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Abstract. Several maximum likelihood and distance
matrix methods for estimating phylogenetic trees from
homologous DNA sequences were compared when sub-
stitution rates at sites were assumed to follow a gamma
distribution. Computer simulations were performed to
estimate the probabilities that various tree estimation
methods recover the true tree topology. The case of four
species was considered, and a few combinations of pa-
rameters were examined. Attention was applied to dis-
criminating among different sources of error in tree re-
construction, i.e., the inconsistency of the tree estimation
method, the sampling error in the estimated tree due to
limited sequence length, and the sampling error in the
estimated probability due to the number of simulations
being limited. Compared to the least squares method
based on pairwise distance estimates, the joint likelihood
analysis is found to be more robust when rate variation
over sites is present but ignored and an assumption is
thus violated. With limited data, the likelihood method
has a much higher probability of recovering the true tree
and is therefore more efficient than the least squares
method. The concept of statistical consistency of a tree
estimation method and its implications were explored,
and it is suggested that, while the efficiency (or sampling
error) of a tree estimation method is a very important
property, statistical consistency of the method over a
wide range of, if not all, parameter values is prerequisite.
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Introduction

For DNA sequences that code for biological products or
are otherwise functional, rates of nucleotide substitution
are expected to vary among sites due to different selec-
tional constraints at different sites. Ignoring rate varia-
tion at sites when it exists can drastically affect some
aspects of phylogenetic analysis, such as estimation of
sequence divergence (e.g., Gillespie 1986; Takahata
1991) or estimation of evolutionary parameters such as
the transition/transversion rate ratio (Wakeley 1994;
Yang et al. 1994, in press). As likelihood values calcu-
lated for any tree topology are quite different depending
on whether or not rate variation over sites is accounted
for in the model (Yang et al. 1994), variable rates among
sites may also affect the estimation of the tree topology.

Several distance measures between two sequences
have been proposed that use a gamma distribution to
model variable rates at sites (Jin and Nei 1990; Li et al.
1990; Tamura and Nei 1993). The gamma distribution
involves a shape parameter o, which is inversely related
to the extent of rate variation at sites (var = 1/a; the scale
parameter of the distribution is chosen such that the
mean is one). As there was no satisfactory approach to
estimating this parameter, arbitrary values, such as 2, 1,
or 0.5, were suggested (Jin and Nei 1990; Li et al. 1990).
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Some recent analyses used estimates of the o parameter
obtained from the parsimony analysis of the sequence
data (e.g., Tamura and Nei 1993). This method is known
to produce overestimated o (Wakeley 1993), and the bias
can be very large; for example, in analyzing DNA se-
quences of about 3.5 kb from several primate mitochon-
drial genomes, which contain the first and second codon
positions in six protein-coding regions and 11 tRNA-
coding regions, Takezaki (personal communication)
found that the estimate of ¢ by the parsimony method
(0.82) is over five times higher than that by the maxi-
mum likelihood estimation (0.16). Calculation of the
pairwise distances appears to be very important to the
performance of distance matrix methods (e.g., Jin and
Nei 1990), and the use of arbitrary values or unreliable
estimates of o is unsatisfactory.

The gamma distribution model for rates at sites has
also been extended to a joint likelihood analysis (Yang
1993), which also provides reliable estimation of the o
parameter for use in distance estimators. As this method
is computationally very slow, two approximate methods
were suggested by Yang (1994b). The approximations
appeared to be reasonable when applied to real data, but
their statistical properties have not been rigorously eval-
uated.

In this paper, several tree estimation methods will be
examined in the presence of rate variation among sites.
Two criteria were regarded as useful by Yang (1994a)
and Yang et al. (in press) for evaluating the performance
of a tree estimation method. The statistical consistency of
a method can be examined by considering the limiting
case of infinitely long sequences (Felsenstein 1978; see
also Hendy and Penny 1989; Debry 1992; Zharkikh and
Li 1993; Takezaki and Nei 1994). Yang (1994a) sug-
gested a formal proof that the maximum likelihood
method and the distance matrix method based on the
(ordinary) least squares criterion are consistent when the
true model is assumed in the analysis. When all assump-
tions underlying a method are not satisfied, the method is
usually consistent for some, but not all, combinations of
parameter values; that is, it is consistent within only a
portion of the parameter space. This region was termed
the ‘‘consistency domain’’ of the method by Yang
(1994a), the size of which indicates the robustness of the
method. Furthermore, the efficiency of a tree estimation
method, or its sampling error, can be measured by the
probability that an estimated tree is the true tree. This can
be examined using computer simulations (e.g., Hase-
gawa and Yano 1984; Jin and Nei 1990; Fukami-
Kobayashi and Tateno 1991; Hasegawa et al. 1991). The
two criteria were used by Huelsenbeck and Hillis (1993)
in comparing several parsimony and distance matrix
methods in various combinations of branch lengths in a
four-species tree. In this study, computer simulations
will be performed to examine the sampling errors of
several tree estimation methods, with attention paid to
their statistical consistency.

