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ABSTRACT 
We describe  a  model for  the evolution of DNA sequences by nucleotide  substitution, whereby nucleo- 

tide sites in the  sequence evolve over time, whereas the rates of substitution are variable and correlated 
over sites. The temporal process used to describe  substitutions between nucleotides is a  continuous-time 
Markov process, with the  four nucleotides as the states. The spatial process used to describe variation 
and  dependence of substitution  rates over sites is based on a serially correlated gamma  distribution, i.e., 
an autegamma model assuming Markov-dependence of rates at adjacent sites. To achieve computational 
efficiency, we use several equal-probability categories to approximate the gamma  distribution, and  the 
result is an autcdiscrete-gamma model for rates over sites. Correlation of rates at sites then is modeled by 
the Markov chain transition of rates at adjacent sites from  one  rate category to another,  the states of 
the chain  being the  rate categories. Two versions of nonparametric models, which place no restrictions 
on  the distributional  forms of rates  for sites, also are  considered, assuming either  independence  or 
Markov dependence.  The models are applied to  data of a  segment of mitochondrial genome  from  nine 
primate species. Model parameters are estimated by the maximum  likelihood method,  and models are 
compared by the likelihood  ratio test. Tremendous variation of rates among sites in the sequence is 
revealed by the analyses, and when rate  differences for different codon positions are appropriately 
accounted  for in the models,  substitution rates at adjacent sites are  found  to be strongly (positively) 
correlated. Robustness of the results to uncertainty of the phylogenetic tree  linking the species is 
examined. 

C OMPARISON  of homologous DNA sequences from 
living  species  has  provided an important tool for 

studying molecular sequence evolution. FELSENSTEIN 
( 1981 ) described a maximum likelihood framework for 
modeling the process of nucleotide substitution com- 
bined with phylogenetic tree estimation. The model 
suggested by FELSENSTEIN assumes constant rate of sub- 
stitution among nucleotide sites. This assumption has 
long  been recognized as unrealistic, especially for genes 
that  code for proteins  or sequences that  are otherwise 
functional (see WAKELEY 1993 and references therein ) . 
The most important reason appears to be that different 
sites perform different structural and functional roles 
in the  gene  and  are  therefore  under different selective 
constraints; this leads to variable rates of substitution 
at sites. Mutation rates may also be variable  in different 
regions of the  genome ( WOLFE et al. 1989). 

There have been many attempts  to  account for rate 
variation among sites  in nucleotide-substitution models. 
For example, JIN and NEI ( 1990)  and  TAMURA  and NEI 
( 1993) used the gamma distribution with  given param- 
eters to describe variable rates at sites when they con- 
structed  formulae for estimating the distance between 
two homologous DNA sequences. The gamma-distribu- 
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tion model has  also been extended to a joint likelihood 
analysis  of  all sequences by YANC (1993), which is a 
direct extension of FELSENSTEIN’S ( 1981 ) model of a 
single rate for all  sites. Unfortunately the  computation 
required by this method is very intensive, and YANC 
(1994) suggested the use of a discrete distribution as 
an approximation to the (continuous) gamma. Use of 
the gamma distribution to describe rate variation 
among sites has been  found to produce quite good fit 
to various data sets (see, e.g., WAKELEY 1993; YANC 1994; 
YANC et al. 1994) . 

The existence of “conservative” and “variable” re- 
gions in a  gene suggests that rates of substitution may 
be not only variable, but also correlated, as  sites  within 
the same region may have  similar rates characterized by 
the structural and functional importance of the whole 
region. In this paper, we will develop models that allow 
for such correlation by assuming Markov dependence 
of rates at adjacent sites.  Such models will provide an 
alternative hypothesis for testing rate constancy and in- 
dependence over  sites, will produce  more accurate pre- 
diction of rates at sites and will be useful for studying 
the effects  of rate variation and correlation on various 
aspects of phylogenetic analysis. 

The resulting models are space-time process models, 
by which the nucleotides in the sequence evolve over 
time, whereas the rates of change are variable and de- 
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pendent over  sites and are characterized by a spatial 
process. Our emphasis is on the spatial process used to 
model variation and  dependence of rates over  sites, but 
the temporal process of nucleotide substitution will first 
be described to introduce  the necessary notation. The 
models will be applied to data of a segment of the 
mitochondrial genome from several primate species. 
We emphasize comparison of models, estimation of pa- 
rameters and prediction of rates for sites  as means for 
understanding  the mechanisms of molecular sequence 
evolution. 

THEORY 

We consider substitutions only and ignore insertions 
and deletions. The data consist  of S homologous DNA 
sequences from living species, each of N nucleotides 
long, and can be  represented by an S X N matrix, X 
= { xSn], where x,, means the  nth nucleotide in the sth 
sequence; x,, takes a value from 1, 2, 3 or 4, represent- 
ing the four nucleotides, T, C, A or G, respectively. We 
use x, to denote  one column in X ,  which is the nucleo- 
tide composition in different species at the  nth site. It 
is apparent  that x, is one of 4 X 4 X * * * X 4 = 4“ 
possible “site patterns”  (see, e.g., GOLDMAN 1993).  The 
species (and their representative sequences)  are re- 
lated according to an evolutionary tree; an “unrooted” 
tree topology for four species ( S = 4) is  shown  in Figure 
1, which will be used as an example to develop the 
theory. The sequences for extinct  common ancestors, 
e.g., those at nodes  5 and 6 in the  tree of Figure 1, 
existed in the past and  are now unknown. The se- 
quences  are assumed to evolve independently of each 
other after the separation of the species. 

1 3 

2 4 

FIGURE 1.-An unrooted  tree topology with four species 
used to develop the theory. The  branch  length is measured 
by the average number of nucleotide  substitutions per site 
that have accumulated along  the  branch. 

We assume that, for each site  in the  sequence,  there 
is an overall rate of substitution that is determined by 
the structural and functional role of the site in the  gene. 
This assumption appears legitimate when the sequences 
are  not very different and homologous sites  in different 
sequences perform more or less the same roles. YANG 
(1993, 1994) considered the case where rates for sites 
are variable but  independent; in this paper, we extend 
the theory to allow for correlation of rates at adjacent 
sites. We assume that conditional on the rates, substitu- 
tions occur  independently  at different sites. This is re- 
ferred to as the conditional  independence. 

The  temporal  process:  the Markov process  model 
of nucleotide  substitution: Nucleotide substitution is 
assumed  to  follow a  (stationary)  homogeneous Markov 
process, the four nucleotides being the states of the 
process. Let Q = { a,,) be the rate  matrix  of the process 
for a site  with an average  overall rate. We use the substi- 
tution model proposed by HASEGAWA et al. ( 1985), by 
which 

1 

1 7r 7‘ 7r c 

where (&,,At ( y f u )  is the probability that  nucleotide 
p changes  into u in a small time interval At. Parame- 
ters nu’s give the  equilibrium  distribution of the pro- 
cess,  with X T,, = 1, and we assume that  the process is 
in equilibrium.  Parameter K (usually > 1 ) allows transi- 
tional substitutions ( T  ++ C, A tf G) to occur with 
higher rates than transversional substitutions ( T, C ++ 

A, G) . The model will be  designated “HKY.” The row 
sums of Q  are 0; this allows the matrix of transition 
probabilities in time t to be calculated as P ( t )  = 
{Pfiu( t )  ] = exp( tQ)  (see, e.g., GRIMMETT and STIR- 
ZAKER 1992, pp.  239-246). As t and Q  occur in the 
form tQ only (in the  likelihood function) , we choose 
the scale factor f = 1 / [ 4 ~ (  nT7rC; + T ~ ? T ~ ; )  + 4 ( 7rT  + 
7 r c )  ( r A  + T ~ ; )  ] , so that  the average rate of substitution 
is 1 when the process is in equilibrium, i.e., -E 7r,Q, 

K T A  - ( KTA + n-,- + T C )  

= 1. Q  thus  represents  the pattern  of nucleotide substi- 
tution whereas the overall amount of evolution is re- 
flected in t. Time t, or the  branch  length in a  tree, is 
then  measured by the  expected number of nucleotide 
substitutions per site that have occurred  during  the 
time interval or along  the  branch. We do  not assume 
the constancy of substitution rates among lineages, an 
assumption known  as the molecular  clock;  as a  result, 
the  placement of the  root in a  tree will not affect the 
likelihood;  that is, only unrooted  tree topologies can 
be identified ( FELSENSTEIN 1981 ) . 

