by a single factor «
(Kimura, 1980); F81, with substitution rates proportional 1o the frequencies of the
replacement  bases (m; for bases i = A, C, G, T: Felsenstein, 1981); and HKYSS, which
combines the features of the K80 and F8} models (Hasegawa er al., 1985). ’

S.uch models are generally applied independently to cach site of DNA sequences, cnablin
maximum likelihood (.M.'L) inferences 1o Be drawn from sets of aligned sequences. Statisticagl
tests have been devised which permit asscssment of these models’ accuracy in describing the
cvolution of DNA sequences, including effects introduced by their relationships on an
evolutionary tree (Goldman, 1993). The results of such tests often indicate that the models
are unacccpl.able (c.g. Goldman, 1993; Yang er al, 1994). It has been speculated that the
mosl' vforrymg unrealistic  assumption made by these models is that of constancy of
substitution rates over all nucleotide sites. This assumption must be unrealistic, for
example, for gene sequences coding for products with biological functions. '

Recently there has been considerable interest in the use of the gamma distribution to
describe differences in rates of evolution at different sites of DNA' sequences. The rate at
each site is assumed to be a random variable drawn from 2 gamma distribution.  Yang (1993)
has shown how this model may be incorporated in ML estimation o‘f phylogenies. In Yang’s
(19‘93) formulation, the B parameter of the gamma dis(ribul'ion is a trivial scale factor
Whl.Ch may be set cqual to the shape parameter a, giving a distribution with mean 1 and
jlanancc l/a.  Values of a less than approximately 0.5 mean the gamma distribution has a
'rcvcrsc-J‘ shape and imply strong rate variation, while values' of a larger than 1 or 2
imply a more or less constant ratc over sites. Using different values of a, rate variation
can be accommodated in a variety of real examples.  The substitution models mentioned
p.rcviously may each be combined with the gamma distribution model of rates across nucleotide
sites, to give models denoted JC69+T, K80+T, etc.

As models become morc complex, however, there are more parameters to be estimated from
datasets. Naturaily, we are concerned about how accurately we may hope o estimate
substitution model parameters and — the usual aim of phylogenetic estimation studies —
cvolutionary trees and their branch lengths (measured as numbers of substitutions on cach
branch).

This paper looks at the questions of

*  how easily and how accuratcly can we distinguish ‘good’ models from ‘bad’ ones?

*  which models are good, and how good are they?

* how well can we estimate parameiers, trees and branch lengths?

These questions arc considered in the context of ML estimation of phylogenies, but some
results about models are directly relevant to distance matrix bascd phylogenctic estimation
methods, which rely on the same models.
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How Easily and How Accurately Can Good Models be Distinguished from Bad Ones?

2.1 Tests of Adequacy of One Model

Navidi et al. (1991) proposed a statistical test of the adequacy of DNA substitution modcls
using a likclihood ratio (LR) statistic, and assumed that (traditional) %2 distributions
This assumption is so inaccurate as to make the test unreliable, as shown by

applied.
Goldman (1993) who devised Monte Carlo simulation methods that could provide estimates of
the correct distributions. Unfortunately, the analysis of the simulated datasets is very

time consuming, and the test procedure is impractical for alignments of more than a very few

sequences. )

Goldman (1993) identified two difficulties with the ¥? approximation to the LR statistic
distribution.  The first is caused by the choice of trees. Goldman (1993) pointed out that
it is unclear how this should contributc to calculation of the appropriate number of degrees
of freedom (df). Undoubtedly, the choicc amongst trees contributes to the likelihood; if,
as is generally the case;, the likelihood is maximized over all trees, the LR statistic
cannot follow the ? distribution as it could if the truc tree were known.

