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Abstract.—The parameter space of the phylogenetic tree estimation problem consists of three com-
ponents, T t, and 6. The tree topology T is a discrete entity that is not a proper statistical parameter
‘but that can nevertheless be estimated using the maximum likelihood criterion. Its role is to specify
the branch length parameters and the form of the likelihood function(s). Branch lengths t are
conditional on T and are meaningful only for specific values of T. Parameters 6 in the model of
nucleotide substitution are common to all the tree topologies and represent such values as the
transition/transversion rate ratio. T and t thus represent the tree, and  represents the model.
With typical DNA sequence data, differences in T have only a small effect on the likelihood, but
changing 8 will influence the likelihood greatly. Estimates of 6 are also found to be insensitive to
T, making it possible to obtain reliable estimates of 6 and to perform tests concerning the model
(8) even if knowledge of the evolutionary relationship (T) is not available. In contrast, tests con-
cerning t, such as testing the existence of a molecular clock, appear to be more difficult to perform
when the true topology is unknown. In this paper, we explore the peculiarity of the parameter
space of the tree estimation problem and suggest methods for overcoming some difficulties in-
volved with tests concerning the model. We also address difficulties concerning hypothesis testing
on T ie, evaluation of the reliability of the estimated tree topology. We note that estimation of
and particularly tests concerning T depend critically on the assumed model. [Maximum likeli-
hood; models; parameter space; consistency; sampling errors; hypothesis testing; nucleotide sub-

stitution; phylogeny estimation; molecular systematics; molecular clock.]

Acceptance of the theory of evolution as the means
of explaining observed similarities and differences
among organisms invites the construction of trees
of descent purporting to show evolutionary rela-
tionships.

—<Cavalli-Sforza and Edwards, 1967:550

Phylogenetic tree estimation has been
considered a statistical estimation prob-
lem since the pioneering work of Edwards
and Cavalli-Sforza (Edwards and Cavalli-
Sforza, 1963, 1964; Cavalli-Sforza and Ed-
wards, 1964, 1966, 1967; Edwards, 1970)
and has been identified as producing nov-
el statistical problems almost from the
start (Neyman, 1971). Analyzing gene fre-
quency data from different human popu-
lations, Edwards and Cavalli-Sforza used
a Yule process to model the branching
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pattern and Brownian motion to model
the drift of (transformed) gene frequen-
cies within populations. In this formula-
tion, the tree topology and its branch
lengths were considered random vari-
ables, the distributions of which were
specified by the parameters in the model.
The parameters of the Yule process and
the Brownian motion process could in
principle be estimated from the likelihood
function, and the tree topology and
branch lengths could be estimated using
their conditional distributions given the
data (Edwards, 1970; Thompson, 1975).
Although the Yule process is a very sim-
ple description of the branching process, it
caused insurmountable computational
problems. Perceiving that the likelihood
function was a sum over all tree topolo-
gies, which were discrete, Thompson
(1975) concluded that the model was also
theoretically infeasible—certainly it re-
mained unanalyzed. The Yule process was
dropped by Felsenstein (1973, 1981) when
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he addressed the problem of evolutionary
tree estimation from discrete morphologi-
cal characters and, later, from nucleic acid
sequence data and by Thompson (1975)
working with gene frequency data. For dis-
crete characters, a Markov process was
used (Felsenstein, 1973, 1981) to model the
changes among the possible character
states in place of the Brownian motion
model used for gene frequency data. In
this formulation, the trees and branch
lengths are not random variables; they are
parameters and are estimated from the
likelihood function(s) (Felsenstein, 1973,
1981, Thompson, 1975; Goldman, 1990).
The result is a maximum likelihood (ML)
method of tree estimation.

Nei (1987) appears to have been the first
to point out the difference between this
ML tree estimation method and more tra-
ditional ML methodology. Seeing that dif-
ferent tree topologies have different likeli-
hood functions, Nei implicitly questioned
the statistical consistency of the method in
this context. Comparative studies using
both computer simulations (Hasegawa and
Yano, 1984; Fukami-Kobayashi and Tateno,
1991; Hasegawa et al., 1991; Kuhner and
Felsenstein, 1994; Huelsenbeck, 1995; Gaut
and Lewis, 1995) and numerical analysis
(Yang, 1994b) suggest that the ML method
of tree estimation is preferable to other tree
reconstruction methods that are currently
available. Yang (1994b) indicated the na-
ture of a formal proof of its statistical con-
sistency.

Although ML point estimation of the
tree topology and other parameters is con-
sistent and efficient, hypothesis testing
concerning both the adequacy of the mod-
el and the reliability of the ML tree seems
to be full of difficulties, both theoretical
and practical. In view of the complexities
caused by the tree topology parameter and
the peculiarity of the data, which put tra-
ditional distributional approximations into
question, Goldman (1993a) used computer
simulations to derive the distributions of
the statistics used to test models. Such an
approach by computer simulation involves
very heavy computation.

In this paper, we examine the irregular-
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FIGURE 1. The possible unrooted tree topologies
and their branch lengths for four species, used for de-
scribing the parameter space of the phylogenetic tree
estimation problem. When the trees are used in Figure
3a, species 1, 2, 3, and 4 correspond to human, chim-
panzee, gorilla, and orangutan, respectively. The
branch length is measured by the expected number of
nucleotide substitutions per site accumulated along
the branch.

ity of the parameter space of the tree es-
timation problem, study the effects of this
irregularity on tests of models, and sug-
gest approximate methods for testing a
model’s general adequacy and for compar-
ing two parametric models. Difficulties in
the evaluation of the reliability of the ML
tree are also examined.

PARAMETER SPACE OF THE TREE
ESTIMATION PROBLEM

Figure 1 shows all possible unrooted
tree topologies for four species, where T,
is the star tree or “’big bang”’ tree. Different
symbols are used for branch lengths in dif-
ferent trees. Branch lengths in T, will be
denoted as t; for example, t, = {t,,, {2, t1s
s tis). The true tree for any four given
species is assumed to be one of T,, T,, or
T, and will be denoted T*.