A second objective of this study is to accumulate
further results concerning the similarities and differences
of phylogenetic tree estimation in comparison with the es-
timation of a conventional statistical parameter. This fol-
lows the previous attempts by Yang (1994a) and Yang et
al. (in press) to understand the peculiar nature of the
parameter space of the tree estimation problem.

Methods

Model of Nucleotide Substitution and Monto Carlo Generation of Se-
quence Data. The model of nucleotide substitution implemented in J.
Felsenstein’s DNAML program in the PHYLIP package is assumed, by
which the probability that nucleotide i will change into j in a small time
interval At is given as

_ { (1 +x/n)mAt,  for transitions (T & C, A & G)
QAL = AL, for transversions (T,C & A, G) (1)

where T, is the frequency of nucleotide j when the process is in equi-
librium, with 7, = (Ry + ne) if jis T or C, or T, = (M, + N if jis A
or G (Hasegawa and Kishino 1989; Kishino and Hasegawa 1989). The
diagonals of the rate matrix Q = {Q;;} are specified by the requirement
that row sums of Q are 0. The matrix is multiplied by a constant such
that the average rate of substitution is one, i.e., —X,%,Q;, = 1. This
means that time ¢, or the branch length in a tree, is measured by the
expected number of nucleotide substitutions per site that have occurred
during the time period or along the branch. Parameter K is the transi-
tion/transversion rate ratio; a x larger than 0 will allow transitions to
occur with higher rates than transversions. The model was designated
“‘F84’° by Yang (1994b), and formulae for estimating sequence dis-
tances under this model, either assuming a gamma distribution of rates
at sites or a single rate for all sites, were given by Yang (1994b).

The overall rate of substitution for a site is assumed to be a random
variable drawn from a gamma distribution with shape parameter o.. The
model is then referred to as “F84+T"."” Only the case of four species is
considered. The existence of a molecular clock (i.e., rate constancy
over lineages) is not assumed, and then the model does not permit
identification of the root in a tree (Felsenstein 1981). Three (unrooted)
bifurcating trees are then possible for four species. They are shown in
Fig. 1, and T, is taken as the true tree used for generating data. Pa-
rameters in the model include 8 = {n, e, T4, ¥, 0} and branch lengths
t, = {11, 812, 113, t1as 115} i the true tree 7. In this formulation, branch
lengths in the true tree are regarded as parameters (together with 0), but
those in the wrong trees are not.

Theoretically, given the true tree topology T, the values of param-
eters 0 and t,, and the tree estimation method, there will exist a prob-
ability Py(n) that tree T; will be the best estimate in a sample of se-
quences of length n, with ¥; P(n) = 1. The most important of these
probabilities is P,(n), which is the probability that the method recovers
the true tree. It would be good if we could calculate P(n) algebraically
as a function of the parameters and sequence length. Unfortunately, this
does not seem possible, at least for the likelihood method. The ap-
proach of computer simulation is therefore adopted, by which many
samples of data are generated under the substitution model using given
values of parameters and analyzed by the tree estimation method to see
which tree is the best estimate, and the observed proportions are taken
as estimates of the probabilities (e.g., Hasegawa and Yano 1984; Jin
and Nei 1990; Fukami-Kobayashi and Tateno 1991; Hasegawa et al.
1991; Huelsenbeck and Hillis 1993).