Despite this theoreticat difficulty, the problem can almost be ignored in practice.

is observed that when the tree is in doubt, the likelihoods of several reasonable trecs,
(Ironically, this

It

including the ML trec and (presumably) the true tree, are very similar.
is the reason why it is so difficult to estimate the true tree with confidence.) Table 1
gives an example, from the analysis of 895 base pair (bp) sequences of miDNA of human,
chimpanzee, gorilla and orangutan (Brown er al, 1982) using various substitution models.
Reading along cach row of Table 1, columns (0)-(3) give the likelihoods for the four
possible trees. It is evident that for a given modet all the likelihoods are similar when,
as happens in the LR test, compared with the maximum possible log-likelihood (-2104.19).
The approximation of the likelihood of the ML tree (or any reasonable tree) for that of the
true tree is acceptable.

The sccond difficulty with the x? approximation concerns a peculiarity of the dala.
Assuming independence of nucleotide sites, the observed ‘site patiemns’ (patterns of bases
across all sequenccs; observed al each site) are assumed to be a sample from a multinomial

Yet the number of categories of the distribution, 4° where s is the number of
Furthermore,

distribution.
sequences, is often larger than the number of data points (nucleotide sites).

for typical aligned DNA scquences most sites arc clustered in the four ‘constant’ categorics
For closely

defined by the occurrence of identical nucleotides in all the sequences.
A

related sequences these four categorics can account for over 90% of the data points.

conscquence is that we have very many catcgorics with very few or no data points assigned to
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them.  This ‘sparseness’ secems to have a drastic effect on the x? approximation (Rceves
1992; Goldman, 1993). '

One potential solution 10 this problem might be to combine the patterns into larger
Categorics. A method for doing this has been proposed by Yang er al. (submitted), but its
uscfulness is not yet proven. At the moment the Monte Carlo simulation approach still seems
nccessary, although much time can be saved by not worrying about scarching all possible
trees for the ML tree for each simulated dataset but simply assuming a rcasonablic tree when
there is any doubt. v

2.2 Comparison of Two Models

Ritland and Clegg (1987) proposed that nested models could be tested in the traditional
manner, using LR statistics and x? distributions for performing significance tests.  Goldman
(19.93? again used Monte Carlo techniques to derive estimates of the true distributions of LR
statistics.  As with tests of the adequacy of models, uncertainty over the true tree and

over how 1o incorporate the choice amongst trees into calculation of the df seem 1o count
against the x? approximation. .

Table 1
Log-tikelihoods sad Estimates of Parameters for Different Trees under Different Models

Teee

P ] 5 )
ARAMETER 0): (H, C, G) (1): (H, C), G) @G0  .OxH(CGC) g, -4

HIEYBS -2196.96 -2187.60 -2196.96 -2194.74 9.37
x 11.89=2.00 12.23=2.12 11.8922.00 11.55=1.95

JCf9+F -2415.24 -2406.34 -2414.06 -2409.81 8.90
a 0.75+0.23 1.47:0.74 0.8820.31 1.11=0.45

FB}H‘ -2336.34 -2330.22 -2335.77 -2332.29 6.12
a 0.64=0.19 1.10=0.48 0.7220.24 0.88-0:33

KB?H' (x = 12)  -2266.70 -2262.59 -2266.70 -2266.59
a 0.49:0.14 0.67=0.24 0.49=0.14 0.51=0.15

HlEYBSf»F (x = 12) -2176.32 -2173.69 -2176.32 -2126.29 2.63
a 0.39=0.09 0.460.12 0.3920.09 0.39:0.09

Data arc ihc 89Sbp miDNA sequences of human (H). chimpanzee (C), gorilla (G) and orangutan (O).
((H, C), G, O) (irec 1) is the ML teee under all the modcls.
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We have re-examined the results of Goldman (1993), and found that the x? distribution
docs appear to give good approximations in the comparison of nested substitution models.
Fig. 1 shows an cxample in which F81 is compared with HKY8S using 6166bp wn-globin
pseudogenes of human (H), chimpanzee (C), gorilla (G) and orangutan (O) (Miyamoto et al,
1987). This comparison is cffectively a test of whether it is better to allow an unknown
wansition/transversion rate ratio parameter x (HKY8S), or to fix « =1 (F81) — a
wraditional test would compare twice the log-liketihood difference  (2A8) with a2
distribution with 1 df. To test this approximation, Monte Carlo samples were generated by
‘cvolving’ the sequences along the tree ((H, C), G, 0), using estimates under F81 from the
data of branch lengths for this tree. Bach of 500 samples was analyzed in the samec way as
the original data. Fig. 1 indicates the close fit of the x? approximation to the true
distribution.  In this example the calcufated log-likelihood valucs under the two modcl;l‘az_c*
¢ = -10221.81 under F81 and ¢ = -10130.14 under HKY8S.  Consequently, Al = <8334,
indicating rejection of F81 in favour of HKY85 by a huge margin. A