We base our discussions on the Markov
model of nucleotide substitution proposed
by Hasegawa et al. (1985), referred to as
HKY85. According to this model, the prob-
ability of nucleotide i changing into nucle-
otide j (j # i) in a small time interval At is
given by
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QijAt =
kAt (for transitions: T & C, A © G)
mpAt (for transversions: T, C <3 A, G),

)

where m; is the frequency of nucleotide j
when the process is in equilibrium, with
2m; = 1, and the scale factor u is chosen
such that the average rate of substitution
is 1. Parameter k (a/B in the notation of
Hasegawa et al,, 1985) represents the in-
stantaneous transition/transversion rate
ratio; k > 1 means that transitions occur at
higher rates than transversions. Other
models used for comparison are those of
Jukes and Cantor (1969), Kimura (1980),
and Felsenstein (1981), referred to as JC69,
K80, and F81, respectively. They are all
special cases of HKY85, which is itself a
special case of the most general reversible
process model (REV), which involves eight
independent parameters (see Yang, 1994a).
These models assume a single rate of sub-
stitution over nucleotide sites.

It is also possible to make the assump-
tion that rates of substitution are drawn
from a gamma distribution. This assump-
tion permits modeling of substitution rate
heterogeneity. The gamma distribution
with parameters o and B has a mean of o/
B and a variance of a/B% In the current
context, B is a trivial scale factor and can
be fixed equal to o to give a mean of 1 and
a variance of 1/a. Values of o less than ap-
proximately 0.5 mean the gamma distri-
bution has a reverse-] shape and imply
strong rate variation, whereas values great-
er than 1 or 2 imply a mostly constant rate
over sites (Fig. 2). Yang (1993) described
the computational implementation of this
model, which in conjunction with the
above Markov models is represented, for
example, as HKY85+T.

Parameters in the substitution model are
common to all the tree topologies and will
be collectively denoted 6. For example,
with HKY85+T, 9 = {m;, m. s K, a},
where a is the shape parameter of the
gamma distribution (m; need not be in-
cluded because it is defined by the require-
ment > = 1).
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FIGURE 2. Examples of the gamma distribution,
used to model heterogeneity of substitution rates
across sites. Four values of the shape parameter « are
illustrated; all distributions have a mean of 1 and a
variance of 1/a.

Irregularity of the Parameter Space

Let s be the number of species and n the
length of sequence. Then there are 4° pos-
sible site patterns (Cavender, 1989; Gold-
man, 1993a). Let the observed number of
occurrences of the ith site pattern be n,
with 35, = n. Under the assumption that
sites evolve independently, data for differ-
ent sites follow a multinomial distribution.
Given the data, the likelihood function(s)
is proportional to the probability of ob-
serving the data given the model and tree
and can be written as

L(Tjr t;’l 9) = C 14_:[ [pi(Ti)(tj/ e)]ni! (2)

where p,, the probability of observing the
ith site pattern, is a function of t; and 6.
The functional form of p; depends on the
tree topology T, T, is discrete, and its role
is to specify the set of branch lengths t; and
to change p; and thus the likelihood func-
tion. C = n!/TI(n}) is a proportionality con-
stant; in practical implementation (e.g., Fel-
senstein, 1981), C is ignored and ¢, =
log[L(T}, t, )] is maximized with respect
to t; and 6 for each of the tree topologies
T, ieading to as many (maximum) likeli-
hood values as the number of trees. The
tree with the highest (maximum) likeli-

hood, say T, is taken as the estimate of T*,
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and estimates t and 8 are obtained from
the ML tree T.

The irregularity of this parameter space
may be better understood by considering
an even more irregular case. Suppose that
a random sample of size n is drawn from
one of the following distributions with un-
known parameters: the normal N(u, ¢2)
with a mean of w and a variance of ¢?, the
log-normal LN(u, o) with scale parameter
p and shape parameter o, and the gamrha
G(a, B) with shape parameter o and scale
parameter B. The problem is to estimate
which distribution the sample is drawn
from and to estimate its parameters. An
extra problem is to provide a probabilistic
statement concerning the reliability of the
estimated distribution. The distributions in
this example correspond to tree topologies,
and the parameters of each distribution
correspond to the branch lengths in each
tree. The distribution does not correspond
to a parameter; in the same way, the tree
topology is not a proper statistical param-
eter of the phylogenetic tree estimation
problem. The ML method does not appear
directly usable to estimate the true distri-
bution because the likelihood function is
not defined.

The tree estimation problem is more
conventional, however, because the proba-
bility functions of observing the data for
different topologies share a general form
(Equation 2) and therefore share the same
proportionality constant C. Thus, the like-
lihood function(s) is well defined, the like-
lihood values for different trees are com-
parable, and the ML estimator of T* is
consistent (i.e., as n — o, Prob(T = T*) —
1 [Yang, 1994b])). ‘

Likelihood Surface as a Function of 0

* Another way to look at the irregularity
of the parameter space is through the like-
lihood surface as a function of the com-
mon parameters in the model, 6. An ex-
ample is shown in Figure 3 using the
Um-globin pseudogenes of human (H),
chimpanzee (C), gorilla (G), and orangutan
(O) (Miyamoto et al., 1987). The sequences
have 6,166 sites. The HKY85+I" model is
used, with the frequency parameters esti-

mated directly using the averages of ob-
served frequencies: f, = 03074, fi, =
0.1852, fr, = 0.3073, fig = 0.2001. The like-
lihood is calculated as a function of pa-
rameters k and o, maximized over tree to-
pologies and their branch lengths.

The likelihood surface (Fig. 3a) may be
divided into three regions in the plane
specified by k and a, within each of which
one tree topology is optimal with different
estimates of branch lengths. We denote the
possible (unrooted) tree topologies as T, =
HC G 0),T,=(HOG,O0),T, = (H,
G)C, O), and T, = (H, O(C, G)) (see Fig.
1). In the region where T, is best, to the
left of the red curve, none of the three bi-
furcating trees is better than the star tree,
whereas traversing the white curve, a del-
icate balance is maintained such that tree
topologies T, (optimal above the white
curve) and T, (optimal between the red
and white curves) have identical likelihood
values and both are ML trees. The super-
imposed color contours represent the
length of the interior branch in the best
tree topology: t;5; in the region for T, and
t;5 in the region for T,, but in the region
for T, no interior branch exists (see Fig. 1).
Intuitively, the interior branch length in the
ML tree appears to measure the confidence
we can put in the estimated topology, but
this has been shown not to be the case
(Yang, 1994b). When o gets smaller, the in-
terior branch lengths in T, and T, get
smaller, indicating that use of a small «
leads to reduction in the difference of like-
lihood values among the trees.

