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STATISTICAL PROPERTIES OF THE MAXIMUM LIKELIHOOD
METHOD OF PHYLOGENETIC ESTIMATION AND
COMPARISON WITH DISTANCE MATRIX METHODS

ZIHENG YANG!
Department of Zoology, Downing Street, Cambridge CB2 3E], England

Abstract.—A proof is presented that the maximum likelihood (ML) method of phylogenetic
estimation from DNA sequences (Felsenstein, 1981, J. Mol. Evol. 17:368-376) is statistically
consistent despite the irregularity of the parameter space of the estimation problem. The distance
matrix method using the least squares (LS) criterion is also consistent, but disconnection of two
steps in the method, i.e., estimation of sequence divergence and construction of the tree topology,
appears to lead to both theoretical contradictions and practical problems. Comparison of the ML
and LS methods shows that the ML method is much more, indeed extremely, tolerant to violation
of its assumptions and also has smaller sampling errors caused by limited data. This conclusion
should be general, independent of particular models, tree topologies, and number of species in
the data set. The problem of evaluating the reliability of the estimated tree topology was ex-
amined. The test of positivity of the interior branch length in the estimated tree is not a test of
the significance of the ML tree but may be taken as a test of the significance of the LS tree.
[Phylogenetic estimation; maximum likelihood; least squares; consistency; sampling error; ro-
bustness; parameter space; molecular systematics.]

Under regularity conditions, maximum
likelihood (ML) estimators are well known
to be consistent, asymptotically efficient,
and normally distributed (e.g., Kendall and
Stuart, 1979:39-64), that is, all the infor-
mation in the data is taken into account
and properly handled by the method. The
application of the ML methodology to es-
timation of the phylogenetic tree from
DNA sequences as suggested by Felsen-
stein (1981), however, has some apparent
difficulties. For example, Nei (1987:325)
wrote that

the likelihood computed in this method is condi-
tional for each topology, so that it is not clear
whether or not the topology showing the highest
likelihood has the highest probability of being the
true topology when a relatively small number of
nucleotides are examined.

Also “the likelihood function to be used
varies from topology to topology, so that
the ML values for different topologies are
conditional and cannot be compared in the
usual statistical sense’” (Saitou, 1988:261;
see also Li and Gouy, 1991).

! Present address: College of Animal Science and
Technology, Beijing Agricultural University, Beijing
100094, China.

Two problems are involved here. The
first is essentially that of statistical consis-
tency. By the likelihood method, the event
that the ML tree is the true tree is equiv-
alent to the event that the true tree has the
highest likelihood, using the jargon of
probability theory. If the method is con-
sistent, that is, the ML tree is the true tree
with probability 1 when the amount of data
approaches infinity, we would expect that
in a finite sample the ML tree will also have
the highest probability of being the true
tree. The second problem is whether the
difference in likelihood between different
trees can be used as a statistic in comparing
trees.

The difficulties arise from the fact that
in Felsenstein’s (1981) formulation, the tree
topology is treated as if it were a statistical
parameter. In Goldman’s (1990) model, the
tree topology has been explicitly formu-
lated as a parameter. Yet, the forms of the
likelihood functions for different tree to-
pologies are different. Branch lengths,
which are themselves parameters to be es-
timated, depend on a specific tree topolo-
gy, and branch lengths in one topology are
meaningless in another. Some parameters
are thus functions of others, and even the
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FIGURE 1. Possible (rooted) tree topologies with

three species (1-3). T, is the star tree. Time or branch
length (¢,) is measured by the expected number of
nucleotide substitutions per site accumulated along
the branch.

number of branch lengths can be different
for different values of the tree parameter
if we are comparing other than strictly bi-
furcating trees. The parameter space of the
tree estimation problem is therefore very
irregular.

Saitou (1988) performed theoretical
studies and computer simulations to ex-
amine the efficiency of the ML method as
compared with parsimony methods and
distance matrix methods (see also Saitou
and Imanishi, 1989). The ML method per-
formed poorly in those simulations, but
this result was later found to be due to the
inefficiency of the computer program for
the ML method used by those authors
(Hasegawa et al., 1991). This interpretation
is confirmed by our reanalysis of the pri-
mate mitochondrial DNA (mtDNA) se-
quence data analyzed by Saitou (1988),
which shows that Saitou’s program did not
reach the maximum points. Nevertheless,
the theoretical criticisms remain unan-
swered.

In this paper, I provide an explicit proof
that the ML method of phylogenetic tree
estimation is indeed consistent, despite the
irregularity of the parameter space. Also,
likelihoods of different trees are proper
random variables and can be compared in

the usual statistical sense. The ML method
and a distance matrix method using the
least squares (LS) criterion are compared
in terms of their robustness to violation of
their assumptions and their sampling er-
rors.