The sparsencss of the data does not scem to influence tests comparing two models. The
reason might be that the likelihoods under both models arc affected in roughly the same way.

When hypotheses differ in only one parameter, as is the case for comparison of F81 with

HKYS8S, the two models can be compared by examining the variance of that parameter, as
0.6

Frequency

Figure 1. The distribution of the likelihood ratio statistic 8¢ = (¢, - &), for comparison
of the F81 and HKY8S models, obtaincd from SO0 Monte Curlo simulations. The 6166bp
yn-globin genes of human (H). chimpanzee (C), gorilla (G) and orangutan (O) arc uscd, with
the likelihood calculated using only one trec under both modcls, i€, ((H ©), G, 0), the
ML wee under HKY8S. (Results [not shown] obtained using the likelihood of the ML tree
under each model for cach sample arc vistually the same.) The confinuous curve is the x?
distribution  with  df = 1, scaled appropriatcly, which scems 1o be an acceplable
approximation to the simulated distribution. The obscrved value of the test statistic is
Al = -10221.81 - (-10130.14) = 91.67; the F81 model is rejected.

411



estimated by the curvature method (Kendall and Stuart, 1979), relying on the asymptotic
Normality of ML estimates. The difficulty caused by the choice of trees can once again be
ignored, the justification being the obscrvation that paramcter estimates, even more so than
likelihood values, are very similar for all trees (see  below). For the four-species
yn-globin genes, «x is estimated to be 5.26 + 0.69 under the HKY8S model. A z-statistic can
be compared to a standard normal dislril?’u(ion to see if the estimated x differs from 1: z =
* - l)/SE(n?) = 6.16, .P < 0.0001, and we conclude that it does.

Comparison between HKY85+T" and HKYS8S is a test of rate constancy over sites, and can be
formulated as a test between Hy at = 0 and Hy;: at = 0 (ratc constancy is the limiting
case of the gamma distribution with o 5 ®). As with tests on «, tests based on z-statistics
give very similar results to those based on LR statistics (results not shown).

2.3 Tests of a Molecular Clock

In phylogenetic estimation, a ‘molecular clock’ is taken to mean cquality of substitution
rates in the lineages of an cvolutionary tree. This is a restriction of the general | case
where a different rate is permitted for each lincage. As such, tests for the existence of a
molecular clock belong in the previous section as they comprise ‘a comparison of two nested
models. However, they are prone to additional complications and are considered separately
here. '

Tests on branch lengths, such as LR tests of the molecular clock, appear more problematic
than tests on parameters common to all phylogenetic trees under consideration. Unless we
are certain of the true tree, we do not even know which branches exist and tests regarding
them will involve unknown uncertainties. We have examined whether the log-likelihood values
for the several best ftrees are similar compared to the log-likelihood difference resulting
from the clock assumption. The 6166bp yn-globin pseudogenes of human (H), chimpanzee (C),
gorilla (G), and orangutan (O) are analyzed, and the HKY85 model is assumed. With the
assumption of a molecular clock, the position of the root of the tree can be identified
(Felsenstein, 1981). The log-likelihood values of all the bifurcating trees arc listed in
Table 2 under both models, i.e. with and without the molecular clock assumption. As there
are 2s - 3 branch lengths in a unrooted bifurcating tree and s - 1 branching times in a
rooted  bifurcating tree for s species (Felsenstein, 1981), the LR statistic should be
compared to a x? distribution with df = s - 2. For our cxample in Table 2, the best
unrooted tree without the clock assumption is ((H, C), G, 0), with ¢, = -10130.14, while the
best (rooted) iree with the clock assumption is (((H. C), G), 0), with & = -10132.47. This
comparison gives 2A¢ = 4.66, which is not significant. Other plausible trees, such as
(((C, G), H, 0), give very similar results for this dataset. Removal of the molecular clock
assumption therefore does not scem to significantly improve the fit of model to data, i.c,
substitution rates are morc or less constant along different lineages.
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Similar results (not shown) are obtained for mtDNA sequences of the s.amc species. W.c
conclude that the test of a molecular clock can still be performed even if the fruc tree is
unknown. However, as the likelihood values with and without the clock as?umpufon are r\a::
very different compared to the likelihood differences caused by the cl:ho::cc :(a mlir::::(,i e
suggest that likelihood values of the scveral best trees under botl'x mod.cs . X
matter whether or not the ML trees under the two modcl's are compatible with each other.