Figure 3b shows a schematic cross sec-
tion through the likelihood surface of Fig-
ure 3a. The likelihood curves for all the
trees are shown, indicating that their max-
imum is a continuous function of a but is
not smooth (differentiable) at the red and
white boundary curves of Figure 3a be-
cause likelihood values in different regions
are calculated from different likelihood
functions.

Figure 3 illustrates that the likelihood
surface, here shown as a function of k and
a, is not smooth everywhere. Also, it is
possible for the star tree to be the best tree
and for two bifurcating trees to have iden-
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Ficure 3. The irregular likelihood surface of the phylogenetic tree estimation problem. (a) A *five-dimen-
sional” representation of the likelihood surface and interior branch length estimate. The plane is determined
by parameters k and «. Black contours show likelihoods, maximized over all the tree topologies and branch
lengths; those for very low likelihood values {(roughly for the region k < 2) are omitted to improve clarity. The
overall highest likelihood value occurs at & = 535, @ = 0.66 ({ = —10127.36). The three regions delineated by
the red and while curves indicate that different tree topologies are supported by the data for different given
values of k and w. (b) A schematic cross section through the likelihood surface of Figure 3a. Parameter « is
fixed at 4, and the {, as functions of «, are maximized over the branch lengths in each tree.
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tical highest likelihood values (at the white
boundary). Although in this example there
is a unique local maximum to the likeli-
hood surface as a function of k and «, it is
not certain that this will always be the
case. This question is analogous to the
question of whether there is a unique max-
imum to the likelihood surface as a func-
tion of trees and branch lengths. In this lat-
ter problem, there may be multiple
maxima spread among different trees
(Bishop and Friday, 1988; Holmes, 1991) or
even for a single tree (Steel, 1994; contra
Fukami and Tateno, 1989). The problem of
multiple maxima rarely presents itself in
the analysis of real data, particularly if
maximization of the likelihood is per-
formed independently for different trees.
Furthermore, different model assumptions
can lead to support of different tree topol-
ogies: o = » corresponds to the model of
a single rate for all sites, whercas the
HKY85 model reduces to the F81 model if
k= 1.

The estimated interior branch length re-
mains quite similar as the ML topology
changes (crossing the white boundary).
However, this is only a subjective judg-
ment, with no theoretical results to sup-
port it.

CRITERIA FOR EVALUATING THE
PERFORMANCE OF A TREE ESTIMATION
METHOD

Although the tree topology T is not a
proper statistical parameter, it can be
thought of as one, and appropriate mea-
sures for evaluating the properties of its es-
timators, i.e., tree estimation methods, can
be defined. Of course, its difference from a
conventional statistical parameter should
be kept in mind.

Consistency and Robustness

The consistency of T can be defined in
the usual statistical sense, i.e.,, T is a con-
sistent estimator of T* if Prob(T = T*) —
1 as n — = (Felsenstein, 1978). As far as
estimation of the tree topology alone is
concerned, it is possible for an estimator (a
tree estimation method) to be consistent
even if the model used for data analysis is

wrong (DeBry, 1992). The variety of con-
ditions for which this is the case gives a
measure of the robustness of the method
when its assumptions are violated. Yang
(1994b) presented examples in which ML
(joint) analysis was more robust than a
least squares (pairwise) comparison.

Sampling Error or Efficiency

Some properties for an estimator of a
regular statistical parameter, such as un-
biasedness, do not seem to make sense for
an estimator of the tree topology. However,
when an estimator of the tree topology is
consistent, its efficiency or sampling error
can be measured by the probability that
the estimated tree is the true tree, Prob(T
= T*), this measurement is analogous to
the variance of an estimator of a regular
parameter. Nevertheless, a method assum-
ing a wrong model may still be consistent
and may have smaller sampling errors
than one using the right model. When the
model is misspecified, however, parame-
ters t and 6 will be estimated with system-
atic errors, and more importantly, hypoth-
esis testing concerning both trees and
models can be misleading. The robustness
of a tree estimation method is not a justi-
fication for the use of wrong models.

In computer simulation studies, incon-
sistency of the estimation method, sam-
pling errors due to finite sequence length,
and sampling errors due to limited num-
ber of repetitions of the simulation are con-
founded. Few attempts have been made to
discriminate among these different sources
of error.

Estimating the Sampling Error of the ML Tree

The sampling error of an estimated tree
topology, as defined above, appears very
difficult to estimate in practice. The only
approach currently available for this pur-
pose is nonparametric bootstrapping (Fel-
senstein, 1985). A natural measure of the
sampling error of T is the probability, P,
that T is the true tree. Then 1 — P will be
the probability of committing a Type I er-
ror if we draw the conclusion that the es-
timated tree is the true tree. In our discus-
sion, one probability is assigned to one
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whole tree topology; the sum of these
probabilities over all trees is 1. Many au-
thors assign such probabilities to every in-
terior node in an estimated tree. Although
such probabilities do seem to provide
some measure of the confidence in the
monophyletic relationship at the nodes,
their exact meaning is not clear. Because
many probabilities arc calculated from one
analysis, it seems too demanding to expect
all of them simultaneously to mean what
each one independently is supposed to
mean.