Because of the computational burden of maximum likelihood pa-
rameter estimation by iteration, we are only able to study a few specific
cases. Two values (0.2 and 0.8) were considered for o. Estimates of o
from real data using the maximum likelihood approach have been in the




Fig. 1. The three (unrooted) bifurcating trees (T, T,, T;) and the star
tree (T,) for four species. 7, was used to generate data, and two values
(0.5 and 1.0) were used for branch length b. Other branch lengths in T;
were fixed at the values shown. Branch lengths are measured by the
average numbers of nucleotide substitutions per site accumulated along
the branches. Branches in the wrong trees (T,, T3, T;;) are drawn to
reflect their estimates from simulated data.

range 0.1-1.0 (Yang 1994b; Yang et al. 1994, and unpublished results),
and 0.2 may represent severe rate variation while 0.8 may be an ex-
ample of little rate variation. Two values (0.5 and 1.0) were used for
branch length b in the true tree T, of Fig. 1; the former means the tree
is ‘‘simpler’’ to estimate than the latter. Other parameters in the model
were fixed at k=5, i = 0.1, 1 = 0.2, =, = 0.3, and ng = 0.4. To study
the behavior of P,(n) as functions of n, five sequence lengths (100, 200,
500, 1,000, 2,000) were examined for each of the four combinations of
parameters b and o.

The accuracy of the estimate of the probability P,(n) for given
values of parameters depends on the number of repetitions of simula-
tions, r. The standard error of the estimate is largest when the real P,(n)
is near 0.5, where ¢ = (0.5 x 0.5/r)"2 = 0.05, at r = 100, which seems
too crude. We have used r = 200, for which ¢ = 0.035 at P,(n) = 0.5,
a slight improvement. In sum, 2 X 2 x 5 x 200 = 4,000 data sets were
simulated and each was analyzed using various tree estimation meth-
ods.

Specifically, » independent random variables were drawn from a
gamma distribution with parameter o and these were used as rates for
sites. A random sequence of n nucleotides was generated, say the
sequence for node 5 in T, of Fig. 1, using the equilibrium nucleotide
frequencies. Each site in the sequence was then independently
‘‘evolved’’ under the F84 model of substitution along the tree accord-
ing to the specified branch lengths and the rate for the site, producing
sequences for nodes 1 and 2, and a sequence for node 6, from which
sequences for nodes 3 and 4 were generated. Sequences for the end
nodes in T, i.e., those for nodes 1, 2, 3, and 4, constitute the data, to
be used for tree reconstruction.
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Methods for Phylogenetic Tree Estimation Examined in This Paper.
Five methods (models), based either on a joint likelihood analysis of all
sequences or on the least squares method applied to the matrix of
estimated pairwise distances, were examined:

1. MLdG. The *‘discrete gamma’’ model (Yang 1994b) uses K equal-
probability categories of rates to approximate the (continuous)
gamma distribution. The mean of each category is used to represent
all rates in the category. We use K = 4, as suggested by Yang
(1994b). Parameters x and o and branch lengths are estimated from
the data for each tree topology, and in the meantime, the (maximum)
likelihood for the tree is obtained. The tree with the highest (max-
imum) likelihood is the best estimate. Due to computational reason,
the method of Yang (1993) which assumes a continuous gamma
model for rates at sites is not used in this study, and MLdG is closest
to the true model assumed to generate data. Results obtained from
analyzing several real data sets suggest that the performance of
MLdAG is very close to that using the true model, F84+I" (Yang
1994b).

2. MLfr. The ‘‘fixed rates’’ approach (Yang 1994b) involves two steps.
Parameter x and o are estimated from the star tree assuming the
F84+T model (Yang 1993), and rates for sites are ‘‘predicted’’ using
the star tree by the method of Yang and Wang (in press). In the
second step, sites are combined into K =4 classes according to their
predicted rates, and those fixed rates are assumed in evaluating the
bifurcating trees. Only branch lengths are estimated during the sec-
ond step. (See Yang 1994b for the details.)

3. LSG. The least squares additive tree method (Cavalli-Sforza and
Edwards 1967) also involves two steps. Pairwise distances are cal-
culated using a formula based on the F84+I" model (Yang 1994b),
the o parameter being estimated assuming the star tree and the
F84+T model (Yang 1993). The second step involves evaluation of
tree topologies by the (ordinary) least squares criterion based on the
estimated pairwise distances.

4. MLO. A single rate is assumed for all sites in this likelihood analysis,
and this assumption is violated. The x parameter is estimated from
data for each tree topology, together with the branch lengths.

5. LSO. The least squares method based on pairwise distances esti-
mated assuming a single rate for all sites differs from MLO only in
that it performs a pairwise comparison while ML0 performs a joint
analysis of all sequences.

In the likelihood analyses (MLdG, MLfr, and MLO), the frequency
parameters—y, e, Ty, and wg—are estimated by the averages of the
observed frequencies in the four sequences, while, in estimating pair-
wise distances for the LSG and LSO methods, they are estimated by the
averages of frequencies in the two compared sequences.