3. What Models Are Gaod and How Good Are They?
Table 1 shows typical results for the comparison of different substitution models  The

Table 2
Test of the Existence of a Molecular Clock

[y

wm«xﬁ CLOCK Wi CLOCK
’ t
UNROOTED TREE ROOTUD TREE
(HC(G.0)) , -10130.14 526 (OG.HC)) -1013247 526

(G(O.(HC))) -10167.21 5.25
((HO).(G.0)  -10167.21 5.25
(C(H(C.0) -10171.47 524
(H.(C(G,0))) ~-10171.47 5.24

-10135.71 5.14

(HG,(CO) -10133.20 5.4 :ggt:z;;;' os -
((RG)CO) -l171.70 5.1

(G.(H(C.0)))  -10173.68 515

(H{G.(CO))  -10173.68 5.15

-10134.05 5.2t

oee e E?Ha(:.)(.(cé.c(g; -10169.56 5.20
(H.(0.(C.G))) -10169.56 5.20

(G(C(H.O)) -1017207 5.19

(C(G(H0))  -10172.07 5.19

(H.C.G.0) -10133.48 5.16 (H.C,G.0) -10173.67 5.15

Data are the 6166bp wn-globin sequeaces of human (H), chimpanzce‘\ ©.
Log-likelihood values (¢) and estimates (k) of

. o). .
B e e all the trec topologics.

the transitionfteansversion ratc ratio are shown for -
The HKY8S model is assumed cither with or without 2 molecular clock.
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sequences analysed arc 895bp mtDNA sequences for human (H), chimpanzee (C), gorilla (G) and
orangutan (O). Reading down the columns of Table 1 permits comparison of likelihood values
under different models; in  particular column (1), for the twee ((H, C), G, O), is most
relevant as this is the ML tree under all modeis considered. Moving down the column, the
models get more complex and give ‘better fits to the data (judged by the increasing
likelihoods). As JC69+I", F81+I, and K80+1 arc all special cascs of HKY85+I, the LR test can
be used to test whether these simpler models are acceptable compared to HKY85+I. (HKY is
also a special casc of HKY8S5+I', discussed in more detail below.) For these sequences, the
differences in log-likelihoods are 232.65 (df = 4), 156.53 (df = 1) and 88.9 (df = 3) for
the three models respectively. All three simpler models appear totally unacceptable.

We have also investigated the cffect of wusing the gamma distribution to describe
variation of substitution rates across sites. Likelihood values under two models, HKY8S5 and
HKY85+T, are listed in Table 3 for a number of different datasets. The HKY85 model was
chosen as previous results (e.g. scc above) indicate it is generally the most acceptable
model. HKYB8S is a special case of HKY85+I, and a standard LR test is used to test whether
HKY85+T is significantly better than HKY8S, a test of rate constancy over nucleotide sites.