PrROTOCOLS OF THE ML AND LS METHODS

Suppose that the data consist of s ho-
mologous (gapless) DNA sequences, each
of n nucleotides. The base compositions in
different species at one site are called a site
pattern, and there are 4° possible site pat-
terns (e.g., Goldman, 1993). Let the ob-
served number of occurrences of the ith
site pattern be n, = nf,. The likelihood func-
tion, which is proportional to the proba-
bility of a multinomial distribution, will
have the following general form (e.g.,
Goldman, 1993):

4s
L= ];! pr,

where p, is the probability of observing the
ith site pattern under the assumed substi-
tution model and tree topology.

In this paper, the analysis makes use of
¢ = log(L)/n, which is the support per nu-
cleotide site and can still be referred to as
the (log-) likelihood. Tree comparisons are
not influenced by this scaling.

Consider the case of three species. As-
sume the JC69 substitution model (Jukes
and Cantor, 1969; Bishop and Friday, 1985),
by which the rate of change between any
two nucleotides is assumed to be the s: me,
and assume a molecular clock, that is, the
overall rate of change is the same along
different lineages. There are then three bi-
furcating tree topologies, shown in Figure
1 as T,, T,, and T;, together with the star
tree T,. This is the simplest case, but it
already has all the complexities mentioned
above. This case will be pursued in some
detail to facilitate further analysis. The
likelihood, after the scaling, is then

(1)

64

2 =log(L)/n = E flog(p)).

i=1

(2)

With the JC69 model, probabilities of ob-
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serving some of the site patterns, such as
those for TTT, CCC, AAA, and GGG, are
the same, and these patterns can be com-
bined into one category. As a result, the 64
site patterns can be combined into only
five categories (Saitou, 1988). These five
categories can be labeled 0, 1, 2, 3, and 4.
Category 0 consists of four site patterns
with identical bases across species, i.e., TTT,
CCC, AAA, and GGG, and category 4 con-
sists of 24 site patterns with completely
different bases, such as TCA, TCG, etc. Cat-
egory 1 includes 12 site patterns, for which
the bases in sequence 1 and 2 are the same
and the base in sequence 3 is different,
such as TTC and TTA. These patterns in-
tuitively support tree topology T,. Simi-
larly, categories 2 and 3, each including 12
site patterns, support tree topologies T, and
T,, respectively.

Let p,and f, (i = 0, 1, 2, 3, 4) be the ex-
pected and observed frequencies of the ith
category, respectively. The likelihood can
thus be written

2= 2 flog(p). 3)

Equation 3 differs from Equation 2 by a
constant. To be comparable with other sub-
stitution models, values obtained from
Equation 2 are used, although Equation 3
is used to simplify calculation. The ex-
pected frequencies, p, values, for tree to-
pology T, as a function of t, and ¢, in T,
(see Fig. 1) are given by the following
equations:

po(Ty, to, t) = 4P rrr)
1
=E(1 + 3b2 + 6a%b? + 6a%°),
pu(Ty, b, ) = 12P(TrC)
1
=—(3 + 9 — 6a%* — 6a%?),
16
PATy, to, 1) =12pcr)
1
=1—6(3 — 3b% + 6a%? — 6a%b°),

Pa(Ty, to, 1) = 12pcrr

1
=—(3 — 3b* + 6a%* — 6a%?),
16
Pu(Ty, to, t1) = 24Pcrca,
1
— (6 — fh2 — 21,2
16 (6 — 6b*— 124

+ 124%°), (4)

where a = exp(—%t,), b = exp(—*#t,). The
factors 4, 12, 12, 12, and 24 sum to 64, in-
dicating that the 64 site patterns are com-
bined into five categories. Similar equa-
tions were given by Saitou (1988), but his
formulae (4a-e) contained errors; they did
not sum to 1. By symmetry, the p, values
for the other topologies, as functions of
their own branch lengths, can be obtained
by versions of equations of the same form.

Although the same notation is used for
branch lengths in different trees, t, and t,
in T, are different from those in T,. In a
more formal notation, different symbols
should have been used for branch lengths
in different trees. The p, values and hence
the likelihood functions are different from
topology to topology. The role of the tree
topology is to change the likelihood func-
tion and to specify branch lengths, and the
role of the branch lengths is to change the
values of the likelihood.

The ML method consists of maximiza-
tion of £ for each of the tree topologies with
respect to their branch lengths, thus lead-
ing to three likelihood values, for example,
2, %, %. The tree with the highest (maxi-
mum) likelihood is the ML tree.

The distance matrix method involves two
steps. First, the distance, d,-,, between any
two sequences i and j is estimated. With
the JC69 model,

A 3 4
dij = —Zlog<1 - 5;7), (5)

where p is the proportion of different sites
between the two sequences. For dy,, p = f,
+ f + fa

The second step involves constructing
the tree topology from the matrix of esti-
mated pairwise distances. In this paper, an
(unweighted) LS criterion was used to



332

SYSTEMATIC BIOLOGY

VOL. 43

compare different tree topologies. For ex-
ample,

(dlz 21L1)2 + (d13 - - 2E1)2
+ (dzs 2to - 2t1)2 (6)

was minimized with respect to f, and £, in
T, to calculate the sum of squares S, for
tree topology T,. The tree corresponding
to the lowest S, the LS tree, was taken as
the estimate of the true tree.