Results

Comparison of Tree Estimation Methods

Estimates of P,(n), the probability that the estimated tree
is the true tree, are listed in Table 1 for parameter com-
binations b = 0.5, oo = 0.2 and b= 0.5, oo = 0.8, and in
Table2 forb=1,0=0.2and b =1, o= 0.8. The MLdG,
MLfr, and LSG methods all allow for rate variation over
sites to some extent. However, unlike a method assuming
the F84+T" model, statistical consistency is not guaran-
teed for any of them as all three are only approximations
to the F84+1" model: MLdG uses four categories to ap-
proximate the gamma distribution; MLfr uses the star
tree to predict rates and also applies an approximation to
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Table 1. The number of cases out of 200 simulations in which the
true tree is recovered by different tree estimation methods when b= 0.5
in the true tree T, of Fig. 1*

100 200 500 1,000 2,000
a=02
ML4G 104 139 166 192 199
MLfr 104 115 162 183 196
LSG 96 102 135 175 186
MLO 106 115 131 160 176
LSO 85 89 93 109 96
oa=038
MLAG 144 169 195 199 200
MLfr 146 177 196 198 200
LSG 100 139 175 187 199
MLO 136 165 191 198 200
LSO 97 118 140 149 165
MLO 152 186 200 200 200
LSO 100 146 177 194 200

® The F84+I" model was used to generate data, where o is the shape
parameter of the gamma distribution. Other parameters were fixed at
=5, =0.1, me = 0.2, wy = 0.3, ng = 0.4. The sequence length is n.
See the Methods section for details of the tree estimation methods
(MLAG, MLfr, LSG, MLO, and LS0)

Table 2. The number of cases out of 200 simulations in which the
true tree is recovered by different tree estimation methods when b = 1
in the true tree T, of Fig. 1°

100 200 500 1,000 2,000

a=02

MLAG 87 118 132 155 185

MLfr 75 101 124 149 183

LSG 76 88 92 120 149

MLO 71 70 44 26 14

LSO 46 30 16 3 2
a=028

ML4G 117 153 164 190 199

MLfr 117 133 172 190 199

LSG 87 74 104 156 164

MLO 102 107 116 144 147

LSO 58 43 31 15 9
o, = oot

MLO 124 145 189 199 200

* The F84+T" model was used to generate data where o is the shape
parameter of the gamma distribution. Other parameters were fixed at x
=5, =0.1, i = 0.2, my = 0.3, g = 0.4. The sequence length is n.
See the Methods section for details of the tree estimation methods
(MLAG, MLfr, LSG, MLO and LS0)

® There are many cases where the distance measures (Yang 1994b) are
inapplicable and results for LSO are not presented

the likelihood function (Yang 1994b); the ¢ parameter
used in LSG for estimating pairwise distances involves
systematic errors as it is obtained from a wrong tree
topology (the star tree). In principle, the approach of
Felsenstein (1978) (see also Debry 1992 and Yang
1994a) can be used to examine whether these methods
are statistically consistent for given values of parameters.
This approach. has not been taken here. The trend of
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Fig. 2. Estimates of probabilities P,(n) (W), P,(n) (), P5(n) (¢), and
Py(n) (&) that tree topologies Ty, T,, Ts, and T, (Fig. 1) will be the
estimated tree by the MLdG method. The F84+I" model was used for
generating data, with parameter combination b = 0.5 (in the tree T, of
Fig. 1) and o = 0.2. Other parameters were fixed at k =5, ©p = 0.1, R
=0.2, ny = 0.3, and 5 = 0.4. For each sequence length n, 200 data sets
were simulated.

P(n) as a function of n suggests that all three methods
are consistent for the parameter values examined, that is,
when n — oo, P; — 1 (Tables 1 and 2). Previous studies
suggest that the estimation of tree topology is quite ro-
bust to small errors in the assumed model (e.g., Fukami-
Kobayashi and Tateno 1991; Yang 1994a); we may ex-
pect these three methods, especially MLdG, to have very
large consistency domains, if they are not consistent over
the whole parameter space of the F84+I" model.

A typical pattern for a consistent method is shown in
Fig. 2, for the case of MLdG for parameter combination
b=0.5, a.=0.2. Note that the improvement in P,(n), the
probability that the true tree is recovered by the method,
increases very quickly with small » and then slowly
when n is large. This is similar to estimation of a con-
ventional statistical parameter. Results in Tables 1 and 2
suggest that in general MLdG performs better than MLfr,
while both are more efficient than LSG. For » =0.5, oo =
0.2, the estimated probability that the true tree will be
recovered with n = 1,000 nucleotides is 0.96, 0.92, and
0.88 for MLAG, MLfr, and LSG, respectively (Table 1).