Other than in simulations, the true tree
is not known. Instead, we can examine the
probability that the estimated tree will be
chosen as the best tree in a finite sample.
If we could draw samples from the real
process (the original data constitute one
such sample), we would be able to analyze
each of the samples and calculate this
probability. The bootstrap draws samples
from the observed data, and each sample
is analyzed in exactly the same way as the
original data. The bootstrap probability,
P,, is then determined as the proportion of
bootstrap samples for which the tree con-
cerned is chosen as the best tree. Recent
theoretical study (Zharkikh and 1., 1992)
and computer simulations (Hillis and Bull,
1993) suggest that Py is a poor, sometimes
very poor, estimator of P; it tends to over-
estimate P when P is small and to under-
estimate P when P is large. Felsenstein and
Kishino (1993) argued that, although Py is
a poor estimator of P, 1 — P, can be a good
estimator of 1 — P, which seems to need
more justification.

The difficulty appears to be due to the
irregularity of the tree estimation problem.
For other problems, more powerful para-
metric methods may be constructed, but
this seems very difficult for the tree esti-
mation problem. In fact, even simulations
(parametric bootstrapping) cannot easily
be performed if there are more than two
trees that could be the true one because of
the complexity of the null hypothesis; at
any rate, we cannot simply undertake sim-
ulation with the null assumption that the
ML tree is the true tree.

For the ML method, Kishino et al. (1990)

suggested two approximate methods for
calculating Py. The first, resampling esti-
mated log likelihoods (RELL), uses the pa-
rameter estimates from the original data to
calculate the likelihood for each bootstrap
sample instead of estimating parameters
from every bootstrap sample separately, a
significant saving in computation. This
practice, however, can have a profound ef-
fect (Hall and Wilson, 1991), considerably
reducing the power of the test. The second
method makes use of a multivariate nor-
mal distribution (MND) to approximate
the distribution of the calculated likeli-
hoods of the trees. Although we have
found the asymptotics of estimates of pa-
rameters t and 6 to be quite reliable, an
acceptable normal approximation to the
calculated likelihood values seems to need
much more data. The accuracy of approx-
imation seems to be influenced by the
skewness of the distribution of the data,
which is largely determined by the overall
amount of evolution (Yang, 1994b). This
case is similar to using a normal distribu-
tion to approximate a binomial distribu-
tion.

The relationships among the many prob-
abilities mentioned above are not clear, nor
is it clear what factors affect the approxi-
mations. Overall, the RELL and MND
methods seem to do a better job in ap-
proximating Py than P, does in approxi-
mating P (Hasegawa and Kishino, 1994).

TESTS OF MODELS
Test of the General Adequacy of a Model
Traditionally, the fit of a model to data
in the case of the multinomial distribution
can be tested by using the likelihood ratio
statistic,
k
n
D = ), 2n;log—, 3
2 8 3)

i

or the Pearson X? statistic,

5 (n, — np)y
X2 = ;_'_, 4
) - (4
where k = 4° is the number of categories.
Both statistics are asymptotically xi , dis-
tributed when the model is correct.
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However, with phylogenetic analysis of
DNA sequence data, there are two diffi-
culties with the x? approximation (Gold-
man, 1991, 1993a). The first problem is
caused by the tree topology. If the true tree
were known, its use (whatever the ML tree
derived from the data) would avoid uncer-
tainty over the distribution of the statistic
concerned. Most often, we do not have
such knowledge and the available alterna-
tive is the use of the ML tree, but in this
case the choice among tree topologies con-
tributes to the likelihood. Goldman (1993a)
pointed out the difficulty of counting the
number of degrees of freedom involved
with the tree topology parameter. If the
likelihood is maximized over the trees, nei-
ther D nor X? can be expected to be x? dis-
tributed because the regularity conditions
required for this asymptotic approxima-
tion (e.g., Kendall and Stuart, 1979:445-
446) are not met; in cases when the ML
tree is not the true tree, the expected values
(np,) in Equations 3 and 4 will be calculat-
ed using the wrong formulae. When the
amount of data is so large that we have
virtually no doubt about the tree topology
(i.e., when the ML tree is the true tree with
P = 1), the difficulty effectively disap-
pears. However, we will almost always
have enough data to reject wrong models
long before we have enough data to esti-
mate the true topology with confidence.

Despite this theoretical difficulty, the
problem can almost be ignored in practice.
When the tree topology is in doubt, the
likelihoods of several reasonable trees, in-
cluding the ML tree and (presumably) the
true tree, are very similar (Yang et al., 1994;
Yang, Goldman, and Friday, unpubl.),
which is why it is so difficult to estimate
the true tree with confidence. The approx-
imation of the likelihood of the ML tree to
that of the true tree is acceptable; the effect
of this close approximation is that the test
will be conservative, slightly favoring the
model under test.

The second difficulty with using a x2
distribution concerns a peculiarity of the
data. These are assumed to be a sample
from a multinomial distribution, yet the
number of categories of the distribution, 4¢,

is often larger than the number of data
points, n. Furthermore, for typical DNA se-
quence data most of the data points are
clustered in the four “constant’” categories
characterized by the occurrence of identi-
cal nucleotides for all the species. For
closely related sequences, those four cate-
gories can account for >90% of the data
points. A consequence is that we have very
many categories with very few or no data
points assigned to them, which seems to
have a drastic effect on the x? approxima-
tion, tending to result in rejection of the
model much too readily (Reeves, 1992;
Goldman, 1993a). An appropriate ap-
proach to this problem is to combine some
of the categories so that the expected num-
ber in each category is, say, larger than 5.

One strategy is to combine into larger
categories those data points (site patterns)
that have similar probabilities, which will
maintain as much power as possible in the
resulting test. Our strategy refers to the
JC69 model, under which many different
site patterns have equal probabilities (Sai-
tou, 1988; corrected by Yang, 1994b). The
procedure is illustrated in Table 1, using
as an example tests of the HKY85 and REV
models for the evolution of the {m-globin
genes of human, chimpanzee, gorilla,
orangutan, rhesus monkey, and spider
monkey (Miyamoto et al., 1987, 1988; Fitch
et al., 1988). The first four sequences were
used in Figure 3.