When we compare Al with a critical x2 value with df = 1, the difference is extremely
significant for the mtDNA sequences, the a- and B-globin genes, the ssRNAs and the glutamine
synthetase genes (all P < 0.01). We conclude that there is strong evidence of rate
variation over the sites of these sequences. On the other ‘hand, for the ym-globin
pseudogenes the difference is barely significant (0.01 < P < 0.05). This could be explained

Table 3
Maximum Log-likelihoods With and Without the Assumption of 2
Gamma Distribution of Rates over Sites

Dhats Mooe, 0 HKYES Mooe §: HEYES "
by ' L&
Five-apecics miDMNAS -2t 41 2SI FRIET
fowrapecies miDMAs -2 1BT.60 217369 11907
n- and fl-plobin peness -14%1.01 1434 58 16417
nsENA -5837.58 37T901E 41407
glutimine syalhetase genc? Z958.0% 194870 935
wrj-gholin gene IO A4 1026 26487

Data arc from *Browa er al. (1982), *Yang et al (1994), Navidi e
al. (1991), %Pesolc ef al. (1991) and *Miyamoio ef al. (1987).
“ P < 0.05 ylos (1 df) = 3.84. = P < 0.01; x,, (1 df) = 6.63.
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by the fact that thesc arc non-coding sequences, which are .nol subject to ?rcssures of
selection which might act differently at different sites, depending on the precisc structure
ction of a protein.

md]i::ing simplyp by the log-likelihood differences (c-8 T'ablfs 1, 3), we nouJ:CGl:al F(Bhlc
assumptions about relative rates of different nucleotide subsmul.lorbls (HKYB.‘T cf. P,[KYBS,
K80) scem more important than the assumptions about fatc variation ovcnt snes[ (cl.ogr. s
¢f HKY85+[). It seems clear, however, that for most sequences neither fac
ncg'l:::«(:dl:csulls presented so far relate 1o the relative acccp(abi'li(y of various Todcls. V:c
also consider the goodness of fit of these models, to sec if the modcls‘_.glvc g:r?cra oyf
acceptable descriptions of the evolution of DNA secquences. Almost all previous s(t:l nlcs o
models that do not consider rate variation across sites have concluded that these m : c :, o
inadequate (Goldman, 1993; Yang et al., 1994, submitted). We presrjm here an. cxag\: ; o
a complex model is found to give' a good description of the .cvoluuon of c'odmg o a.n o
data analysed are the 895bp mtDNA sequences of human, chimpanzee, gorilla an ‘; i, Sin,
using the HKY85+T" model. The Monte Carlo simulation test of Goldman (1993) wasY ;:cr Odelg
the maximum likelihood tree and branch lengths for these sequences -under the HK +l md i,
datasets were simulated conforming to this model. Each simulatgd dataset was ana yzc A::
the same manner as the original sequences, giving simulated values of.thc LR s(aufsu:t .
whose distribution is shown in Fig. 2. For the original data, the altau.\ed v?lue .od. y
69.5. This value falls in the middle of the distribution obtained by simulation, indicating
that the HKY85+T model gives a good description of the evolution of these sequences.

0.4 69.5

Frequency

E th:
Figure 2. Monwc Carlo distribution of Al for the test of the HK Y85+ model applicd 10 the

incd valuc (69.5) f(als well within this distribution:

miDNA for four qQ ces The
the HKY8S+I" model is accepied
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Duc in particular to computational constraints, few other datasets have been analysed in
this detailed manner. It scems likely, however, that the results presented here arc general
in nature and that only thc most complex models, such as HKY85+ which allows for
biologically meaningful factors such as transition/transversion  bias, unequal  basc
frequencies and rate variation across nucleotide sites, are capable of providing reasonable
fits to real datasets. Certainly, each of the threc specific factors mentioned is of great

importance. -

4. How Well Can Parameters be Estimated and Trees be Inferred?

4.1 Parameters of Substitution Processes

We concentrate here on the parameters generally estimated by ML methods in the HKYSS
substitution model and in the gamma -distribution used to describe the variation of rates
over sites. These parameters are  «, 4which affects the relative rates of tramsition and
transversion substitutions, and a, the shape parameter of the gamma distribution. Both
parameters are constrained only to be greater than zero.