All assumptions made in the ML method
concerning the process of nucleotide sub-
stitution were also made in the estimation
of sequence distance. The second step of
the LS method involves extra assumptions,
some of which will be described later. In
this study, the same substitution model was
used in both methods so that they are di-
rectly comparable.

JUSTIFICATION OF THE ML METHOD OF
PHYLOGENETIC ESTIMATION

Consistency

Felsenstein (1978) stated that ML esti-
mation of the phylogenetic tree is consis-
tent but did not supply an explicit proof.
However, the consistency of ML estima-
tion of a tree topology does not follow di-
rectly from the consistency of ML esti-
mation of a regular statistical parameter.
The regularity conditions leading to con-
sistency and other asymptotic properties of
maximum likelihood estimators of regular
statistical parameters, such as continuity
and differentiability of the likelihood
function with respect to parameters (e.g.,
Kendall and Stuart, 1979:42-45), are not
satisfied in the tree estimation problem.
Because different tree topologies have dif-
ferent likelihood functions and different
sets of branch length parameters, the con-
cepts of continuity and differentiability of
the likelihood function with respect to the
tree topology parameter do not seem to
make sense. A formal proof that takes into
account this complexity of the parameter
space of the tree estimation problem is thus
needed. Such a proof also provides insights
into related problems, such as evaluation
of models and trees.

The proof consists of two steps: (1) given

the data, there is an upper limit on the
likelihood which cannot be exceeded by
any of the tree topologies; and (2) when
the sequence length approaches infinity,
the likelihood for the true tree will ap-
proach this limit, with its branch lengths
approaching their true values, and thus the
method will choose the true tree as the
estimate.

Consider the simplest case described in
the previous section; the proof does not
depend on the model or tree topology. First,
although the likelihood functions are dif-
ferent for different trees, they have the
common form of Equation 2. The upper
limit is obtained by taking all the expected
frequencies, p;’s, as parameters, with the
only restriction that Zp, = 1. Setting d%/dp;
= 0 will give estimates of these parameters
as p; = f;, which means a perfect fit, and
the likelihood for this unconstrained mod-
el (Navidi et al., 1991; Goldman, 1993) will
be

Lrnax = 108(L ) /n—Zflog(f) (7)

=0

Second, suppose that the true tree is T,
and the true branch lengths are t; and ¢].
When the sequence length approaches in-
finity, the observed site pattern frequen-
cies will approach the expected ones, as
given by Equation 4. That 1s, fi = pTy,
to, t1). When calculating &,, f, = to, f, = t;
is the maximum point with £, = £_...

Strictly speaking, it must be shown that
...« cannot be reached by &, or £;, i.e., the
strict inequalities £, < £, and & < ...
hold, rather than , < .. and £, = ... It
is not clear whether it is possible to derive
a rigorous proof of this, independent of
the true tree topology and the substitution
model. An intuitive argument holds that
an exception to this assertion is highly un-
likely. Because a wrong tree must provide
perfect fit to data for its likelihood to reach
22, the problem is equivalent to that of
existence or nonexistence of a root to a
system of simultaneous equations that in-
volves more equations than the number of
variables. For the simplest case described
above, it is easy to show that the wrong
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trees can provide a perfect fit to data only
if t; = 0 or if t; = t; = ©o, which can be
considered trivial and ignored. In this case,
there are four independent equations (five
observed frequencies for the categories
with the sum to be 1) and two variables
(two branch lengths in a wrong tree). When
a more complex model is used or when
more than three sequences are in the data
set, the number of simultaneous equations
increases much more rapidly than the
number of variables, and a root to such a
system is even more unlikely, that is, a
wrong tree is not likely to give perfect fit
to the data. For example, when the model
of Hasegawa et al. (1985) instead of the
JC69 model is assumed in the problem of
Figure 1, there are six variables for a wrong
tree (two branch lengths plus four free
parameters in the substitution model) but
64 — 1 = 63 independent equations.

The LS method as defined in the previ-
ous section is also consistent, because with
infinitely long sequences the distances are
accurately estimated and the sum of squares
for the true tree will approach zero at the
point f, = t;, f; = ¢;.

Comparison of Likelihood Values Across
Tree Topologies

The above proof suggests two results
concerning finite data. Suppose that T, is
the ML tree. First, 2. — £, calculated from
the real data, will be a natural statistic for
evaluating the adequacy of the assumed
substitution model. Without sampling er-
rors, we should get perfect fit of the model
to the data if the model is correct; with
finite data the lack of fit caused by sam-
pling errors can be tested statistically, as
has been suggested by Navidi et al. (1991),
Reeves (1992), and Goldman (1993). Sec-
ond, £, — max(%,, £,) should be a natural
statistic for evaluating the reliability of the
ML tree. Without sampling errors, the like-
lihood of the true tree is greater than that
of any of the others; with finite data, like-
lihood values for other topologies can be
larger simply because of sampling errors.