The first category includes all the site
patterns where there are more than two
different nucleotides in different species
and therefore includes the most variable
sites. This large category includes 4* — [4
2 - 1) X 12] =4 - 3 X2 + 8
different site patterns. Categories 2-5 con-
sist of the four “constant” patterns. All the
remaining site patterns have exactly two
different nucleotides and may be arranged
into categories according to which se-
quences have one nucleotide and which the
other, irrespective of what those nucleo-
tides are. For the six-species example, these
categories may be represented 000001,
000010, 000011, ..., 011111, with 0 and 1
standing for any pair of different nucleo-
tides. Each of these categories includes 12
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Tasre 1. Goodness-of-fit tests of the HKYB5 model and the general reversible process model (REV), using
the six species ym-globin gene sequences (6,166 nucleotides each). The categories are labeled using T, C, A, and
G when they comprise one site pattern or using 0 and 1 standing for any pair of different nucleotides when
they comprise a combination of 12 site patterns. The observed numbers of occurrences (1) are shown with the
expected numbers (np) under the two models. The residuals are calculated as », = (np, — n)/ (ap )2

. HKY85 REV
Category no.
and pattern ", np, r; np; t,
Most variable patterns
| I, S 45 30.48 —2.630 32.82 —2.126
Constant patterns
2 TTTTTT 1,670 1635.77 ~0.846 1661.08 -0.219
3 Cceccce 903 919.31 0.538 897.66 —0.178
4 AAAAAA 1,670 1628.37 —1.032 1647.68 —0.550
5 GGGGGG 966 991.51 0.810 971.40 0.173
Two different nucleotides, one site pattern per category
6 TTTI'TC 46 67.09 2.575 67.14 2.580
7 TTTTTA 17 24.53 1.520 13.77 —0.870
8 TTTTTG 16 15.81 —0.048 16.74 0.181
9 CCCCCT 67 64.50 -0.311 63.13 —0.487
10 CCCCCA 16 14.16 —0.489 16.23 0.057
11 CCCCCG 16 9.13 —2274 16.52 0.128
12 AAAAAT 12 24.45 2.518 13.69 0.457
13 AAAAAC 15 14.66 —0.089 17.14 0.517
14 AAAAAG 56 72.02 1.888 72.87 1.976
15 GGGGGT 18 15.25 —0.704 15.81 —0.551
16 GGGGGC 19 9.14 —-3.261 16.57 -0.597
17 GGGGGA 76 69.55 -0.773 69.09 —0.831
Twao different nucleotides, many site patterns per category
18 000010 213 220.70 —0.035 219.77 —0.031
19 000011 74 78.53 0.511 77.58 0.406
20 000100 78 83.40 0.591 82.78 0.525
21 oo » 16 7.71 —2.986 7.69 —2.997
22 000111 27 33.74 1.160 33.57 1.134
23 001000 36 45.30 1.382 44.97 1.338
24 ‘ 13 6.91 -2.317 6.88 —2.333
25 010000 45 47.31 0.336 46.98 0.289
26 o J 11 7.25 —-1.393 7.20 —1.416
27 011111 25 29.44 0.818 29.25 0.786
Totals 6,166 X2 = 66.87 X2 = 3922
D = 62.04 D — 36.51

s More than two different nucleotides at a site.

b Patterns 000101 and 000110 combined.

< Patterns 001001, 001010, 001011, 001100, 001101, 001110, and 001111 combined.
4 Patterns 010001011110 combined.

site patterns. In the example of Table 1, egories. In Table 1, 000001 is separated into
some of these categories are further com- 12 categories representing its 12 compo-
bined so that the expected number in each nent site patterns.

category exceeds 5 (Table 1, categories 21, The problem emerges of what estimates
24, 26). When the sequences are arranged of t and 6 should be used to calculate the
in such an order that the outgroups appear expected numbers (np,) in Equations 3 or
last, as in Table 1, categories such as 4. One method is to reestimate the param-
000001, 000010, and 000100 will typically eters t and 6 using the combined data,
have higher frequencies than the others minimizing either the statistic D or X* (the
and may be separated to achieve more cat- maximum likelihood criterion or the min-
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imum chi-square criterion). Estimates of
parameters obtained in this way will be
different from those obtained from the
original data. Then D or X? can be com-
pared with a x? critical value with df = k
— p — 1, where k is the number of cate-
gories of the combined data and p is the
number of parameters in the model being
tested.

An alternative approach, adopted here
because it involves less computation, is to
use estimates of t and 6 obtained from the
original data. In this case, X*> or D are no
longer x? distributed but rather are bound-
ed between x , , and x?_; (Kendall and
Stuart, 1979:450—455). The test is then con-
sidered significant only if the observed val-
ue is larger than x? ,. The test will be con-
servative if p is much larger than 1, when
X?,-» and x; , are quite different.

Because there are k = 27 categories in
Table 1, we have x3,, = 45.64 for df = k —
1 = 26. The HKY85 model is rejected when
either of the two statistics is used (X? =
66.87, D = 62.04), whereas REV is not re-
jected (X? = 3922, D = 36.51). The same
conclusion holds when one (000010) or two
(000010, 000100) further categories are sep-
arated into their component site patterns.

Comparison of Two Parametric Models

Tests in this category include, for exam-
ple, comparison of F81 and HKY85 or of
HKY85 and HKY85+T, etc. Traditionally,
such a test is performed using the x> ap-
proximation of the likelihood ratio statistic.
Taking the comparison of F81 with HKY85
as an example, the null and alternative hy-
potheses are H,: k = 1, H;: k = 0. Suppose
the likelihood under F81 is £, and that un-
der HKYS85 is £,. Then D = 2Af = 2(¢;, —
¢,) will be asymptotically x? distributed
with df = 1 if H, is true.

With DNA sequence data, different
models may lead to support for different
tree topologies, and even if the different
models favor the same tree it may still be
a wrong one. When €, and £, are not both
calculated using the true tree, D can no
longer be expected to be x* distributed.
Strictly speaking, the asymptotic proper-
ties of ML estimates of 6, obtained always

from the ML tree, are now questionable be-
cause the regularity conditions leading to
such properties (e.g., Kendall and Stuart,
1979:38-81) are not met. Using the analogy
of distributions once again, suppose that
all the samples are drawn from a normal
distribution but that some samples are an-
alyzed under the assumption that the sam-
ple is gamma distributed, depending on
our best estimate of the distribution. In this
case, the model is misspecified, and esti-
mates of parameters involve systematic er-
rors. Nevertheless, the likelihood values of
a reasonable tree, say the ML tree under
H,, are in practice acceptable approxima-
tions of the likelihood values of the true
tree, and therefore the difficulty caused by
the lack of confidence in the tree can be
ignored.