First we consider the variation in estimates of x and a (and their standard crrors) over
different trees. | Table 1 shows lypica‘l resuits, from the miDNA sequences for human,
chimpanzee, gorilla and orangutan. We notc that estimates of x for the HKY85 mode! are
almost constant over all different trees. This is also the case for other datasets
analyzed; the range of x over all trees is 8.66-9.39 for miDNA sequences of the above four
species plus gibbon, 1.47-1.52 for the a- and B-globin genes, 1.78-1.80 for the ssRNAs and
0.96-0.97 for the bacterial glutamine synthetase genes. For the yr-globin genes analysed in
Table 2, the range of estimates of x is 5.11-5.26 over all trees and both with and without
the assumption of a molecular clock.

The estimates of the parameter o of the gamma distribution, though morc variable over
trces  under fess-realistic substitution models, are also very stable under the HKY85+T
model.  For exampie, the range is 0.39-0.46 for the mtDNA sequences for “four specics (Table
1), 0.22-0.29 for the a- and B-globin genes, 0.91-0.95 for the ssRNAs and 0.51-0.68 for the
yn-globin genes.

Tables 1 and 3 aiso give typical examples of the standard errors associated with
estimates of x and a. These arc all reasonably small, and this gives us confidence that we
are able to make accurate inferences about DNA substitution processes. Studies using
simulated data (which, unlike real data, nccessarily conform 10 the models under which they
arc analysed) confirm the findings about both the variation in estimaiecs across trees and
the size of error estimates (results not shown).
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4.2 Branch Lengths of Trees o .
Different models most often give the same best tree for given data, and it is inlcresting to

sec whether the estimates of branch lengths arc also stable under different models. Table 4

nch lengths for the ML wee for the mtDNA sequence data for four
If we take cstimates from HKY85+[' model

lists the cstimates of bra

i impanzee), gorilla, orangutan).
:[s’ccll;:' c(:g:::: n'w::l':\lesm,p we i,ecg thar all simpler models of nucleotide subst.ilulion \.avil'l lca.d
to underestimated branch lengths.  The underestimation caused by ignor.mg ‘varxatmn in
substitution rates over sites (HKYB5) is most scrious. In all cascs the bias is worse for
longer branches; for datasets with more-distantly related specics, such cnors- are .much more
pronounced.  The results here are consistent with findings from computer simulations on the

estimation of sequence divergence (c.g. Gillespie, 1986; Tamura, 1992).

4.3 Estimation of Trees and the Discriminating Power of Models

Yang ct al. (1994) considered the difference in log-likelihood between the MI.‘ (rc.ebland u::
star tree, &gy - Lo and found that more complex (and reasonable) models m.varla y dia.
jower values than simpler and inappropriate models. (¢.g. Table 1). 'ln particular, .a ing
the gamma distribution causcs substantial reduction in &gy - & This appears 10 suigcsl
that discriminating power decreases as models become more complex although, as noted by an'g
et al. (1994) and shown by Yang (in press), &y - b is not a measure of the ML tree’s

reliability; one or more wrong trees can often be significantly betier supporicd than the

Tulds 4
baxlmm Likelihood Estimates of Branch Leagihs wider Different Models
t
Brancn Lenotn (Ratio of Given Modcl 0 HKY85+I')
Moo +C nC - GC + 0

HKYSS  0.0436 (0.83) 00522 (0.81) 0.0191 (084) 0.0529 (0.78) 01535 ’(o.se)
JC69+T  0.0438 (0.83) 0.0520 (0.81) 0.0195 (0.86) 00526 (0.78)  0.1585(0.61)
FBLe[ 00446 (0.85) 0.0534 (0.83) 0.0192 (0.85) 0.0543 (0.81) 0.1579 (0.63)
KBOS ° 00482 (0.92) 00572 (088) 0.0193 (085) 0.0602 (089) 01915 (0.79)
HKYSS+I" 0.0525 0.0644 0.0227 0.0675 0.2416

Based on the analysis of the 895bp mDNA sequences from human (H), chimpanzee (C)

gorilla (G) and orangutan ). . . |
»Branch lengths  represemt  the  expected t of ozc
site. Numbers in parcntheses are the ratio of branch lengih under the present mode

10 that under the best model, HKY85+T.
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star trece.  In addition, it has been noted that the log-likelihood difference between the ML
trce and the second best 1ree, tyy - gy also decreases as the model used for data
analysis becomes more complex and accurate. As the likelihood method discriminates among
the trces by comparing their likelihood values, this too might suggest that the ability to
make a confident estimate of the true tre€ is reduced as more-complex models are used.