Li and Gouy (1991) pointed out that the
likelihood ratio test (x? test) cannot be used
to test likelihood differences among trees.

This is the case even with the test of €.,
— £,. Apart from the difficulties in count-
ing the number of degrees of freedom,
there is also the problem of very few counts
in many categories (Goldman, 1993). Con-
trary to Li and Gouy (1991), however, in-
applicability of the x* approximation is not
evidence that likelihood differences can-
not be examined by statistical tests at all;
there are many known and unknown dis-
tributions other than the x2. Although the
parameter space in the tree estimation
problem is more complicated than in many
statistical problems, it is nevertheless well
defined. The number of tree topologies is
fixed for a given data set, and the ranges
of branch lengths are well specified. Sup-
pose that T, in Figure 1 is the true tree.
With given sample size, the frequencies of
different site patterns follow the multi-
nomial distribution. From such frequen-
cies, the likelihood and branch lengths for
each of the possible trees are determined:
they are functions of these frequencies and
thus are proper random variables with spe-
cific, if unknown, distributions. An ex-
ample of the sampling distribution of the
likelihood difference is given later (see Fig.
7).

Another question is whether a paramet-
ric test of the estimated tree topology can
be constructed and, when it can, whether
it can have higher power than nonpara-
metric methods such as bootstrapping (Fel-
senstein, 1985), which appears to have low
power (Zharkikh and Li, 1992; Hillis and
Bull, 1993). Two tactics seem possible in
this context. The first tactic is to take the
tree topology as a statistical parameter with
unknown dimension. The test now
amounts to calculation of the variance of
the estimated tree and construction of the
confidence interval. If the confidence in-
terval covers only the estimated topology,
the result of the test is significant; other-
wise it is not. This is exactly what the boot-
strapping method is doing. In this for-
mulation we may not expect a parametric
method, if feasible, to be more powerful.
The second tactic is to take different to-
pologies as different hypotheses and re-
gard the problem as one of hypothesis test-
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FIGURE 2. A model tree topology used in studying
the robustness of tree estimation methods to violation
of their assumptions and in examining the sampling
errors of tree topology estimation. The branch length
(t,, t,) is measured by the expected number of nucle-
otide substitutions per site accumulated along the
branch.

ing. The null hypothesis should be that the
estimated tree is not the true tree or one
of the other topologies is the true tree,
which seems very difficult to formulate if
more than two trees are possibly true.

ROBUSTNESS OF THE METHODS TO
VIOLATION OF THEIR ASSUMPTIONS

When discussing consistency, the model
is assumed to be correct. However, a good
estimator should also be robust to minor
violation of its assumptions. In fact, the
irregular nature of the tree estimation
problem has made it possible for a method
to be consistent even if a wrong model is
assumed, as far as only estimation of the
tree topology is concerned. When the as-
sumed model is wrong, the method is usu-
ally consistent for only certain values of
the parameters in the true model where
the assumed model is not too wrong but
not for all possible values of parameters.
In other words, the method is consistent
in only part of the parameter space, and
this region may be termed the “consistency
domain” of the method, the magnitude of
which really measures the robustness of
the tree estimation method to violation of
its assumptions. When the true model is
used, the consistency domain of the ML
and LS methods is the whole parameter
space, as shown by the proof.

Debry (1992) examined the robustness of
parsimony methods to departure from the

assumption of a molecular clock. Because
neither the ML method nor the LS method
requires this assumption, I examined two
other aspects of the assumptions, i.e., the
effect of transition/transversion bias and
the effect of unequal nucleotide frequen-
cies. Following Felsenstein (1978) and De-
bry (1992), consider the limiting case of
infinite sequence length. The data, that is,
the expected site pattern frequencies, are
calculated under a more complex model,
and then a simpler model is used to per-
form the analysis to see whether the true
tree is recovered.

The more complex model is HKY85
(Hasegawa et al., 1985), which assumes un-
equal nucleotide frequencies and also dif-
ferent rates for transitional and transver-
sional substitutions. The ratio of these two
rates is designated «, which is equivalent
to a/B in the notation of Hasegawa et al.
(1985). The F81 model (Felsenstein, 1981),
which assumes k = 1, was used to analyze
the data to study the robustness to the «
bias, and the K80 model (Kimura, 1980),
which assumes equal base frequencies (m
=T =T,y = T = %), was used to study the
robustness to base frequency variation.
Both are special cases of HKY85. The model
tree topology used is shown in Figure 2,
and two sets of branch lengths were used:
(1)t,=05,t=0.1,2)t, =10, t,=0.1.

Robustness to Transition | Transversion
Rate Bias

The equilibrium nucleotide frequencies
used in the HKY85 model were n; = 0.1,
me = 0.2, 7, = 0.3, and 7 = 0.4. Consider
the case of x = 1 only. Because the F81
model assumes k = 1, the methods were
expected to be consistent for small « in the
HKY85 model and to be inconsistent for
large «.