Goldman (1991, 1993a) performed such
tests using a parametric bootstrapping
method, generating samples of data by
Monte Carlo simulation under H, and for
each sample maximizing the likelihoods
over trees for both models. In all cases, 100
simulations were done to derive the theo-
retical distributions of the statistics. We re-
examined Goldman's (1991, 1993a) results
and found that the x? distribution does ap-
pear to give good approximations. Figure
4 shows an example in which F81 is com-
pared with HKY85 using the {m-globin
pseudogenes of human, chimpanzee, go-
rilla, and orangutan, the same data ana-
lyzed in Figure 3. The calculated likeli-
hood values under the two models are ¢,
= —10130.14 under F81 and ¢, =
—10221.81 under HKY85, with D = 2A¢ =
2 X 91.67 = 183.34. Monte Carlo samples
were generated by “‘evolving’ the sequenc-
es along the tree ((H, O)G, O), the ML tree
under HKY85, using estimates from the
data of t and 9 for this tree under F81. Each
of the 500 samples was analyzed in the
same way as the original set of data. Re-
sults in Figure 4 were obtained using a
single tree for both models. The results
(not shown) obtained using the likelihood
of the ML tree under each model for each
sample are virtually the same, as expected.

The sparseness of the data does not
seem to influence tests concerning two
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FIGURE 4. The distribution of the likelihood ratio
statistic, A¢ = (¢, - {,), for comparison of the F81 and
HKY85 models, obtained by 500 Monte Carlo simu-
lations. The 6,166-bp Yym-globin genes of human (H),
chimpanzee (C), gorilla (G), and orangutan (O) are
used, with the likelihood calculated using only one
tree under both models, i.e., (H, C)G, O), the ML tree
under HKY85. The continuous curve is the x* distri-
bution with df = 1, scaled appropriately, which seems
to be an acceptable approximation of the simulated
distribution. The observed value of the test statistic is
A€ = -10221.81 - ( 10130.14) = 91.67; the F81 mod-
el is rejected.

parametric models, possibly because the
likelihoods under both models are affected
in roughly the same way.

When H, and H, differ in only one pa-
rameter, as is the case for comparison of
F81 with HKYS85, the two models can be
compared by examining the variance of
that parameter, as estimated by the curva-
ture method (Kendall and Stuart, 1979:45—
49), which relies on the asymptotic nor-
mality of ML estimates. The difficulty
caused by the tree topology can once again
be ignored, the justification being the ob-
servation that estimates of 6 are very sim-
ilar for all trees (Yang et al., 1994). For the
four-species m-globin genes, «k is estimat-
ed to be 526 = 0.69 under the HKY85
model. A z-statistic can be compared to a
standard normal distribution to see if the
estimated «k differs from 1: z = (R — 1)/
SE(R) = 6.164, P < 0.01, and we conclude
that it does.

Comparison between HKY85 and
HKY85+1 is a test of rate constancy over
sites, which can be formulated as H,: a™!

= 0, H;: a7! = 0, because the single rate is
the limiting case of the gamma distribu-
tion with a — o. For the m-globin genes
of four species, the a parameter is esti-
mated to be 0.66 + 0.38 under HKY85+T".
By the d technique, SE(a™') = SE(a)/a?,
and the normal approximation suggests
the comparison of z = & '/SE(& ') =~ &/
SE(a) = 1.75 with a standard normal dis-
tribution. H, is just rejected by this test: P
= 0.041 (one-tail normal probability). In
comparison, the likelihood ratio test in-
volves comparison of 2A¢ = 2 X
[-10127.36 — (—10130.14)] = 5.55 with a
x* distribution with df = 1, and again 0.01
< P < 0.05.

The normal approximation has also
been found to agree well with the x* ap-
proximation for other data sets, implying
that apart from the tree topology problem,
the amount of data is sufficient for the
asymptotics of ML estimates of parameters
to be reliable. This conclusion is consistent
with Tajima’s (1993) demonstration that
even with only two sequences, the biases
of the ML estimators of sequence diver-
gence under JC69 and K80 are negligible
when the sequences are as short as only
100-500 bases. Nevertheless, we do not ex-
pect the normal approximation to be as re-
liable as the x? approximation because the
relatedness among estimates of parameters
is ignored.

The Test of a Molecular Clock

Although tests concerning 6 can be car-
ried out without knowledge of the true
tree, tests concerning branch lengths t ap-
pear more problematic. Unless we are cer-
tain of the true tree topology, we do not
even know which branches exist and tests
regarding them will include unknown un-
certainties. (An analogy would be an at-
tempt to make inferences regarding the
shape and scale parameters, a and B, of a
gamma distribution from data drawn from
a normal distribution.) One important test
of this sort concerns the existence of a mo-
lecular clock, which represents a set of re-
strictions on the branch lengths of the true
tree, and the likelihood ratio test would be
expected to apply if the likelihood values
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TaBLE 2. Test of the existence of a molecular clock for the four ym-globin genes of human (H), chimpanzee
(C), gorilla (G), and orangutan (O). Likelihood values (£) and estimates (k) of the transition/transversion rate
ratio are shown for all tree topologies. The HKY85 model is assumed either with or without a molecular clock.