To calculate P ( t )  = exp( tQ) ,we  perform  the spec- 
tral  decomposition  (diagonalization) of Q; if Q = 
U - diag{ A I ,  Az,  AJ, A 4 )  U ” ,  then P (  t )  = U * 

diag{exp(Alt) ,   exp(A2t),   exp(M), exp(A4t) I 
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U“ , where the As are  the eigenvalues of Q and col- 
umns of U are  the  corresponding (right) eigenvectors; 
those for  the HKY model  are given by HASEGAWA et al. 
(1985). 

The overall rates for sites are assumed to  be  random 
variables, either  independent  or Markov dependent, as 
will be described later. If the  rate  for site n is r, ( n  = 
1, 2, . . . , N) , the  rate matrix for the site will be r,Q, 
and the matrix of transition probabilities for the site will 
be P (r,t) = exp( r,tQ) . Suppose that  the nucleotide 
composition for this site is x, = (XI, Q, x$, xq]’ (we 
have written xln, Q,, * * * as xl, Q, * - - for conciseness) . 
The conditional probability of observing x,, given the 
rate for the site r,, is (YANG 1993) 

4 4  

f(xnlm) = c c 7 r ~ p ~ x , ( r , t l ) p x . ~ ~ ( r , ~ )  
x5=l q = l  

x ~ x 5 q ( r , t 5 ) p ~ X ~ ( r , ~ ) p ~ x / , ~ r , t 4 ) .  (2) 

The  “root” of the  tree, i.e., the starting point for calcu- 
lation, is (arbitrarily) fixed at  node 5 in the  tree of 
Figure 1, and 7rx5 is the probability of observing nucleo- 
tide x5 at  node 5, given by the equilibrium distribution 
of the process. The summations are taken over the un- 
known nucleotide states ( x5 and %) in the  extinct ances- 
tors at nodes 5 and 6. For an arbitrary tree topology  of 
many species, this conditional probability can be effi- 
ciently calculated using the  postorder tree-traversal al- 
gorithm of FELSENSTEIN ( 1981 ) . 

The  spatial  process: Markov chain transition in the 
auto-discrete-gamma  model of rates  over  sites: The 
gamma distribution with parameters a and p has mean 
a / and variance a / p 2 .  Since the  rate for site ( r) is 
seen to be a scale factor, we set p = a so that K (  r )  = 
1 (with variance 1 / (Y ) . The density function of ris  then 

g ( r ;  a )  = a a r ( a ) ” e - a r r a ” ,  r >  0, a > 0. ( 3 )  

The single parameter a is reversely related  to  the ex- 
tent of rate variation among sites. When a 2 1, the 
distribution is fl-shaped; a + 00 reduces to the model 
of a single rate  for all sites. When a < 1, the distribu- 
tion is highly skewed and has a L-shape, which suggests 
that most sites have  very  low rates of substitution or are 
nearly “invariable”, and yet there  are  a few mutational 
“hot spots”;  the case  of a = 0.5 is shown in Figure 2. 
Maximum likelihood estimates of a from real data 
have been in the  range 0.1 -1.0 ( YANG 1993; YANG et 
al. 1994) . 

Assuming independence of rates among sites, YANG 
(1993) presented  an  approach  to calculating f (  x,) = 
r ) ’ [ f (  x,I r,) ] and  hence  the likelihood function. Be- 
cause the  computation  required by this model is  very 
intensive, YANG (1994) suggested a  “discretegamma 
model” (dG) , whereby a discrete distribution is used 
to  approximate  the (continuous) gamma. The range 
of r (0, ”) is separated  into K categories by K + 1 

4 

3 
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1 

0 

r 

FIGURE 2.-Discretization  of  the (marginal) gamma dis- 
tribution of rates for sites  using  four  equal-probability  catego- 
ries [adapted from  Figure 1 of YANG (1994) 1. The  distribu- 
tion shown in the  graph  has  parameter a = and is the 
x’ distribution  with  one  degree of frezdom. T$e boundar- 
ie2 for categories are calculated as r o  = 0, r l  = 0.1015, 
r2  = 0.4549, r: = 1.3233  and r,* = m ,  which  are  the  per- 
centage points corresponding to p = 0, ’//,, ‘//,, ‘//, and  1. 
The  means of the  four  categories  are 6 = 0.0334, 5 = 0.2519, 
r3 = 0.8203 and 6 = 2.8944,  respectively;  these  are  used  to 
represent all rates in each  category. 

- 

threshold points, ro = 0, r l  , r 2 ,  . . . , rlfi = 03, such that 
each category has probability 1 / K of occurrence (Fig- 
ure 2) . The mean of a category is used to represent all 
rates in the category. We denote using the  mean for 
the ith category, which  covers the interval ( r iPl ,  r i  ) . 
For  given  value  of parameter a,  the threshold points 
rrs and  the mean rates cs can be easily calculated 

In this paper, we posit Markov dependence of rates 
over sites. Our implementation is through this discret- 
ized gamma  distribution,  resulting in an auto-discrete- 
gamma model of rates  for sites. We start  from consider- 
ing  the auto-gamma model with rates taken as continu- 
ous  random variables and  then  construct  the discrete 
version as its approximation. For simplicity, we use 
a Markov chain  to model the  correlation of rates at 
neighboring sites; given the  rate rmPl for site n - 1, 
the  distribution of rate r, at site n is specified fully. It 
appears  more realistic and natural  to have r, depend 
on rates at  both its two neighboring sites, that is, on 
both r,_l and r , , ] ,  which means using a Markov  random 
field to model  rate variation along  the  sequence. How- 
ever, this is noted  to  add  tremendous complexity to 
calculation of  the likelihood function ( CRESSIE 1991, 
pp. 383-573) and is not  attempted in this study. Need- 
less to say, we also ignore possible correlation of rates 
at sites separated by more  than one nucleotide. We 
also consider  an alternative model  that assumes that 
r, depends  on only instead of r,-l; this turns  out 
to give identical results for  the auto-discrete-gamma 
model of this paper. 

Consider the rates R, and h$ for any two neighboring 
sites in the  sequence, which are two (continuous) ran- 

* * *  

* *  

(YANG 1994). 
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dom variables. As the marginal distributions of Rl and 
& are both gamma, Rl and R2 are known to follow a 
bivariate gamma distribution (JOHNSON and KOTZ 1972, 
p. 216). Many such distributions have been constructed 
(see e.g., JOHNSON and KOTZ 1972, pp.  216-230). For 
mathematical tractability, we have chosen to use the 
one  due to MORAN (1969). Let 2, and Z, be two ran- 
dom variables  with a  standard bivariate normal distribu- 
tion whose density is 

(27r) - 1  (1 - p 2 )  -1’2 

Define random variables Ul and U2 by the equations 

u, = (27r) 1: exp(  -t‘/2) dt = (a(.&) (5)  

and Uz = (a(&). The marginal distributions of Ul and 
U2 are  both uniform (rectangle) in the interval (0, 1 ) . 