The MLO and LSO methods assume a single rate for all
sites (F84), and this assumption is violated as the data are
generated under F84+T". Results in Tables 1 and 2 sug-
gest that both MLO and LSO are consistent for parameter
combination b = 0.5, o0 = 0.8, while for b=1, oo = 0.2,
neither MLO nor LSO is consistent. For b = 1, a = 0.8,
MLO is consistent while LSO is not (Table 2). For the
combination b = 0.5, o = 0.2, MLO is clearly consistent
while the pattern for LSO is not clear. Large-scale simu-
lations are performed, and LSO is found to be consistent
(Fig. 3); this will be discussed in the next section. In
general the results conform with the analysis of Yang
(1994a) in that the least squares pairwise comparison has
a smaller consistency domain than a joint likelihood
analysis.

For all parameter values examined in this study, least
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Fig. 3. Estimates of probabilities P,(rn) (W), P,(n) (O), and P4(n) (¢)
that tree topologies Ty, T,, and T, (Fig. 1) will be chosen as the best
estimate by the LSO method. The F84+I" model was used for generating
data, with b = 0.5 and o = 0.2 (the same as in Fig. 2). For each sequence
length n, r = 1,000 data sets were generated by simulation. There are 15
and two cases (out of 1,000) in which the star tree is best at n = 100 and
at n = 150 respectively, and these are not shown. Note that P,(n) and
P,(n) are both in the narrow range 0.4-0.6 for n as large as 10,000.
Although the method is consistent {i.e., P,(n) = 1 as n — o], it is very
inefficient (cf. Fig. 2 for MLdG applied to the same data). Note that the
n-axis is presented logarithmically.

squares methods perform more poorly than likelihood
methods (LSG vs MLAG and MLfr, LSO vs MLO). If a
least squares pairwise comparison is as efficient as a
joint likelihood analysis, we would expect the perfor-
mance of LSG to be somewhere between MLAG and
MLfr; a likelihood implementation comparable to LSG,
which would use the estimate of ¢ from the star tree for
evaluating the bifurcating trees, was not considered in
this study. Nevertheless, LSG is noted to be much worse
than either MLdG or MLfr. A least squares method using
the true o to calculate pairwise distances was also used in
the simulation, although the results are not presented as
this option is not available to real data analysis. The
results obtained from this method (not shown) are very
similar to, or even slightly poorer than, those obtained
from LSG. This appears to suggest that the poor perfor-
mance of LSG for these parameter combinations may not
be due to the inaccuracy of the estimate of o; use of the
star tree was noted to give underestimates of o (Yang
1994b). Furthermore, for cases where MLO is consistent
b=050=02b=050a=08b=1,0=0.8),itis
as efficient as, or even better than, LSG, especially for
small samples (n = 100-500) (Tables 1 and 2). We ex-
pect LSG to have a larger consistency domain than MLO,
and, for other values of parameters where MLO is incon-
sistent or only marginally consistent (see the next sec-
tion), LSG will be more efficient than MLO. Neverthe-
less, results in Tables 1 and 2 clearly suggest the
inefficiency of pairwise comparisons.

Statistical Consistency of Phylogenetic Tree Estimation
and its Finite Sample Implications

It is noteworthy that the two properties for a tree esti-
mation method, i.e., consistency and efficiency, are not
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exactly the same as the consistency and sampling error of
an estimator of a conventional statistical parameter. In
order to achieve a better understanding of the tree esti-
mation problem and to assist practical interpretation of
simulation results, the relationship between the two prop-
erties for a tree estimation method will be examined in
this section. We make two speculations concerning the
behavior of P;(n) as a function of the sequence length n,
with parameters 6 and t, fixed. First, P;(n) might be
expected to be a monotonic function of n. If the method
is statistically consistent, that is, P, — 1 as n — oo, we
might expect P, to increase with n for any n, and prob-
abilities for other trees to decrease with n. On the other
hand, if the method is inconsistent, that is, P, = O as n
— o, we might expect P, to decrease with any n, and we
might expect the probability for one of the wrong trees to
increase with n and approach 1 as n — oo. This specu-
lation derives justification from the observation that the
standard error of a conventional parameter is usually in
proportion to 1/n'/2, whereas, in the current context,
P;(n), especially P,(n), measures the sampling error of a
tree estimation method.