To study the relationship between the
interior branch length t, in the model tree
of Figure 2 and the robustness of the ML
and LS methods to the « bias, let ¢, change
from 0.01, to 0.02, ..., to 0.20. For each t,,
k increases from 1, to 2, ..., to 200, and
the expected (observed) frequencies are
generated using HKY85 with these values
of t, and x. The F81 model is then used to
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FIGURE 3. Robustness of the ML () and LS (W)
methods of tree estimation to transition/transversion
ratio (k) bias. The HKY85 model is used to generate
the data, with 7 = 0.1, 7. = 0.2, 7, = 0.3, and #n =
0.4. The F81 model is used to perform the analysis.
The critical values (k*) are shown as a function of the
interior branch length ¢, in the model tree of Figure
2. The method is consistent when « < «* but not when
k > «*. In other words, the region below the curve is
the consistency domain of the tree estimation meth-
od. (a) The branch lengths are t, = 0.5, t, = 0.1. (b)
The branch lengths are t, = 1.0, t, = 0.1.

estimate the best tree. The critical value «*,
at which the method no longer gives the
true tree, is then estimated as the average
of the two neighboring « values. The error
of this estimate is thus no larger than 0.5.

The results are shown in Figure 3 for the
two sets of branch lengths. Obviously ML
is much more robust than LS. As expected,
both methods are more robust to the ratio
bias when the tree to be recovered is sim-
pler, that is, when the first set of branch
lengths were used. There are no cases
where either of the two methods chooses
the true tree when a « larger than the crit-
ical value was used to generate the data.
When the two methods chose the wrong
tree, they both chose the tree with the two

model. The £, — ¢, value is the likelihood difference
per site between the unconstrained model and the
likelihood of the ML tree, calculated using the ex-
pected site pattern frequencies with infinitely long
sequences. The model tree in Figure 2 is used with ¢,
= 0.05, t, = 0.5, t, = 0.1 (see Fig. 3a). The true model
is HKY85, with m; = 0.1, 7. = 0.2, m, = 0.3, and 7 =
0.4.

long branches together and the two short
branches together, that is, the topology
((1, 3)2, 4) (see Fig. 2).

Figure 4 shows £, — &, the likelihood
difference between that of the uncon-
strained model and that of the best tree, as
a function of the « used for generating the
data. The first set of branch lengths was
used, with ¢, = 0.5, t, = 0.1, and ¢, = 0.05.
The «* value for the ML method is 38.5
(Fig 3a). As the ratio k becomes larger, the
fit of the F81 model, as measured by the
likelihood difference, becomes worse. Sup-
pose that the observed values of ., — &
in a finite sample are similar to the limiting
values and the x? approximation is used to
test the significance (see Goldman, 1993,
for criticisms). The unconstrained model
has 4* — 1 = 255 parameters. Counting the
tree topology as one parameter, the F81
model has 5 + 3 + 1 =9 parameters. Using
a normal approximation, x3,, = 306.0, with
df = 246. Therefore a sample size of n =
306/(2 x 0.172) = 890 is enough for re-
jecting the F81 model when the real « = 5.
When there are more sequences in the data
or the real « is larger, the sample size need-
ed for rejecting the F81 model is even
smaller. The above calculations are very
speculative. However, the qualitative con-
clusion is expected to be correct: our data
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FIGURE 5. Robustness of the ML ([J) and LS (W)
methods of tree estimation to base frequency bias as
reflected by p. The HKY85 model is used to generate
data, with x = 10 and nucleotide frequencies 7, = 7,
=p/2,7.=m;=(1— p)/2,and K80 is used to perform
the analysis. The critical values (p*) are shown as a
function of the interior branch length ¢, in the model
tree of Figure 2. The method is consistent when p <
p*. (a) The branch lengths are t, = 0.5, t, = 0.1. (b)
The branch lengths are ¢, = 1.0, t, = 0.1.

set is typically large enough for rejecting
a wrong model.

Robustness to Unequal Nucleotide
Frequencies

Similarly, the HKY85 model was used to
generate the data, with x = 10. A variable
p was introduced, such that the nucleotide
frequencies in the HKY85 model were
specified as mp =7, =p/2, 7c =75 =(1 —
p)/2. The K80 model used for analyzing
the data was expected to be consistent when
p is near to 0.5, and only the case of p =
0.5 was considered.

As before, t, changes from 0.01, to 0.02,
..., to 0.20. For each t,, p increases from
0.5 to 0.51, ..., to 0.95. Site pattern fre-
quencies are calculated using the HKY85

model with these values of branch lengths
and nucleotide frequencies. Then the K80
model is used to estimate the best tree. The
critical value p* is determined in a way
similar to that described above.