Now define random variables Rl and R2 by the  equa- 
tions 

U, = g( 7 ;  a )  d7  = aar( a )  -1e -a77a-1  loR’ d r  

= G ( & ;  a )  (6)  

and U, = G ( & ;  a ) .  
The  joint probability density of Rl and & are given 

by MORAN ( 1969 ) for the  more  general case that R1 and 
& have marginal gamma distributions with different 
parameters. In our model,  the spatial Markov process 
is assumed to be stationary, and Rl and & are assumed 
to have identical marginal distributions. 

When we use K categories to approximate  the mar- 
ginal distributions of Rl and &, the correlation be- 
tween R1 and & will be  modeled by the  conditional 
probability that site n is from category j (with  rate 5 )  , 
given that site n - 1 is from category i (with  rate T ; )  . 
Let Y, be  the  rate category that site n is from.  This 
probability will be Mtj = prob (Y, = j l  YnP1 = i )  = 
prob ( r ,  = 51 rnPl = E )  . M = { Mtl] then constitutes the 
matrix of transition probabilities for a Markov chain, 
the states of  which are  the Krate categories. We calcu- 
late M g  as following: 

Mv = prob (Y, = j l  Y,-] = i )  
* 

2 prob(r,-] < & < ri I r i - ]  < Rl < r ? )  
* *  

Using ( 5)   and  (6)  , these  probabilities (integrals) 
can  be easily mapped  onto  the Z, - & plane. The 
problem  turns  out to be  the  calculation of the cumu- 
lative distribution  function of a  standard bivariate 
normal  distribution,  that is, Q2 ( z l ,  G ,  p )  = prob (2, 

< zl, Z, < +) . There  appears to have been  much 
repetition  and  confusion in the statistics literature 
concerning  approximate  methods  for  calculating Q2.  

We have employed the  method of OWEN (1956), 
based on  the FORTRAN implementations of it by 
DONNELLY ( 1973)  and YOUNG and MINDER (1974) 
(see  HILL 1978; THOMAS 1979; CHOU 1985; BOYS 1989 
for  remarks on YOUNG and MINDER’S program).  The 
results are  checked  against  appropriate tables pub- 
lished in Biometrika around 1930. The matrix M calcu- 
lated in this way  is symmetrical; this may be  a  short- 
coming of the  model  rather  than  an  advantage with 
respect to its fit to  data. However, this  property, to- 
gether with the  stationarity  assumption of the Markov 
chain, assures that  the same  likelihood  function is 
obtained no matter  whether we let r, depend  on r,-l 
only or on T , , ~  only. The equilibrium  distribution of 
the Markov chain specified by M has equal  probability 
( 1 / K) for  each  rate category, in congruence with the 
(discretized) marginal  distribution of Rl and R2. The 
model is referred to as an auto-discrete-gamma model 
of rates  for sites (“Ad,”). 

The correlation, pc = corr ( Rl , &) , between the two 
(continuous) gamma-distributed variables, is  positively 
related to parameter p, which  is p = corr ( Zl , $) , al- 
though  an algebraic relationship between the two seems 
difficult to obtain. The correlation ( p d G )  between the 
rates at two neighboring sites  in the  autodiscrete- 
gamma model can be calculated as following for given 
values of parameters a and p. 

prob ( YnPl = i )  M - F F  ‘I ‘ I  - 1 
PdG = Cf=l prob(Y,-l = i) * y: - 1 

1 Cf=] Zfll * M $ q  - 1 
- - 

1 
’=’ K E 

( 8 )  
CK “ . f - 1  

where prob ( Y,-l = i) = 1 / Kaccording  to  the marginal 
distribution of rates for sites; the mean of the distribu- 
tion is 1: EE1 prob(Y,-l = i )  - E  = Ccfil 1/K. 5;. = 1. 
The relationship between parameter p (4)  and pdG ( 8 )  
is depicted in Figure 3. When p = 0, we have pc = P d G  

= 0, Mq = prob (Y, = j )  = 1 / K, and  the model reduces 
to the discrete-gamma model with independent rates 
for sites. 

The likelihood function: Parameters in the  autodis- 
Crete-gamma model include 8 = { 7 r T ,  7rc, 7 r A ,  K ,  a, p } ,  
which are common to different tree topologies, and t 
= ( tl , t , t3, t4,  t 5 ] ,  which are  branch lengths in a specific 
tree topology (Figure 1) .  Note that  the joint distribu- 
tion of Yl , Y2,  . . . , YN is 

prob(Y1 = 3 ,  Y2 = B, . . . , YN = YN) 

= prob ( Yl = y1) My,)zMy2y9 - * * M y N - , y N  (9)  
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FIGURE 3.-The  relationship  between pdG (8) and parame- 
ter p (4) . The curves are for different values of the a parame- 
ter: 0.1, 0.3, 0.5, 1 and 5. 

where we set prob ( Yl = yl ) = 1 / K ,  due to the stationar- 
ity  of the  chain. With the assumption of conditional 
independence of data over  sites  given the rates, the 
likelihood function is 

w ,  t; x )  
= prob (X; 8, t )  

- - - * i (prob(Yl = y l ,  Y2 = 8 , .  . . , YN = y N )  
K 

Y l = l  Y N ‘ 1  

N 

X II f( XnI rn = 7”) 
n=l 

where f( x,] r, = qe) is  given in ( 2 ) .  As the summa- 
tion signs in (10) can be moved rightward, a simple 
algorithm is possible for calculating the likelihood func- 
tion. Let b, (n) = prob (xn, x,+1, . . . , xNI Y, = i) be 
the probability of observing data x,, x,+], . . . , xN, given 
that site n is from  rate category i. Then 

K 

bi(?L) =f(xnIrn = E )  Mq.bj(n + 1) (11) 
,= 1 

with b, ( N )  = f( xNI rN = E ) .  The likelihood is  simply 

L =  prob(Yl = i ) - b i ( l ) .  (12) 

The  computation  required by this  model is then 
only slightly more  than  that  for  the discrete-gamma 
model  assuming independent rates  for sites, which is 
roughly K times that  required by a model assuming 
constant  rate  for all sites. As a common  practice, we 

K 

i = l  

estimate the  parameters rT,  rc and T A  in the HKY 
model (1)  by using the averages of the observed nu- 
cleotide  frequencies  in  the  sequences. Other param- 
eters  are  estimated by maximizing the likelihood 
function.  In  theory, any  numerical  optimization algo- 
rithms  can  be  used  for  this  purpose,  and an EM algo- 
rithm  for this type of model was described by LEROUX 
and PUTERMAN (1992). In this paper, a quasi-Newton 
algorithm is used  to  obtain  estimates of parameters 
by iteration, with the  gradients  calculated using the 
difference  method. 