Next, we speculate that, when the method is consis-
tent, P;(n) > P;(n) (i # 1) holds for any n, i.e., the true tree
will have higher probability of being the estimate in a
finite sample than any of the wrong trees.

There are two immediate exceptions to the above
speculations, which will be dealt with first. We note that
both speculations are incorrect when # is very small. In
typical DNA sequence data, there are a high proportion
of ‘‘constant’’ site patterns, i.e., site patterns represented
by identical nucleotides across species. When # is very
small, say n < 10 or 50 depending on the overall amount
of evolution as reflected in branch lengths t;, the most
probable data sets will mainly consist of the four con-
stant site patterns, and the most probable tree is the star
tree. Py(n) will be near to 1 for very small » and then
decrease and approach O as n increases, while P;(n) (i #
0) will increase from values near to 0. Both speculations
are then incorrect. Since there is no hope of recovering
the true tree with such short sequences, we can restrict
our discussion to relatively large n where Py(n) is neg-
ligible.

The fact that a method assuming a wrong model can
still provide consistent estimation of the tree topology
has led to another complexity concerning the behavior of
Py(n) as n — oo. Take MLO as an example, which, as-
suming o = oo, is likely to be consistent for large o. and
to be inconsistent for small o.. Table 2 shows that MLO is
consistent when o = 0.8 while not when a = 0.2, b being
fixed at 1. Consider values of o in the interval (0.2, 0.8).
For this purpose, we follow the approach of Yang
(1994a) and plot the limiting values €,/n = 1n{L;}/n,n >
oo, as functions of o with other parameters fixed (Fig. 4),
where L; is the likelihood for tree T;. T, (Fig. 1) is gen-
erally chosen as the estimate when MLO is inconsistent.
There exists a critical value o* between 0.2 and 0.8 such
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Fig. 4. A schematic representation of the consistency domain of MLO
when the true model is F84+T". All parameters in the model except o
were fixedat k=5, m. =0.1, 7, =02, 7, =03, n; =04, and b= 1
(in the tree T, of Fig. 1). The (log) likelihood values £,/n and ¢,/n for
tree topologies T, and T, are limiting values when n — oo, maximized
over branch lengths in each tree and the k parameter in the F84 model.
Likelihood values for the tree T; are smaller than those for T, and T,
and are not shown. There exists a critical value o* between 0.2 and 0.8
(Table 2): if o. > o*, then €,/n > £,/n (n = o) and MLO is consistent,
while if o < a*, then €,/n < €,/n (n — o) and the method is incon-
sistent.

that €,/n > €,/n (n — =) and MLO is consistent when o
> o* (e.g., o.=0.8), while €,/n < £,/n (n — o) and MLO
is inconsistent when o < o* (e.g., o = 0.2). Exactly at o
= a*, we have €,/n = €,/n (n = o), that is, tree topologies
T, and T, will have identical (highest) likelihood values
when n — oo, and the method will not converge to a
single tree topology. Many such critical values can be
identified from results obtained by Debry (1992) and
Huelsenbeck and Hillis (1993) for several parsimony and
distance matrix methods and by Yang (1994a) for the
likelihood method.

Intuitively, information in the data, when properly
handled, suggests that T} is the true tree. However, use of
a wrong model (MLO) to analyze the data tends to sug-
gest T, as the estimate. When these two tendencies are
balanced, as at o0 = o* in Fig. 4, the (maximum) likeli-
hoods for the two trees approach identical values as n —
oo, while in finite samples, P,(n) and P,(n) will be very
similar. With more than four sequences in the data, it
seems possible that three or more trees, either including
the true tree or not, may share the probability of being the
best estimate—that is, as n — oo, the scores for several
best topologies (likelihood values or sums of squares)
may approach identical values.

One implication of this observation is that, if the val-
ues of parameters are at or near to the boundary of the
consistency domain of the tree estimation method, the
method will be very inefficient in finite samples (n < o).
One such case is the LSO method applied to the param-
eter combination b = 0.5, oo = 0.2 (Table 1). To obtain a
clear picture of the pattern, the number of simulations is
increased to r = 1,000, and also more values of n are
examined. The results, shown in Fig. 3, suggest that LSO
is consistent for those values of parameters, i.e., P,(n) -
1 as n — oo. However, LSO is very inefficient for n as

large as 100,000. From results in Tables 1 and 2 and
following the argument above concerning Fig. 4, we ex-
pect that the critical value of o. for LSO is smaller than but
near to 0.2 if b = 0.5 is fixed, while the critical value of
b is larger than but close to 0.5 if o= 0.2 is fixed. In other
words, the parameter combination b = 0.5, o, = 0.2 lies
within the consistency domain of LSO, but is very near to
the boundary.