The results are shown in Figure 5 for the
two sets of branch lengths. Once again, ML
is much more robust than LS. For both sets
of branch lengths, there are cases where
LS chose the true tree when a p even larger
than p* was used to generate the data. This
appears to mean that the consistency do-
main of a tree estimation method can con-
sist of several disconnected regions in the
parameter space. Figure 6 shows that the
fit of the K80 model very rapidly becomes
worse as p gets larger, as indicated by &,

1-

SAMPLING ERRORS

The two methods were compared with
respect to their sampling errors in the es-
timation of tree topology and branch
lengths. Another important problem is how
to evaluate the sampling error of the es-
timated tree topology by appropriate sta-
tistical tests.

Saitou (1988) attempted to derive the
conditions under which the likelihood
method will produce the true tree as the
estimate. For the simplest case described
before, he gave a proof that when T, is
assumed to be the true tree, this condition
is n, > max(n,, n,), or f; > max(f,, f;) (see
Equations 3 and 4). This proof is invalid
because it is based on the assumption that
estimates of branch lengths are the same
for the three trees, which can be met only
if f, = f, = f;, when the best tree is T, and
the condition does not hold at all. Branch
lengths in different tree topologies must
be solved to maximize their own likeli-
hood functions. My attempt to derive the
single branch length in the star tree led to
a seventh-order polynomial equation, for
which an analytic solution is not possible.
This probably means that analysis of the
likelihood method must rely on intensive
computation, as in this study.

Nevertheless, categories 1, 2, and 3, with
observed frequencies f,, f,, and f;, support
the trees T,, T,, and T,, respectively, and
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any reasonable method should choose the
tree corresponding to the largest f. There-
fore, the condition f, > max(f,, f;) should
be correct, as was confirmed by numerical
calculations (results not shown).

With this condition, it is easy to calculate
the probability that the ML tree will be the
true tree given the length of the sequence.
Suppose that T, in Figure 1 is the true tree
with branch lengths f, = 0.015 and ¢, =
0.05 (values obtained from the 895-bp
mtDNA sequences concerning human-
chimpanzee-gorilla divergence). This
probability is 0.95 when the sequence
length is 650 bp, as calculated by the mul-
tivariate normal approximation of Zhar-
kikh and Li (1992). Figure 7 shows the the-
oretical distribution of £, — max(®,, £;) for
these values of parameters, as obtained
from computer simulation. The distribu-
tion of 2, — %,, the likelihood difference
between T, and T, in Figure 1, was very
similar to that shown in Figure 7 (results
not shown). Kishino and Hasegawa (1989)
suggested that the distribution of the ob-
served likelihoods can be approximated by
a multivariate normal distribution. The test
derived from such an approximation was
unsatisfactory and appears to be conser-
vative when compared with some standard
tests in cases where standard tests can ap-
ply (results not shown). The skewness of
the distribution shown in Figure 7 might
explain why a normal distribution is not
satisfactory. For the values of parameters
of Figure 7, the distributions of estimates
of branch lengths in the true tree by the
ML and LS methods were very similar, and
both were symmetrical (results not shown).

It seems that comparison of the methods
with respect to sampling errors of tree es-
timation must be done by computer sim-
ulation. Fukami-Kobayashi and Tateno
(1991) and Hasegawa et al. (1991) per-
formed simulation studies to compare the
efficiency of the ML method and distance
matrix methods in recovering tree topol-
ogies. My small-scale simulations pro-
duced results similar to those obtained by
those authors, in that the ML method has
a higher probability of recovering the true
tree than does distance matrix methods and
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FIGURE 6. The lack of fit of the K80 model mea-
sured by £,.. — £, as a function of p. The .. — &
value is the likelihood difference per site between the
unconstrained model and the likelihood of the ML
tree in the limiting case of infinite sequence length.
The true model is HKY85, with k = 10 and 7 = w, =
pl2, 7c = 75 = (1 — p)/2. The model tree of Figure 2
is used, with t, = 0.05, t, = 0.5, t, = 0.1.

thus has smaller sampling errors. Figure 8
shows one example, where the F81 model
was used to generate data and also used by
both methods to perform analysis. (The
HKY85 model was not used because no
simple formula is available to calculate
pairwise distances under this model.)
The cases in which estimates of branch
lengths from the two methods are very
similar are those where the tree is both the
ML tree and the LS tree and where branch
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FIGURE7. Sampling distribution of £, — max(&,, £,)
estimated by computer simulation of 2,000 samples.
The tree topology T, in Figure 1 is used to generate
data, with branch lengths t, = 0.015 and ¢, = 0.05. The
length of sequence is 650 bp, at which the probability
that £, — max(%,, £,) > 0 is 0.95.
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FIGURE 8. The probability that the true tree is re-
covered by the ML (OJ) and LS (M) methods of tree
estimation as a function of the sequence length n,
estimated by computer simulation of 500 samples. The
true tree is shown in Figure 2 with t, = 0.02, t, = 0.5,
and t, = 0.1. The F81 model is assumed to generate
data, with 7, = 0.1, 7. = 0.2, 7, = 0.3, and n; = 0.4.
The same model is used to perform analysis by both
methods.

lengths are very small. These were the cases
examined by Saitou (1988), who suggested
that estimates of branch lengths by the two
methods are then very similar. For other
cases, estimates by the two methods are
quite different. When the tree is neither
the ML tree nor the LS tree, the LS method
will very often produce zero (or negative)
interior branch lengths, whereas the ML
method may well give significantly posi-
tive values. The sampling properties of
branch lengths in the wrong trees must be
very different for the two methods, al-
though it is not clear whether they are
worth studying.