Accounting for rate differences at different codon 
positions: Sometimes sites in the  sequence can  be 
naturally grouped  into  different classes, which are 
known to  change  at  different rates.  This is the case 
for  protein-coding DNA sequences,  where  the  three 
codon positions are known to change  at  quite differ- 
ent rates due to the  different selective constraints 
exerted  on  them;  mutations  at  the  third position may 
not cause  changes of the  amino acids  whereas  those 
at  the  second position always do.  Another possibility 
is when several genes  (of  the same  species)  are com- 
bined  into  one  data  set,  and  different  genes  can  be 
assumed  to evolve  with different  rates  determined by 
their relative conservativity. It seems  reasonable  to 
assign different  rate  parameters  for sites from  such 
different classes. If there  are g site classes, we can 
assume that sites from class j (  j = 1, 2, . . . , g) have 
rate ci, with c1 = 1; the cs are  rate ratios. We  will very 
loosely refer  to  such site classes as “codon positions” 
and designate  models  that use different  rates  for dif- 
ferent classes of sites as “C”. 

The  rate  matrix  for a  site which is from  the j t h  
site class and which has  a  gamma-distributed  rate r 
is then rc jQ ,  with transition  probability  matrix P ( t )  
= exp ( rc , tQ) . The  likelihood  function  can  be calcu- 
lated as before,  although  the  treatment of the cs is 
different  from  that of the rs. Simply, rates  for  codon 
positions  are  parameters  and  rates  from  the  gamma 
distribution  are  random variables. Given any  site, we 
know which codon  position  it is from  and  hence its 
rate  parameter c,. However, we do  not know what 
value of r corresponds  to  the  site.  The  likelihood 
function is obtained by summing over  all possibili- 
ties for  the  random variables rs but  not over the 
parameters c s .  

Prediction of substitution  rates at sites: We study the 
conditional  distribution of rates for sites (the T S )  given 
the  data (X  ) . With the assumption of independent 
rates over sites, YANC and WANC (1994) have noted 
that use  of the  conditional  mean, 9 = E (  rl x ) ,  as the 
predictor of the  true  rate ( r )  for  a site  with data x 
maximizes the  correlation between the  predictor and 
the  true  rate. Specifically, for any other predictor P = 
f (  X), we have corr ( P, T )  = corr ( P, ?) - corr ( P, T )  . For 
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the auto-discrete-gamma model, this can similarly be 
defined as 

f, = E(r,IX) = E(rnlxn, x,+1, . . . , XN) 

X;=, T*prob(Y, = 2)- 
N - prob(x,,  x,+,, . . . , xNI Y, = i) 

prob(x,,  x,+,, . . . , XNI Y, = 2) 
prob (Y, = i) - 

- - E-prob(Y, = i). b j ( n )  (13) prob(Y, = i). b i ( n )  

where prob (Y, = i) = 1 / K ,  and 6, ( n )  is defined in 
(11) and calculated at the maximum likelihood esti- 
mates of parameters. Alternatively, the  mode of the con- 
ditional distribution may be used, which will result in 
the maximum a posterior predictor. This means using E 
as the  predicted  rate for site n, by which i maximizes 
f( x, I r, = E )  or bi ( n )  for the  discretegamma model 
or auto-discrete-gamma model, respectively.  However, 
this is found to be less, and sometimes much less,  effi- 
cient  than use  of the  conditional mean for the discrete- 
gamma model assuming independence of rates over 
sites (results not shown) , presumably because the con- 
ditional distribution ( r, I x,) is most often highly  skewed 
and  the  mode of the discrete distribution is not very 
representative of the whole distribution. The  mode of 
the a fmor  (continuous) distribution ( 3 )  does not exist 
for a < 1.  We expect this to be true also for Markov- 
dependent rates over  sites, and use (13) to predict 
rates. Rates calculated according to ( 13) are normally 
not  equal to any  of the cs ( i = 1,2, . . . , K )  ; we suggest 
that this is justifiable as we consider the discrete gamma 
model as an approximation to the  continuous gamma. 

Nonparametric models of rates  over  sites: We  have 
also considered models for variable rates over  sites,  ei- 
ther  independent or Markovdependent, without as- 
suming a specific distributional form for the rates. Sim- 
ply, the  discretegamma model’s Es and J;s, which used 
to be functions of parameter a,  and  the auto-discrete- 
gamma model’s Es and Mqs, which used to be functions 
of parameters a and p,  are now taken as free parame- 
ters. Let K be the  number of categories of rates. Such 
a model includes 2 ( K - 1 ) free parameters when rates 
over  sites are assumed to be independent; these are  the 
frequencies for the  rate categories: fi , k, . . . , f,-, (f, 
is not  a  free  parameter as Z J; = 1) and  the rates for 
the categories c ,q ,  F ~ - ~  (-,is given by the  requirement 
C J E  = 1) .  The nonparametric model assuming Mar- 
kov dependence will involve ( K + l ) ( K - l ) parame- 
ters. These  are  the rates for the categories 5 ,  Q ,  . . . , 
T ~ - ~ ,  and the K X K elements of the matrix M with the 
restriction that  the K row sums of M are all one;  the 
frequencies for categories (the J s )  are given by the 
equilibrium distribution of the Markov chain specified 
by M. 

Clearly the  nonparametric models formulated above 
involve  many parameters, especially  when more  than 
two rate categories are considered. We therefore con- 
sider another version  of these models, with the restric- 
tion that each rate category has equal probability of 
occurrence. With independent rates for sites, this 
means ( K - 1 ) free parameters (the 7 s )  ; with  Markov 
dependence, this restriction means that  both  the row 
sums and  the column sums of M are  one  and M is 
known  as a double stochastic matrix; the model then in- 
volves K (  K - 1 ) parameters. 

Maximum likelihood estimation of parameters in 
these models and prediction of rates by (13) can pro- 
ceed in a way similar to the auto-discrete-gamma model 
described before. 

ANALYSIS OF PRIMATE MITOCHONDRLAL DNA 
(mtDNA)  SEQUENCES 

Data: BROWN et al. ( 1982)  determined  the sequences 
of a segment of the mitochondrial genome from hu- 
man,  chimpanzee, gorilla, orangutan  and gibbon. 
There  are 896 nucleotide sites in the sequences except 
that  orangutan has a nucleotide missing at position 560. 
The beginning  part of this segment (nucleotides 1- 
458) codes for part of protein ND4 (NADH-dehydroge- 
nase subunit 4 )  and the  ending  part  (nucleotides 658- 
896) codes for part of protein ND5 (NADHdehydroge- 
nase subunit 5 ) .  The middle of the segment (nucleo- 
tides 459-657) codes for three tRNAs, i.e., histidine, 
serine and leucine tRNAs (BROWN et al. 1982) . Se- 
quences of  this region are now  also  available for several 
other primates, and we have added those for crabeating 
macaque, squirrel monkey, tarsier and  lemur ( HAYA- 
SAKA et al. 1988) , so that  the  expanded  data set contains 
nine species. The sequences were aligned by  A. FRIDAY. 
Several  sites in the tRNA-coding region involve  gaps 
(insertions or deletions) , and these are  excluded, with 
888 nucleotides left in each sequence. We note  that 
possible errors in the  alignment or the removal of sites 
involving gaps may bias the analysis, because consecu- 
tive sites in the resulting data may not in fact be  direct 
neighbors, as  is assumed in the models of  Markov-de- 
pendent rates for sites.  However, we expect such bias 
to be small for the  current  data  set, as the sequences 
are very similar so that  the alignment appears  quite 
reliable and only a few sites  in the tRNA-coding region 
are removed. 