However, these tentative conclusions svould be overturned if we could show that the
distributions  of the -statistics are such that smaller values are in fact more easily
distinguished from their critical values. If we denote the log-likelihood of the true tree
by ¢, and those of other trees by & i > I, then we are interested in the proportion of
samples in which ¢ > max,,(¢), as these are precisely the cases in which the true tree is
correctly estimated.  For real data we do not know which is the lrue tree and so ¢, is not
known. This is why ¢, - foy is the statistic of interest for real data, but s
comparison with its distribution under some model tells us nothing directly about the
question of discrimination between candidate trees: it is simply a (somcwhat unusual) test
of that modclg — certainly of no interest when thc: data are produced by simulation.
Instead, it is appropriatc to consider the distributions of ¢ - &: in particular, we
choose for convenience a specific ‘reasonable’ altemative tree, i = 2, and consider l; -4
in the cxpecla(ign that realised values of Ly - Yy will Of(C{l in fact equal ¢, - ¢,

We simulated data using the tree and branch lengths that are ML estimates when the four
sequence 895bp mtDNA sequences for human, chimpanzee, gorilla .and orangutan are analysed
using the HKY85+T model. Other parameter values were also taken from this analysis: w; =
0.254, ne = 0331, n, = 0311, ng = 0.104; « = 12.23; a = 0.46. FEach simulated dataset was
analysed under a variety of models; the whole procedure was repcated for 100 simulations.
Table 5 shows some results from this simulation study.

We note that the mean values of the statistics Ly - & and Yy - Yz decrease as the
model becomes more complex, in agreement with findings from rcal datasets (e.g. Table 1 and
Yang er al, 1994, submitted).  Of more interest, we note also that thc mean values of
4 - & and ¢, - ¢, also decrease as models become more complex. -

"The star tree is a special casc of any more general tree (with all internal branch
tengths equal 10 zero), and so the statistic 4 - ¢ must always be non-negative; for real
data, we may safely assume it will be positive and that the star tree will ncver be
’estimalcd using ML methods.  This is further reason to discard ¢, - ¢, and Ly - & as
measures of discriminating power (contrary to some previous suggestions). The same argument
docs not apply 10 L -t

Mecans alone are not an adequate mcasurc of discriminating power.  We have tabulated the
standard deviation (SD) of cach distribution of ¢ -4 and x = mcan/SD — assuming that
the log-likelihood difference follows a  Normal distribution, the probability P, that ¢ - ¢,
is  positive (ie. the probability that the true tree s correctly  discriminated from  the
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‘second-choice’ tree) is then given by the standard Normal cumulative distribution function
D(x).

For the statistic ¢, - &, we sec that values of mean/SD (and of ®[mean/SD]) decrease as
the complexity of the model increases. This is of some concern. It means that as th.c model
used to analyse the data becomes more complex (becoming the cormect model in the final row
of Table §), we are less and less able to discriminate between the true ftrec and the second-

.

choice tree.

S. Discussion

5.1 Adequacy of Models .
The results presented in this paper demonstrate that the most compl'cx models rjow available
are probably just about statistically acceptable, in terms of their ovcra.ll goodncss of
fi'.  Certainly ecach added level of complexity Astudicd, modelling u‘\c biological fca!u.rcs
of unequal base frequency, transition/transversion bias and rate variation across nucleotide

sites, is important. It seems that the amounts of data (i.c. number of aligned scquences

Table 3
Log-likelihood Differences Between Trees under Different Models

Meav (SD)
MeawSD (P)