We may thus restrict our discussion to cases where the
sequences are not too short and where the values of the
parameters are not at the boundary of the consistency
domain of the tree estimation method, which are cases
most relevant for practical data analysis. From the esti-
mates of P,(n) shown in Tables 1 and 2 and the corre-
sponding estimates of P,(n) and P;(n) (not shown), the
speculations are noted to be clearly correct for most of
the methods and parameter combinations. Exceptions to
these speculations appear likely, however, especially in
light of the case explored in Fig. 3 where the pattern
remains unclear. Nevertheless, we suggest that, when the
speculations are incorrect, they may not be too wrong:
for example, in cases where P;(n) < P,(n) for some n
even if Pi(n) — 1 as n — oo, the differences between
P,(n) and P,(n) are expected to be very small. We con-
clude that these two speculations, which are not always
true but which are expected never to be too wrong, can
be taken as practical guidelines.

For the estimation of a conventional parameter, sta-
tistical consistency is a very weak requirement, as there
are infinitely many consistent estimators; if 8 is a con-
sistent estimator of 0, then (n® + a)/(n® + b) will be
another consistent estimator of 0 for any constants g and
b. Without consistency, other properties such as effi-
ciency are not really meaningful (Kendall and Stuart
1979, pp 1-37). The two speculations discussed above
suggest that the consistency for a tree estimation method
is a stronger requirement than the consistency for an
estimator of a statistical parameter. The speculations also
suggest that a similar point of view should be adopted
concerning phylogenetic tree estimation; we should re-
quire a tree estimation method to be consistent for a very
large portion of, if not the whole, parameter space; sta-
tistical consistency does not guarantee efficiency, but an
inconsistent method is necessarily inefficient.

Estimations of Branch Lengths in the Tree and
Parameters in the Model

Estimation of branch lengths in the true tree and param-
eters in the true model is a standard statistical estimation
problem, and the asymptotic properties of maximum
likelihood estimators are well established. In this section
the estimates of branch lengths and other parameters by
MLO will be examined, which ignores the rate variation
among sites. The complexity in parameter estimation due
to the uncertainty of the phylogeny will also be exam-



ined. Most of the results have been observed in previous
analyses of real data, and here only qualitative results
will be presented.

Ignoring rate variation at sites leads to underestima-
tion of branch lengths. The underestimation, however, is
not proportional and is much more serious for long
branches than for short branches. Using the simple sub-
stitution model of Jukes and Cantor (1969), Gillespie
(1986) showed that sequence divergence is underesti-
mated if rate variation at sites exists and is ignored. Anal-
yses using other substitution models lead to the same
conclusion (e.g., Yang et al. 1994), which has also been
confirmed by simulation studies (e.g., Jin and Nei 1990).
The reason for the underestimation is that ignoring rate
variation at sites tends to overlook some of the multiple
substitutions that have occurred at the fast-changing
sites.

The transition/transversion rate bias, as reflected in
parameter X, is underestimated when rate variation at
sites is ignored. Yang et al. (1994, in press) observed
negative correlations between estimates of K and o when
analyzing real data sets by the maximum likelihood ap-
proach; when the transition/transversion rate bias is ig-
nored, i.e., if x is fixed at O for the F84 model, o will be
overestimated, while if rate variation at sites is ignored,
ie., if o is fixed at infinity, x will be underestimated.
Wakeley (1994) pointed out that the underestimation of
K is due to the fact that assuming rate constancy among
sites tends to ignore some of the transitional substitutions
that have occurred at the fast-changing sites.

Estimates of the k parameter by MLO are very similar
for different tree topologies. Estimates of parameters k
and o0 by MLdG are also stable, but some patterns are
noticeable: estimates of o obtained from the star tree are
normally smaller than those obtained from other trees,
especially if o is very small—that is, if there is severe
rate variation. The negative correlation between esti-
mates of X and o appears also to apply for estimates from
different tree topologies, and as a result of this, estimates
of x from the star tree (for MLdG) are normally larger
than those from other trees. These patterns were ob-
served and discussed with real data under the (continu-
ous) gamma model by Yang (1994b) and Yang et al.
(1994). Using the star tree to estimate the o parameter is
therefore not a good practice, although it is adopted in
this study for convenience, and more reasonable trees
should be used for real data analysis.