The 888 nucleotide sites in the  data can be naturally 
grouped  into  four classes, those at  the  first,  second, 
third  codon positions in the two protein-coding regions 
and those within the tRNA-coding region. There  are 
233,  232,  232 and 191  sites in the  four classes, respec- 
tively, and we assign rate parameters c~ = 1, G , G, c4 for 
them, respectively. We  will call them different “codon 
positions”. The averages of the observed nucleotide 
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FIGURE 4.-The  phylogenetic tree for  nine  primates whose 
mtDNA sequences (888 bp) are  analyzed in this paper. 
Branch lengths shown  in the  tree  are  calculated under the 
HKY+C+AdG model, measured  as  the  average  numbers of 
substitutions  per  site at the first codon position.  This tree 
topology (but not  the  branch  lengths) is assumed  to  compare 
models  and predict rates for sites in the paper. 

frequencies  in the whole sequences  are ;irT = 0.266, 7ic 
= 0.304, 7 i A  = 0.322 and ;irG = 0.108, and these are 
taken as estimates of the frequency  parameters  in  the 
HKY substitution model ( 1 ) . Nucleotide frequencies 
in different species, either  for  the whole sequence  or 
at different  codon positions, are similar, which  suggests 
that  the  temporal processes of nucleotide substitution 
are  more  or less homogeneous  and stationary. However, 
nucleotide  frequencies  at  different  codon positions are 
quite  different;  for  example,  the  frequencies  are 0.209 
( T )  ,0273 ( C) ,0.385 ( A ) ,  0.133 ( G) at  the first codon 
position whereas they are 0.179 ( T )  , 0.413 (C)  , 0.365 
( A ) ,  0.042 ( G) at  the  third position. Our models as- 
sume one common Q (and thus one set of frequency 
parameters)  for all the  codon positions and  are  not 
adequate in this respect. It is  possible to modify the 
models to allow for this feature by using different fre- 
quency parameters  in  the HKY model  for sites from 
different  codon positions; this is not pursued  here, and 
we suggest that  our analyses  of rate variation along  the 
sequence will not  be influenced  much by this inaccu- 
racy of the models. 

The phylogenetic relationship  among  the species 
may be  represented as the  tree shown in Figure 4. There 
exists controversy about  the positions of tarsier and le- 
mur (A. FRIDAY, personal  communication) , but this  is 
concerned with only the placement of the  root in the 
tree. The humanchimpanzee-gorilla  separation does 
not seem to be very controversial anymore, and general 
opinion  appears to support  the ( (human, chimpan- 
zee), gorilla)  relationship. We  will use the  tree topol- 

ogy shown in Figure 4 to estimate parameters,  compare 
models and predict rates. The effects on these analyses 
due to the  uncertainty of the phylogenetic relationship 
will be discussed later,  together with the  problem  of 
estimating the phylogeny using different models. 

Estimation of parameters from the  parametric mod- 
els: The auto-discrete-gamma model  reduces to the 
model of a single rate  for all  sites when there is only 
one rate category ( K = 1 ) . When K -+ a, the  model 
will approach  the (continuous) auto-gamma model. 
We expect  that  the likelihood values and parameter 
estimates will change dramatically for small  values of 
K, but when Kis sufficiently large,  the results will stabi- 
lize. YANG ( 1994) analyzed  several quite  different  data 
sets using the discrete-gamma model assuming inde- 
pendent rates over  sites; different values of Kwere used, 
including  the (continuous) gamma model of YANG 
( 1993) which corresponds to K = 00. Such comparisons 
suggest that  four  rate categories can provide optimum 
or near-optimum fit by the  model to data and also quite 
good  approximation to the  (continuous) gamma distri- 
bution as reflected by the estimated a parameter.  In 
this paper, we have introduced Markov dependence of 
rates into  the models, but have not implemented  the 
(continuous) auto-gamma model ( K = a). Instead we 
perform all  analyses using two values  of K (4  and 8) to 
get some feel about  the effect of K. The results, i.e., 
likelihood values, parameter estimates and predicted 
rates obtained from using these two values of K  turn 
out to be quite similar, which  suggests that  four catego- 
ries may be sufficient for  the auto-discrete-gamma 
model  for analyzing real data, just as in the case of the 
discretegamma  model ( YANC 1994) . In  the following, 
we present results obtained by using K = 8, with com- 
ments given on those obtained from using K = 4. 

Log-likelihood values and parameter estimates ob- 
tained under different models are shown in Table 1. 
The simplest model (HKY) assumes a single rate  for 
all sites, which  gives log-likelihood 1 = -5234.64 with 
k = 4.217 ? 0.292 (standard  errors  are obtained by 
inverting the matrix of second-order derivatives  of the 
log-likelihood with respect to parameters, calculated by 
the  difference method). Either assuming discrete- 
gamma rates for sites (HKY+dG) or using different 
rate  parameters  for  codon positions (HKY+C) leads to 
tremendous  improvement in likelihood, suggesting the 
existence of  severe rate variation among sites in the 
sequence.  In fact, neither  the  discretegamma  model 
nor  the rates for  codon positions alone can account  for 
the  rate variation observed in these data, since 
HKY+C+dG is significantly better  than  either HKY+dG 
(comparison of 2 4 1  = 251.62  with x:, P < 0.01) or 
HKY+C (comparison of 2Al = 131.94  with x:, P < 
0.01 ) . Substitution rates for sites at  the first, second 
and third  codon positions and  for sites in  the tRNA- 
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TABLE 1 

Log-likelihood  values and parameter  estimates  under  different  parametric  models 

Constant rate for all sites or within  codon  position (a  = a, p = 0) 
HKY (4) -5234.64 4.217 
HKY+C (7) -4983.80 5.356 

Independent rates over sites ( p  = 0) 
HKY+dG (5) -5043.64 8.107  0.432 
HKY+C+dG (8) -4917.83 7.969  0.884 

0.469 3.245 0.588 

0.359 4.054  0.500 

Markov-dependent rates over sites 
HKY+AdG (6) -5039.10 8.029 0.430 0.168 
HKY+C+AdG (9) -4882.35 7.858 0.865 0.623 0.361 4.353 0.634 

Values in parentheses  are the numbers of free  parameters  in  the  models,  not  including  branch  lengths.  Parameters  are 
estimated  assuming  the  tree  topology of Figure 4, and  estimates of branch  lengths  are not shown. The  frequency  parameters in 
the HKY model (nl, 7 r c ;  and xA) are  estimated by using the averages of observed  frequencies in the sequences.  Models with dG 
assume (independent) discretegamma rates over sites, whereas  those  with  AdG assume the  autodiscrete-gamma rates; K = 8 
rate  categories  are  used in both  cases.  Models  with C assume different rate parameters  for  codon  positions: c, = 1, G ~ ,  c3 and c4 
for sites at  the first, second  and  third  codon  positions in the  protein-coding  regions  and for those in the tRNA-coding region, 
respectively. 

coding region are  quite  different. They are in the 
proportion q : 6: 4.: t4 = 1:0.359:4.054:0.500 by the 
HKY+C+dG model, ie., the  third  codon position 
changes >10 times faster than  the  second, and also 
sites in the tRNA-coding region change  more slowly 
than  the first codon position in  the  protein-coding re- 
gions. Furthermore,  different sites at  the same codon 
position also  have quite  different rates of substitution. 
The estimate of a under  the HKY+C+dG model ( &  = 
0.884 t 0.124) is larger than  that under HKY+dG (&  
= 0.432 2 0.043) ; this is obviously because the rate 
parameters  for  codon positions (the c s )  in the 
HKY+C+dG model have explained substantial part of 
the  rate variation. However, estimates of rate parame- 
ters for  codon positions (the c s )  remain  more or less 
the same whether or  not  the  (discrete) gamma  model 
is assumed to account  for  the  remaining  rate variation. 
Parameter K and  branch  lengths (not shown)  are se- 
verely underestimated when rate variation among sites 
exists but is ignored in the models, as observed by Y ~ G  
et al. (1994) ; also WAKELEY 1994). 