REANALYSIS OF THE 895-8P MTDNA
SEQUENCES OF HUMAN AND APES
The 895-bp mtDNA sequences of human
(H), chimpanzee (C), gorilla (G), orangutan
(O), and gibbon (B) (Brown et al., 1982)
were compared to reveal some differences

TABLE 1.

between the two methods. The same data
set was analyzed by Saitou (1988).

To apply the LS method, the K80 model
was used to estimate pairwise distances.
This model leads to simple formulae for
ML estimation of two parameters in pair-
wise comparisons, that is, the average
number of nucleotide substitutions per site,
d, and the transition/transversion rate ra-
tio, k. The « value, although a part of the
model assumptions, has normally been ig-
nored. The results are provided in Table 1.
Use of the model of Tamura and Nei (1993),
which is more complex than HKY85 or K80,
led to slightly higher estimates of these
two parameters.

Table 1 reveals an assumption underly-
ing distance matrix methods. Suppose that
the assumed tree is the one in Figure 9.
From the data in Table 1, it appears that
different values for individual parameters
are being assumed at different stages of one
analysis of the same data. For example, the
ratio « along the branch leading to human
is estimated as 32.4, 23.3,7.1, and 6.0 when
the human sequence is compared with that
of chimpanzee, gorilla, orangutan, and
gibbon, respectively. The problem is more
serious when a more complex model is
used. For example, when the model of Ta-
mura and Nei (1993) is used, both nucle-
otide frequencies and the two transition/
transversion rate ratios will be subject to
such contradictions. In the same vein, the
length of a single branch in the tree is also
assumed to have different values in differ-
ent comparisons; this problem exists for a
model as simple as JC69 and is more serious
when a molecular clock is assumed.

Although this internal inconsistency
does not appear with infinitely long se-
quences, it does make distance matrix

Number of nucleotide substitutions per site and transition/transversion rate ratio (in parentheses)

estimated assuming the K80 model (895-bp mtDNA sequences from Brown et al., 1982).

Human Chimpanzee Gorilla Orangutan
Chimpanzee 0.097 (32.37)
Gorilla 0.114 (23.28) 0.118 (21.24)
Orangutan 0.185 (7.08) 0.201 (8.17) 0.195 (8.17)
Gibbon 0.212(5.99) 0.223 (6.63) 0.223 (6.42) 0.223 (6.42)
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methods more sensitive to sampling errors.
This may be the main reason for the par-
adox, found in computer simulations, that,
even though the data are generated using
the JC69 model, using the corrected se-
quence divergence estimates (d in Equa-
tion 5) in distance matrix methods can be
worse than using the uncorrected propor-
tion of different sites (p in Equation 5) when
the overall distances among the sequences
are small (Jin and Nei, 1990; Nei, 1991).
This has been explained as p having a
smaller sampling variance than d. The in-
terpretation is not justifiable, however, be-
cause comparison of sampling variances is
meaningful only when the estimators are
consistent and unbiased, and p is not a con-
sistent or unbiased estimator of d, whereas
d is (N. Goldman, pers. comm.).
Nevertheless, Table 1 suggests that «
might indeed be different along different
branches in the tree. Such a model was
fitted using the ML method. The HKY85
substitution model was adopted, but one
rate ratio (k) was assigned to each branch.
The likelihood is log(L) = —2652.34,
whereas a model assuming the same ratio
for all the branches gives log(L) =
—2665.42. The asymptotic x* test involved
comparison of 2 X 13.08 = 26.16, with
X301 = 16.81 and df = 6. The difference was
significant, and indeed the ratio was dif-
ferent along different branches. The three
branches leading to human, chimpanzee,
and gorilla have higher k ratios, in the range
of 33-36, whereas all the others are around
5-8. The ML estimates of branch lengths
and the « parameter are shown in Figure 9.

DiscussioN
Test of Phylogeny and Test of Branches

Two main methods have previously been
suggested for testing the reliability of the
estimated tree topology. One involves
comparison of the best tree with all the
other trees, and the other is a test of pos-
itivity of the interior branch lengths in the
estimated tree (Nei et al., 1985; Li, 1989).
Li and Gouy (1991) suggested that the first
test might be too stringent, whereas Kishi-
no and Hasegawa (1989) pointed out that

339
human gorilla orangutan
0.041 0.063
; 0.098
34.79
(34.79) (35.78) 58
0.014 0.053
0.056
33.64 (6.66) (8.03) 0.132
(@364 (5.16)
chimpanzee gibbon

FIGURE9. The maximum likelihood tree of the 895-
bp mtDNA sequences of human, chimpanzee, gorilla,
orangutan, and gibbon. The HKY85 model is used
with one transition/transversion rate ratio (x) as-
signed to each branch. The estimated branch lengths
are given, with the rate ratios in parentheses. The
likelihood value for this tree is log(L) — log(L,..,) =
(—2652.34) — (—2476.97) = —175.37.

the second is not stringent enough. The
first test is indeed an evaluation of the es-
timated tree, i.e., a test of phylogeny.
Therefore, I refer to the second test as a
test of branches. It is worthwhile to con-
sider whether a test of branches is equiv-
alent to a test of phylogeny.