Without clock With clock

Unrooted tree [4 [3 Rooted tree 4 3

(H, C(G, O)) -10130.14 5.26 (O(G(H, Q))) -10132.47 5.26
(G(O(H, C))) —-10167.21 5.25
((H, C)(G, O)) —10167.21 5.25
(C(H(G, O))) -10171.47 5.24
(H(C(G, O))) —-10171.47 5.24

(H, G(C, O)) —10133.20 5.14 (O(C(H, G))) —-10135.71 514
(C(OH, G))) —-10171.70 5.11
((H, G}(C, O)) —-10171.70 5.11
(G(H(C, O))) —10173.68 5.15
(H(G(C, O))) —-10173.68 5.15

(H, O(C, G)) —10130.32 5.21 (O(H(C, G))) —10134.05 5.21
((H, O)XC, G)) —10169.56 5.20
(H(O(C, G))) -10169.56 5.20
(G(C(H, O))) —10172.07 5.19
(C(G(H, O))) -10172.07 5.19

(H,C,G,0) —10133.48 5.16 H,C,G,0) -10173.67 5.15

could be calculated using the true topolo-
gy under both models.

As in the case of tests concerning mod-
els, we examined whether the likelihood
values for the several best trees are similar
as compared with the likelihood difference
resulting from the clock assumption. The
ym-globin pseudogenes of human, chim-
panzee, gorilla, and orangutan were ana-
lyzed (the same data as analyzed in Fig. 3).
The HKY85 model was assumed. With the
assumption of a molecular clock, the po-
sition of the root of the tree can be iden-
tified (Felsenstein, 1981). The likelihood
values of all bifurcating trees are listed in
Table 2 under both models. Because there
are 2s — 3 branch lengths in a unrooted
bifurcating tree and s — 1 branching times
in a rooted bifurcating tree for s species,
the likelihood ratio statistic should be com-
pared to a x?distribution with df = s — 2
(Felsenstein, 1981; see also Goldman,
1993a). For our example in Table 2, the best
unrooted tree without the clock assump-
tion is ((H, C)G, O), with ¢, = —10130.14,
and the best (rooted) tree with the clock
assumption is (((H, C)G)O), with £, =
—10132.47. This comparison gives 2A{ = 2
X 2.33 = 4.66, which is not significant

(X301 = 921, df = 2). Other plausible tree
topologies, such as ((C, G)H, O), give very
similar results for this data set. Removal of
the molecular clock assumption therefore
does not seem to improve the fit of model
to data, i.e., substitution rates are more or
less constant along different lineages. Sim-
ilar results (not shown) are obtained for
the mitochondrial (mtDNA) sequences of
the same species (Brown et al.,, 1982). We
therefore conclude that the test of a molec-
ular clock can still be performed even if the
true topology is unknown. However, be-
cause the likelihood values with or without
the clock assumption are not very different
compared with the likelihood differences
caused by the tree topology, we suggest
that likelihood values of the several best
trees under both models be examined, re-
gardless of whether the ML trees under
the two models are compatible with each
other.

Estimates of k are very stable across tree
topologies under both models, and esti-
mates from both models are very similar
(Table 2). Also, the likelihood values of dif-
ferent rooted trees that correspond to the
same unrooted topology are quite differ-
ent. The three topologies in which orang-
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Tasrk 3. The dependence of evaluation of reliability of the ML tree upon the assumed model. The 895-bp
mtDNA sequences of human, chimpanzee, gorilla, orangutan, and gibbon are used. €, is the likelihood of the
best tree under the model, ¢, is the likelihood of the star tree, and €,,,, = Sinlog(n) — nlog(n) = —2476.97 is
the maximum possible likelihood. Four (unrooted) tree topologies are examined: T, = (H,C,G), T, = ((H,
QG), T, = (H,G)C), and T, = (H(C, G)); in all cases, orangutan and gibbon are the outgroups. Estimates of

k and « in the models, where present, are obtained from T,.

Bootstrap probabilities®

Order of
Model € o €, — ¢, likelihoods P, P, P, R &

JC69 (0) —436.77 13.68 312 46.05 6.00 47.95

F81 (3) —365.71 13.64 312 42.90 5.10 52.00

K80 (1) ~271.45 11.43 132 71.10 7.00 21.90 8.651

HKYB85 (4) —188.46 10.52 132 71.60 5.85 2255 9.390

REV (8) —181.26 9.09 132 67.90 6.85 25.25

JC69+1" (1) —425.68 8.95 132 49.80 3.65 46.55 1.062
F81+1" (4) —350.08 7.44 312 46.20 2.80 51.00 0.802
K80+1" (2) ~249.47 6.37 132 83.10 3.80 13.10 11.165 0.553
HKY85+1" (5) -146.11 3.64 123 85.45 8.45 6.10 22.270 0.252

* Number of common parameters 6 are given in parentheses.
" Estimated by the RELL method (Kishino et al., 1990).

utan diverged first have the highest likeli-
hood values although they correspond to
different unrooted tree topologies. The re-
sults suggest that the data contain much
information concerning the root (the ear-
liest divergence), although the topology is
uncertain, and that by removing the clock
assumption the model may lose power for
discriminating among trees.

Discussion
Test of Trees and Use of Models

In this section, we will use the bootstrap
Py, approximated by the RELL method, as
a measure of the sampling error of the ML
tree to study the dependence upon the as-
sumed model of the evaluation of the re-
liability of the estimated tree. The 895-bp
mtDNA sequences of human, chimpanzee,
gorilla, orangutan, and gibbon (Brown et
al., 1982) were analyzed using different
models. Only the four (unrooted) trees in-
volving the human-chimpanzee—gorilla
separation were evaluated, with orangutan
and gibbon as outgroups: T, = (H, C, G);
gl)): (H, O)G); T, = (H, G)C); T, = (H(C,