Use of the HKY+AdG model assuming Markov de- 
pendence leads to & = 0.430 +- 0.044 and ,5 = 0.168 -C 
0.056. These values  of a and p give pd(; = 0.121 by ( 8 ) .  
Although ,5 is  significantly greater  than 0,  the serial 
correlation is not very strong. (The likelihood ratio test 
for  the null hypothesis of rate  independence over sites, 
i.e., p = 0,  means comparison of  2A3 = 9.08 with X : ,  
P < 0.01). Nevertheless, when rate differences at  the 
codon positions are  accounted  for in the model 
(HKY+C+AdG) , the estimate of p is much  higher, i.e., 
,5 = 0.623 2 0.060;  this  value  of p ,  together with & = 
0.865 -+ 0.124, gives pdC; = 0.544 by (8) .  The increase 
in log-likelihood by introducing auto-correlation is also 

much  greater; i.e., 2AZ = 70.96 ( P  < 0.01). These 
results suggest very strong  correlation of rates at adja- 
cent sites. The reason for  the difference between the 
two estimates of p is that  before  accounting  for  rate 
differences at  codon positions (HKY+AdG) , rates at 
sites three nucleotides apart  are highly correlated, so 
that  the  correlation between rates for two adjacent sites 
is weakened (see results concerning  predicted rates for 
sites below). 

Using four rate categories ( K  = 4)  rather  than  eight 
in the above comparisons would  give  essentially identi- 
cal results. The estimates of parameters  are also very 
similar. For example, those obtained from the 
HKY+C+AdG model ( K = 4)  are ri = 7.843, & = 0.866, 
,5 = 0.665, & = 0.361, Z3 = 4.361, Z, = 0.639,  with 1 = 
-4883.67 ( cJ: Table 1) .  When K = 1, 2, 3, 4, 8 and 
20, the log-likelihood for  the HKY+C+AdG model is 

and -4881.70,  respectively.  Two categories can explain 
substantial part of the  rate variation, and  the results 
tend to stabilize when three  or four categories are used. 

Concerning  the effects that  ignoring  the  correlation 
of rates over  sites ( p )  has on  the estimation of other 
parameters, we note  that estimates of K, a and  the rate 
parameters  for  codon positions (the cs)  are  quite stable 
whether  independence ( p = 0 )  or Markov dependence 
is assumed for rates among sites. Estimated branch 
lengths  for  the auto-discrete-gamma models are also 
very  similar to but  are all  slightly smaller than those for 
the discrete-gamma models assuming independence 
(results not  shown) ; the reason for this difference is 
not clear. The calculated standard  errors  for  parameter 
estimates are larger for the auto-discrete-gamma models 
with  Markov dependence  than those for the discrete- 

-4983.80, -4890.47,  -4884.88, -4883.67, -4882.35 
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TABLE 2 

Log-likelihood values and parameter  estimates  under  the  nonparametric  models with two rate  categories 

Transition 
probabilities 

Model 1 Rate (T)  ( M y )  Frequency (A )  ri 62 63 4 

Independent rates 
HKY (6) -5047.89 0.150 0.602 7.447 

HKY+C (9) -4910.57 0.361  0.779 7.638  0.388  5.326 0.542 
2.286  0.398 

3.252  0.221 

Markovdependent rates over sites 
HKY (7) -5045.34 0.144 0.633 0.367 0.583 7.021 

2.196 0.513 0.487 0.417 

2.463 0.346 0.654 0.314 
HKY+C (10) -4884.91 0.330  0.842 0.158 0.686 7.753 0.368 4.453  0.575 

See note to Table 1. 

gamma models assuming independence  (results  not 
shown). This seems to be  due to two reasons. First, 
adding  parameters ( p in this case) to a  model will nor- 
mally “decrease” the accuracy of estimates of other 
parameters.  Second, the positive correlation of rates at 
sites implies positive correlation of data  at sites, which 
will cause the  data  to  contain less information  than if 
they are  independent.  In sum, ignoring  correlation of 
rates over sites when it exists does not seem to bias 
estimates of other parameters  too  much,  but the calcu- 
lated  standard  errors in the estimates will  give a wrong 
impression of high accuracy. 

The nonparametric models: We have fitted  the  non- 
parametric models to the mtDNA data, assuming either 
independence  or Markov dependence of rates over 
sites. The parameter-richness of the models has led to 
many problems when more  than  three  rate categories 
are  used; these will be discussed later. The results shown 
in Table 2 are  obtained using two rate categories ( K = 
2 )  . Overall the same conclusions can be drawn from 
these results as from those in  Table 1. For example, 
Table 2 clearly  suggests that rates of substitution are 
different  for sites at different  codon positions and  for 
different sites from the same codon position (results 
for models assuming a single rate  for sites are listed in 
Table 1 ) .  The most complex model, which assumes 
different  rate  parameters  for  codon positions and Mar- 
kov-dependent  random rates over  sites,  is significantly 
better  than all the simpler models. The likelihood Val- 
ues are so different  that we do  not  need to consult 
statistical tables to perform  the tests. According to this 
model, rates for  the first, second,  third  codon positions 
in the  proteincoding regions and  for sites in the 
tFWA-coding region  are in the  proportion 1:0.368: 
4.453:0.575. Furthermore,  the  remaining  rate variation 
can be best explained by  two rates 0.330, 2.463, with 
stationary probabilities 0.686 and 0.314, respectively. 

Estimates in the M matrix suggest that if a site  is in rate 
category one,  the  next site will  have probability 0.842 
of being in category one too and probability 0.158 of 
switching into category two, whereas if a site is in cate- 
gory two, the  next site will remain in category two with 
probability 0.654 and switch to category one with proba- 
bility  0.346; thus rates at  neighboring sites are positively 
correlated. Using parameters (the c s )  to account  for 
rate differences at  codon positions is seen to reduce  the 
remaining  rate variation (as indicated by the smaller 
differences between and 6 )  , and to considerably in- 
crease the  correlation of rates at  neighboring sites (as 
reflected by larger M I ,  and M Z 2 ) .  These results are  con- 
gruent with those obtained from the auto-discrete- 
gamma models (Table 1 ) . Estimates of the rates (the 
c s )  and frequencies (the J s )  are  more  or less stable 
whether  independence  or Markov dependence is  as- 
sumed  for rates over  sites. Estimates of parameters K 

and  the cs are also  very similar to those obtained from 
the  corresponding discrete-gamma models (Table 1 ) . 