This question can be answered by con-
sidering the limiting case of infinite se-
quence length. The underlying assump-
tion is that, if interior branch lengths in a
wrong tree cannot be positive in the lim-
iting case, they cannot be significantly pos-
itive in a finite sample, and thus a test of
branches will be equivalent to a test of
phylogeny. Otherwise, if a wrong tree can
be better than the star tree in the limiting
case, it can be significantly better than a
star tree in a finite sample, and then a test
of branches cannot be considered an eval-
uation of the estimated tree topology. In
the following, this strategy was applied to
the ML and LS methods of tree estimation.
The true model was assumed so that both
methods satisfy the requirement of consis-
tency over the whole parameter space.

With the ML method, more often than
not more than two bifurcating trees are
better than the starlike tree(s) in the lim-
iting case of infinitely long sequences, and
thus the two tests are not equivalent.

With the LS method, sequence diver-
gence is accurately estimated in the lim-
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iting case and the analysis will be inde-
pendent of the assumed substitution model.
There is then a linear relationship between
the true branch lengths in the true tree and
branch lengths in any of the wrong trees,
if negative branch lengths are allowed. By
the LS criterion, negative (interior) branch
lengths in a bifurcating tree mean that the
tree cannot be better than the star tree if
branch lengths are restricted to be positive.
Therefore, estimates of branch lengths can
be obtained in the wrong trees without
restricting the branch lengths to be posi-
tive, and then the results can be converted
into those with such a restriction. Accord-
ingly, the following cases were examined:
three species with a molecular clock, four
species with a clock, and four species with-
out a clock. In no case was a wrong tree
better than the star tree in the limiting
case. The generality of these results re-
mains unknown, but it seems highly likely
that this conclusion is general. This result
suggests that the reliability of an LS tree
may be examined by testing whether it is
significantly better than the star tree, i.e.,
whether the interior branch length(s) are
significantly positive. The reasons for this
difference between the ML and LS meth-
ods are unknown.

Evaluation of the LS Method

Compared with the LS method based on
pairwise distances, the ML method is more
robust to violation of its assumptions and
has smaller sampling errors, in that it has
higher probability of recovering the true
tree when a relatively short sequence is
examined. Also, the LS method involves
some internal contradictions, which must
be part of the reason for its poorer perfor-
mance. Other problems involved with the
LS method can be explored in a further
attempt to understand how the two meth-
ods differ.

First, when the distance between two se-
quences is estimated, all the other sequenc-
es are ignored. However, the distance be-
tween two sequences is not only reflected
in the two sequences compared but also in
how closely each of them is related to other
sequences. All the sequences in the data

provide information concerning the evo-
lutionary process and, if made use of, would
produce more accurate estimation of the
pairwise distance. When the sequence data
are transformed into the distance matrix,
some information is lost, as pointed out by
Penny et al. (1992; cf. Nei, 1991).

Second, it is well known that the larger
the true distance, the larger the sampling
error of the estimate and the more sensitive
the estimate to the model assumptions un-
derlying the estimation method (e.g., Go-
jobori et al., 1982; Nei, 1991). By adding
the branch lengths along the tree, pairwise
distances can be very large even though
all the branches in the tree are small. Some-
times pairwise distances can be so large
that the estimation formulae are not ap-
plicable (e.g., Gojobori et al., 1982).

Third, the LS criterion applied to the es-
timated pairwise distances instead of the
real data may not be reasonable. A (weight-
ed) LS criterion applied to the real data,
i.e., the observed site pattern frequencies,
will have a form similar to the following:

_ . (nf, — np,)?
S= 2 A

The likelihood method uses the ML cri-
terion to get the best fit to the data,

()

4s

10g(L) — 10§(Lu) = nf,log%, )

1=1

which is very similar to the minimum X2
criterion
45 _ 2
x2= > W) (10)
=1 npx

Results from the three criteria should be
very similar, although neither Equation 8
nor Equation 10 can lead to simpler cal-
culations than can the ML method (Equa-
tion 9).

All the problems involved with the LS
method are not specific to models, tree to-
pologies, or the amount of data. All the
problems are caused by the two-step strat-
egy and thus are completely avoided by
the ML method, which performs a joint
comparison of all the sequences (Bishop
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and Friday, 1985). Therefore, the ML meth-
od should be generally better than the LS
method. It seems difficult to imagine a spe-
cific case where an LS method would per-
form better than the ML method, as long
as the sequences were related by a tree
structure, even if the assumptions of the
two methods were violated.
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