Likelihood values, estimates of parame-
ters, and the estimated P, values are listed
in Table 3. P, depends critically on the
model assumed in the analysis. Even the
best (ML) tree depends on the model. In

examining the power of a model in dis-
criminating among tree topologies, Yang et
al. (1994) used the difference in likelihood
between the ML tree and the star tree, €,
— 4, and found that more complex and
reasonable models invariably gave lower
values than did simpler and inappropriate
models. (Note the use of parentheses here
to indicate the greatest likelihood value,
i.e, that ranked 1, as opposed to a partic-
ular hypotheses or tree numbered 1.) This
result is confirmed in Table 3; in particular,
adding the gamma distribution causes
substantial reduction in the likelihood dif-
ference €, — €, Nevertheless, ¢, — ¢, is
not a measure of the ML tree’s reliability
at all; two or more bifurcating trees can
often be significantly better supported
than the star tree using this measure. The
bootstrap Py, approximated by the RELL
method, may be a better measure for this
purpose. If Py is used, use of more complex
and realistic models does not necessarily
mean loss of discriminating power. For the
mtDNA sequence data analyzed in Table
3, better models appear to have higher
power in discriminating among tree topol-
ogies. Similar patterns have been found in
other data sets we have examined. Never-
theless, the likelihood method discrimi-
nates among the tree topologies by com-
paring their likelihood values, and because
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the likelihood values get more and more
similar as the model is improved (€, — €,
is the difference of the highest and lowest
likelihood values), we feel unable to draw
a decisive conclusion concerning the dis-
criminating powers of different models.
Furthermore, our application of the
PL(RELL) measure to analyze many real
data sets has rarely led to significant sup-
port for the estimated topology, and it is
worth asking whether it is the data or the
measure that lacks discriminating power.
We suggest it is both.

Whereas an adequate model is impor-
tant in estimating tree topology and es-
pecially in evaluating the reliability of the
estimated tree, correct formulation of the
model is of vital importance for under-
standing the evolutionary process. When a
relatively simple model of nucleotide sub-
stitution is assumed, the a parameter of
the gamma distribution is overestimated
and thus the variation of rates over sites is
underestimated (Table 3). For example, a is
estimated as 1.06, 0.80, 0.55, and 0.25 when
the assumed model is JC69+I", F81+T,
K80+T, and HKY85+I", respectively. The
same also holds for the k paramecter; when
either the differences in nucleotide fre-
quencies (JC69 and K80 compared with
HKY85) or the rate variation over sites
(K80 or HKY85 compared with K80+I" or
HKY85+T) is ignored, k is underestimat-
ed. Generally, when one aspect of the com-
plexity of the process is ignored, we get
the (wrong) impression that other aspects
are not important either.

Another way to look at the results is
through the improvement in likelihood ob-
tained by adding parameters into the
model one after another. For example, the
improvement on adding « into the model
is greater if k is already in the model (com-
parison between K80+I' and K80, Af =
21.98) than if k is not (comparison between
JC69+T and JC69, A = 11.09). The im-
provement is even greater if the frequency
parameters have also been included in the
model (comparison between HKY85+T
and HKY85, A¢ = 42.35). The same is true
concerning the effects of adding the k pa-
rameter or the frequency parameters. We

examined three other data sets and found
this pattern to hold for all cases. These
results may appear peculiar, but they ob-
viously suggest that all the aspects repre-
sented by these parameters are character-
istic of the evolutionary process and
should not be ignored.

What Models Are Generally Acceptable in
Phylogenetic Analysis?

In this paper, results obtained from
analyses of two data sets, i.e.,, the ym-glo-
bin genes (either with four or six species)
and the 895-bp mtDNA sequences, are pre-
sented. These two data sets are well
known and have been intensively ana-
lyzed, although few studies have paid at-
tention to the adequacy of the models
used.

For the {m-globin pseudogenes, HKY85
has to be rejected when compared with
REV even with only four sequences (hu-
man, chimpanzee, gorilla, orangutan): 2A¢
= 2 X 9.31 = 18.62 compared with x3, =
13.28 (df = 4). With all six sequences in the
data set, the difference is even greater (2A¢
= 60.96). The HKY85+1" model is slightly
better than HKY85 with four sequences
(2A¢ = 5.55; 0.01 < P < 0.05), whereas
with all six sequences the difference is
more significant (2A¢ = 18.04; P < 0.01).
For computational reasons, the REV+T
model was not implemented. However, use
of a discrete distribution of rates over sites
to approximate the gamma distribution, in
combination with the REV model of nucle-
otide substitution, leads to significant im-
provement in likelihood over REV (results
not shown), indicating that substitution
rates are indeed variable among sites. In
Table 1, the observed frequencies in the
identical and variable categories are higher
than those expected by REV, which is a
classical symptom of rate variation over
sites (e.g., see Reeves, 1992). The reasons
for such rate variation over sites in this
pseudogene are unknown.

For the five-species mtDNA sequences,
both HKY85+I" and REV are better than
HKYS85, with likelihood ratio statistics of
2A¢€ = 84.69 (P < 0.01) for the comparison
between HKY85+I" and HKY85 and 2A¢
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= 14.40 (P < 0.01) for the comparison be-
tween REV and HKYS85 (Table 3). Rate
variation over sites seems to be the most
important factor accounting for the lack of
fit of HKY85. Judging from the likelihood,
REV+TI" would be an acceptable model and
HKY85+I" may be expected to be a good
approximation.

Similar analyses have been done with
many other data sets to find out which
models are generally usable. The HKY85
model appears to be the simplest that we
can hope to be generally acceptable; sim-
pler models such as JC69, F81, or K80 are
not acceptable for any of the data sets ex-
amined (Yang et al., 1994; Yang, Goldman,
and Friday, unpubl.). These models are
typically so poor that we seldom need to
look at statistical tables to perform the
tests. Two models that have been used in
comparison with HKY85 are REV and
HKY85+I'. REV has most often been sig-
nificantly better than HKY85 except for a
few data sets where the number of se-
quences is small and the sequences are
short. HKY85+1" is not significantly better
than HKY85 for the spacer between ym-
and 3-globin genes (Maeda et al., 1988), the
ribosomal internal transcribed spacer
(Gonzalez et al., 1990), and 28S ribosomal
RNA (rRNA) sequences (Gonzalez et al,,
1990) but is significantly better for other
genes, including a small rRNA (Hixson
and Brown, 1986).

These results suggest that for most
genes REV should be used, but HKY85
does give very similar results in the esti-
mation of T and t. Supplemented with bi-
ological knowledge, possible rate variation
over sites can easily be revealed by a re-
sidual analysis as performed by Goldman
(1991, 1993b) (Table 1). When such varia-
tion does exist, a model like HKY85+TI
should be used because ignoring rate vari-
ation over sites has drastic effects on the
estimation of t and 6 (Yang et al., 1994).
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