- 4
Mooer Lyl tyle 4t 44 &

JC69  19.19 (7.24) 1107 (8.16) 18.95 (7.52) 13.43 (8.50)  1.58 (0.943)
F81 17.68 (691) 10.57 (7.67) 17.41 (1.20) 12.60 (8.05)  1.57 (0.942)
K80 11.65 (5.81)  8.52 (5.99) 11.54 (5.95)  9.66 (6.10)  1.58 (0.943)
HKYS8S 1023 (5.43)  7.82 (5.51) 10.11 (5.59) 866 (5.70)  1.52 (0.936)
JC69+T  9.00 (4.28)  6.44 (490) 8.82 (4.50) 732 (5.10) 1.4 (0.925)
F8I+  8.06 (3.97) 6.01 (437) 7.83 (421) 656 (4.68)  1.40 (0.919)
K80+l 3.12 (2.65) 2.89 (2.64) 3.08 (269) 293 (2.71)  1.08 (0.560)
HKYSS+I 276 (2.40) 257 (238)  2.70 (2.45)  2.55 (2.48)  1.03 (0.849)

Results from 100 simulations using the HKY85+I' mode! and the tree and other
parameier estimawcs from analysis of 895bp m(DNA sequences of human (H),
chimpanzee (C), gorilla (G) and orangutan (0).  Maximum valucs of the log-
likelihood (¢) were found uader different modets and means and SDs calculated for

ikeli — star
distributions  of differences of log-likelihoods: tyy — ML wee & o
wee, f; — wee with second highest likelihood. ¢, -~ truc trec ((H. C_). G. .).
[} specific other wee ((C. G). H. 0). @ is the standard Normal distribution
, — . G). H, ‘
cumulative distribution function for mean/SD for ¢, - &,
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and length of thosec sequences) that are  currently available arc adequate  for indicating
which models are best, and how good they are.

5.2 Parameter Estimation

( . .

lfs:cms certain that we can get reasonable estimates of parameter values using the amounts

of data that are current! i i i

o y available. The choice of phylogenetic trec for a given datasct
en shown to make little difference to estimates of parameters of the substitution

roc . . :

process model.  In the cases where it makes most difference, this difference is smallest

when a good mode! of nucleotide substitution is used. Finally, given good estimates of

:)hylogcncnc trees (but see below) it scems that we can get reasonable estimates of (the

ength of branches of those trees so long as a sufficiently complex model is used. As noted

8b0VC, current data are gcucxally sufficient to indicate which models are O w
g od ith little

5.3 Discrimination of Phylogenetic Trees

Previously, everything from intuition to empirical ecvidence via theory has promoted the use
of the rnosl compiex models, but the results presented here suggest that even when a complex
model is ?car to the truth we may be more successful at estimating the correct trec if we
r.:sc.c-wcr-mmple models.  Nothing in ML theory precludes this, but it goes against both our
intuition and our experience of other applications of statistical modelling.  If correct, it
b.ccomes difficult to advise practicing biologists to use the ‘bcs{' m@cls if their pri '
aim is to estimate phylogenetic trees. e

We note at this point a correspondence with recent studies of distance matrix based
approaichcs to phylogenetic estimation.  Simulation studies have shown circumstances in which
over-simple models of nucleotide substitution used to calculate pairwisc distances between
sequences give higher probabilities of estimating the true tree (c.g- Schoniger and von
Hacseler, 1993; Tajima and Takezaki, 1994; Schdniger and Goldman, in prep.). This effect
seems related to the linearity of the distance measure over the range of distances between
scqfl.cnccs simulated using the more complex process and the variance of the distance measure
(Tajima and Takezaki, 1994; Goldstein and Pollock, in press; Schoniger and Goldman, in
prep.). ‘

A previous empirical study of the effect of models on the accuracy of tree cstimation
(Yang et al, submitied) considered estimates (related to the bootstrap) of P,. In that
study, thc estimated probabilities of selecting the correct tree increased as (hc. complexit
of the model increased (presumably towards grealer accuracy).  OQur intuition leads us lc);
hope that these findings arc correct, but they are contradicted by the simulation results
presented above.  Clearly, further work is necessary to reconcile the two scts of findings.
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