Results obtained from the  nonparametric models un- 
der  the restriction that each rate category has equal 
probability of occurrence  are  presented in Table 3. Be- 
cause of  this restriction, we have been able to obtain 
results with either 2 or 3  rate categories. The frequency 
for  each category is J = ‘ /n  or ‘ / s  for K = 2 or 3, 
respectively. Note that models with two rate categories 
( K = 2 in Table 3)  are equivalent to the  corresponding 
(auto-) discrete-gamma models with two rate catego- 
ries; 5 and M1, in the  current models correspond to a 
and p in the auto-discrete-gamma models through  a 
reparameterization. Again, the most complex model is 
much  better  than all the simpler ones  either  for K = 2 
or K = 3; rates for sites at  different  codon positions are 
different, rates at sites within the same codon position 
are variable, and rates at adjacent sites are positively 
correlated. Other conclusions reached  from results of 
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TABLE 3 

Log-liielihood values  and  parameter  estimates for the  nonparametric  models 
~ 

Model 1 Rate ( 5 ; )  Transition  probabilities (m,J R r, q l:d 

Independent rates 
HKY (5) -5052.21 

HKY+C (8) -4924.87 

Markovdependent  rates 
HKY (6) -5047.60 

HKY+C (9) -4890.47 

Independent rates 
HKY (6) -5044.01 

HKY+C (9) -4914.54 

Markov-dependent rates 
HKY (10) -5024.08 

HKY+C (13) -4879.31 

Two equal-probability categories of rates 

0.110 
1.890 
0.254 
1.746 

0.109 0.576 0.424 
1.891 0.424 0.576 
0.253 0.791 0.209 

Three  equal-probability  categories of rates 

0.031 
0.408 
2.561 
0.314 
0.314 
2.372 

0.164 0.972 0.000 0.028 
0.191 0.000 0.484 0.516 
2.645 0.028 0.516 0.456 
0.217 0.869 0.087 0.044 
0.424 0.022 0.644 0.334 
2.359 0.109 0.269 0.622 

6.394 

7.664 

6.284 

7.712 

8.176 

7.763 

7.262 

7.915 

0.370 

0.370 

0.373 

0.364 

3.804 

4.150 

4.709 

4.683 

0.518 

0.644 

0.530 

0.666 

Values and  estimates  given for models under the restriction of equal  probability  in each rate  category using two or three  rate 
categories. 

Tables 1 or 2 are also apparent in Table 3. Estimates 
of K and  the cs are  quite similar to those in Tables 1 
and 2. The models with two or  three rate categories 
(Table 3 )  are  not nested so that a likelihood ratio test 
cannot  be  applied to compare  them,  but it seems that 
three rate categories are worthwhile. 

The  problem of phylogenetic  trees: FEISENSTEIN 
(1981; see also FELSENSTEIN 1973; THOMPSON 1975) 
suggests that  the likelihood values calculated for differ- 
ent tree topologies can be compared to estimate the 
phylogenetic relationship  among  the species. The 
method is known as maximum likelihood estimation of 
the phylogenetic tree. Estimation of  phylogeny from 
DNA sequences has been of great  interest to evolution- 
ary biologists, and  one may (rightly)  require  that  an 
adequate  model be used in such an  adventure.  This 
paper focuses on construction and comparison of mod- 
els as means  for  understanding  the processes of DNA 
sequence evolution. Strictly speaking, comparison of 
models, especially by using the chi-square approxima- 
tion to the likelihood ratio test, requires  the likelihood 
values to be calculated (and parameters to be esti- 
mated) using the  true phylogenetic relationship ( Z .  

YANG, N. GOLDMAN  and A. FRIDAY, unpublished data). 
In practice, the difficulties involved in these two interre- 
lated problems are  quite  different. In the following, we 
give a short discussion on  the implications of results of 
this study  to the two problems. 

First, our ignorance or uncertainty concerning  the 
phylogenetic relationship  does not seem to introduce 
much error in the estimation of parameters in the evo- 
lutionary models or in the comparison of such models. 
There  are 1 X 3 X - - - X ( 2  X 9 - 5 )  = 135,135 
possible bifurcating tree topologies for nine species. To 
see the effects of changes to tree topologies, we have 
performed all  analyses described above using several 
other  tree topologies although results obtained from 
the  tree of Figure 4 only are  presented  (Tables 1 - 3 ) .  
As an  example, we list in Table 4 the likelihood val- 
ues and parameter estimates obtained under the 
HKY+C+AdG model for these tree topologies. The 
nine-species star tree has only nine  branches.  Other 
tree topologies used differ from the  tree of Figure 4 
only concerning  the human-chimpanzee-gorilla separa- 
tion. Let T ,  = ( (HC)  G )  represent  the  tree  of Figure 
4, and then  the other trees can be  represented as T:! = 
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TABLE 4 

Log-likelihood  values  and  parameter  estimates  under  the  HKY+C+AdG  model 
for  several  different  tree  topologies 

Tree 1 R & ij 4 Q 4 
Star tree -5016.46  15.358  0.346  0.455  0.214  5.466  0.527 

TI = ((HC)G) -4882.35 7.858 0.865 0.623 0.361 4.353 0.634 
Tz = ((HG)C) -4888.44 7.827 0.861 0.621 0.366 4.426 0.654 
Tq 1 ((CG)H) -4885.96 7.660 0.893 0.628 0.372 4.456 0.648 

To = (HCG) -4888.45  7.825  0.861  0.621  0.366  4.428  0.654 
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((HG)C),T3=((CG)H)andTo=(HCG),Tohav- 
ing a  trifurcation. The star tree is quite different from 
To, T I ,  T2 or T3, and estimates of parameters  obtained 
for this tree are admittedly quite different from those 
for  other trees. However, parameter estimates obtained 
for To, T, , T2 or T3, which are  not too wrong and 
may all be called “reasonable” trees, are very similar. 
Likelihood values for  different trees are  not very differ- 
ent, especially  in comparison to the dramatic changes 
in likelihood due to changes in the assumed models 
(see Tables 1, 2 and 3 ) .  The same pattern is observed 
for other models considered in this paper  (see YANG et 
al. 1994 for more  examples). This means that we  will 
obtain essentially the same results concerning parame- 
ter estimation and model selection, no matter which of 
the reasonable trees is used. 

In  contrast,  the small differences in likelihood among 
tree topologies suggest the difficulty  of phylogenetic 
tree estimation; some of the theoretical difficulties are 
discussed by Z. YANG, N. GOLDMAN and A. FRIDAY (un- 
published data). It has been observed that ignoring 
rate variation over  sites can substantially influence phy- 
logenetic tree reconstruction, especially the estimation 
of branch lengths (YANG et aZ. 1994;  also  WAKELEY 
1994). Nevertheless, this study tends to suggest that 
ignoring  the  correlation of rates over  sites will not in- 
fluence phylogenetic tree reconstruction greatly, at 
least if the  point estimation only is concerned. For  all 
models considered in this paper,  the  order of the likeli- 
hood values for the  examined trees has been IT, > lTS 
> lT2 > lTo; it seems very  likely that TI (Figure 4) is 
the maximum likelihood tree by these models if all tree 
topologies could be evaluated. We suggest that  for  the 
estimation of tree topology, the discrete-gamma model 
is elaborate  enough, and the auto-discrete-gamma 
model may not be worthwhile. 

Prediction of rates  at sites: We calculated the rates 
for the 888 sites in the mtDNA sequence using (13) 
based on maximum likelihood estimates of parameters 
in the models. As another way to look at rate depen- 
dence over  sites, we calculated the serial correlations 
using the  predicted rates and the results are shown in 
Figure 5. The correlation  (0.562) of predicted rates at 
two adjacent sites calculated from the HKY+C+AdG 

model ( K = 8 )  agrees well  with P& = 0.544 calculated 
from ( 8 )  using the maximum likelihood estimates of 
the parameters, Li = 0.865 and j3 = 0.623 (Table 1 ) .  
The decrease of the serial correlation with the  number 
of nucleotides that separate the sites  also agrees nicely 
with the model’s expectation. The predicted rates can 
be plotted along  the  sequence after some smoothing 
and  appear very  useful for identifylng conservative and 
variable regions in the sequence (results  not shown). 

The  period of three in the curves for the HKY+dG 
and HKY+AdG models is clearly due to these models’ 
failure to account for rate differences at  the  codon posi- 
tions. In this regard,  the  “detrending” or removal of 
the large scale variation by using rate parameters for 
codon positions in the HKY+C+dG and HKY+C+AdG 
models is seen to be quite successful. We also note  that 
the serial correlations, especially those for sites that  are 
separated by one  or two nucleotides, calculated from 
the HKY+C+dG model, which  assumes independent 
rates over  sites, are smaller than those obtained from 

0.6 
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FIGURE 5.”Serial correlation of substitution rates along 
the mtDNA sequence, which are predicted by assuming the 
HKY+C+AdG (M) , HKY+C+dG ( ) , HKY+AdG (0) and 
HKY+dG ( 0 ) models; K = 8 categories are used  in these 
discrete-gamma models. The tree topology of Figure 4 is as- 
sumed. The graph shows the correlation coefficients  between 
predicted rates ( P) at sites separated by 1, 2, . . . , 20 nucleo- 
tides. For the HKY+C+AdG and HKY+C+dG models, which 
assume different rate parameters for codon positions, only 
the random variable ( r )  from the (discrete) gamma distribu- 
tion is used in the calculation. 
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TABLE 5 

Correlations  between  rates  predicted  from  different  (auto-)discrete-gamma  models 
using eight or four categories 

AdG+C (8)  dG+C  (8) AdG (8)  dC  (8) AdG+C (4) dG+C  (4) AdC (4) 

K =  8 
AdG+C 
dG+C 0.9419 
AdC 0.7773 0.8143 
dG 0.7526  0.8018 0.9983 

AdG+C 0.9939 0.9353 0.7765 0.7525 
dG+C 0.9365 0.9942 0.8163 0.8045  0.9394 
AdG 0.7720  0.8082 0.9869  0.9857 0.7763 0.8160 
dG 0.7509  0.7980 0.9859 0.9873 0.7548 0.8055 0.9987 

K =  4 

the HKY+C+AdG model, which  assumes  Markov de- 
pendence. The results from the HKY+C+AdG model 
are clearly more reliable, and suggest that if one 
(wrongly) assumes rate  independence over  sites in the 
model, one will underestimate  the  extent of depen- 
dence, which is not very surprising. 

Table 5 lists the  correlations between  rates pre- 
dicted using different methods. If  we consider the 
HKY+C+AdG model as  giving the best predicted rates 
for sites, these correlations will indicate the relative  ef- 
ficiency  of rate prediction by other models. Rates pre- 
dicted using four categories have correlations -0.99 
with those using eight categories. Combined with the 
similarity of likelihood values and parameter estimates 
for these two values  of K,  we suggest that  four categories 
are sufficient for analyzing real data. Rates predicted 
from models assuming independence (the dG models) 
are closely related to rates predicted from correspond- 
ing models assuming Markov-dependence (the AdG 
models) . We also note  that using one of the tree topolo- 
gies T2,  T3 or To instead of TI  produces very similar 
predicted rates (results  not shown). Similar to the re- 
sults of YANG and W m c  ( 1994), possible errors in esti- 
mates of parameters or tree topologies normally do  not 
affect the accuracy  of rate prediction  much. 

DISCUSSION 

The spatial-process models considered in this paper 
have  many counterparts in  various  fields  of applied sta- 
tistics,  especially in analyses  of  time series or spatial 
data. In time-series  analysis, the  counts of events that 
occur in  fixed  time  intervals  have a Poisson distribution 
(with the variance equal to the mean) when the process 
is generated by a  constant  homogeneous rate. When 
the underlying rate is variable, it is  known  as an over- 
dispersed process, since the variance of the  counts is 
larger than  the mean. When the rate is  itself an  inde- 
pendent gamma variable, the  counts  are known to fol- 
low a negative-binomial distribution. The  nonparamet- 

ric models considered in this paper  are known  as jinite- 
mixture models as the  data  are  generated from a mixture 
of categories of rates with different probabilities. With 
Markov dependence,  the models are also  known  as hid- 
den-Markov-chain models, as the states of the chain are 
random variables and are  not observable. LEROUX and 
PUTERMAN ( 1992) summarized recent developments of 
techniques concerned with the finite-mixture models. 
CHURCHILL ( 1989) employed a hidden-Markov-chain 
model to describe the occurrences of nucleotides in a 
single DNA sequence. The distinction made in this pa- 
per between the  rate parameters for codon positions 
(the c s )  and  the gamma-distributed random rates (the 
rs)  is analogous to the linear-mixed-models theory, 
which is widely used in animal breeding  (HENDERSON 
1973), although  the  current models are highly nonlin- 
ear; rates for codon positions are fixed effects, for which 
we estimate their main effects (the c s )  , whereas rates 
from the gamma distribution are random effects, for 
which we estimate their variance components (parameters 
a and p )  and predict rates (the rs)  based on the ob- 
served data. 

Although conceptually very simple, the nonparamet- 
ric models are  found to be very difficult to implement in 
the form of a  computer  program,  and these difficulties 
make them much less attractive than  the parametric 
autodiscretegamma models. Suppose that  a  continu- 
ous distribution does provide an  adequate description 
of the rate variation over  sites; then  there will be infi- 
nitely  many  possibilities to approximate the  continuous 
distribution using several categories. These possibilities 
correspond to different values  of parameters in the  non- 
parametric models, which can be expected to have  very 
similar likelihood values in real data analysis.  Due to 
the near-flatness of the likelihood surface, convergence 
in the iteration algorithm is difficult to achieve and 
parameter estimates are unstable or have  values at  the 
preset boundaries such as 0 and their interpretation 
can be difficult. The difficulties  have been  encountered 
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by LEROUX and PUTERMAN ( 1992) in their analysis  of 
a  sequence of counts of movements by a fetal lamb. For 
example, estimates obtained by those authors from a 
Markov-dependent mixture model with four  rate cate- 
gories suggest that  there exists an absorbing state in 
the Markov chain with rate 0, which means that as soon 
as the fetus enters this rate category, it will never  move 
again; because the chain is assumed to be stationary, 
this also means that  the fetus has been and will remain 
motionless. We have been able to obtain equally absurd 
results using our nonparametric models with three  or 
four  rate categories. 

The auto-discrete-gamma model (HKY+C+AdG in 
Table 1 ) and  the two versions  of nonparametric models 
assuming Markov dependence  (Tables  2  and 3)  are  not 
nested,  and so the likelihood ratio test is not directly 
applicable for  comparing them. However, the likeli- 
hood values  suggest that  the  auto-discretegamma 
model provides a  better fit to the  data  than  the  nonpara- 
metric models using two rate categories. When three 
categories are used, the  nonparametric models (e.g., 
the last model listed in Table 3 )  can fit the  data slightly 
better  than  the  autodiscrete-gamma  model, but  at the 
cost  of  many more parameters. It is also noteworthy 
that results obtained using two or three categories in 
the  nonparametric models are not easily comparable, 
but K is not  an  important factor in the auto-discrete- 
gamma model as long as a relatively large value (such 
as four) is used. We conclude  that  the auto-discrete- 
gamma model provides the most-parsimonious explana- 
tion of rate variation at sites in these mtDNA sequences. 

C source codes are available from the  author which 
implement models described in this paper. 
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a grant  from  the Natural  Science Foundation of China. 
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