Estimates of interior branch lengths in the nonbest
trees are often O by the least squares methods (LSG and
LS0), while, with the likelihood analysis (MLdG and
MLO), they are often strictly positive. Noticeably, cases
in which all three bifurcating trees are better than the star
tree are rare by the least squares methods, while such
cases are commonplace by the likelihood methods. This
is compatible with the theoretical analysis of Yang
(1994a), which suggests that the test for positivity of
interior branch lengths in the estimated tree may be taken
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as an evaluation of the reliability of the least squares tree,
but not of the maximum likelihood tree. The MLfr
method appears similar to the least squares methods in
this respect, as noted by Yang (1994b).

Discussion

Sequencing the Right Genes

As we expect that the order among the P;(n)’s for dif-
ferent tree topologies 7;’s normally does not change with
n, it is feasible to study the probability P,(n) for fixed n
as a function of parameters 0 and t;. Such information is
useful from the point of view of experimental design; as
different genes have different evolutionary dynamics
which correspond to different values of parameters 6 and
t;, choosing genes that correspond to highest P,(n) as
targets of sequencing can be expected to be most eco-
nomical. In a similar vein, Saitou and Nei (1986) con-
sidered the sequence length required for the parsimony
method to recover the true tree with a prespecified prob-
ability P.

The most important factor appears to be the branch
lengths t;, which reflect the overall amount of evolution;
with too little change the sequences are very similar and
contain little evolutionary information, while with too
much evolution the sequences will be too different and
too noisy. Biologists have understood the economics of
choosing sequences with the right amount of evolution,
which, given the species, is largely determined by the
importance or conservedness of the gene. The effects of
other parameters may be confounded with the effects of
branch lengths. We take MLdG as a close approximation
to the true model, F84+T", and examine the effect of o on
P,(n). Comparison of results for o = 0.2 with those for o
= 0.8 suggests that, other parameters being equal, se-
quences with slight rate variation over sites provide more
information about the phylogenetic relationship than se-
quences with severe rate variation. For example, with n
= 500 and b = 0.5, there is about a 97.5% chance of
recovering the true tree by MLdG if o = 0.8, while the
chance is only about 83% if &= 0.2. When o = e (no rate
variation over sites), this chance (ML0) is about 100%
(Table 1). It is noted that the number of different site
patterns observed in a data set is normally much smaller
if the data are generated assuming a gamma distribution
of rates over sites than if a single rate is assumed for all
sites (results not shown). Particularly under the gamma
distribution model, there are far more constant site pat-
terns in the data, which provide less information con-
cerning the phylogeny than variable site patterns. Similar
arguments might be applicable to the effects of k and the
frequency parameters 7y, e, s, and Tg; sequences with
little transition/transversion rate bias (x = 0) or with
nearly equal base frequencies (T = g = T, = Tg = Y4)
might be expected to provide more information concern-
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ing the evolutionary relationships than sequences with
extreme rate bias or base frequencies.

Overall Evaluation of the MLAG and MLfr Methods

In this study, the method that assumes the true model
(F84+T’) is not examined, and the discrete gamma model
is used as a close approximation. For real data, both
models are approximate descriptions of rate variation in
real sequences, and the discrete gamma model should be
justifiable on its own, apart from the interpretation of the
o parameter. The computational advantage of MLdG
over F84+T" suggests that MLdG is to be preferred.

The fixed rates approach (MLfr) appears to perform
reasonably well. The performance obviously depends on
the accuracy of prediction of rates at sites. The correla-
tion between the real rate and the predicted rate, calcu-
lated by the method of Yang and Wang (in press), is p =
0.623 for parameter combination b = 0.5, «x = 0.2; p =
0.532 for b =0.5, o= 0.8 (Table 1); p =0.609 for b =1,
0.=0.2; and p =0.530 for b = 1, o. = 0.8 (Table 2); in all
cases, the true tree i1s assumed in the calculation. These
values are expected to be slightly too high because we
have used the star tree instead of the true tree to predict
the rates and because maximum likelihood estimates of 6
and t, from simulated data involve sampling errors. It
can be expected that if the true rates, i.e., the gamma-
distributed random variables used to generate the data,
were used instead of the predicted rates, the performance
of MLfr would be better, presumably even better than
using F84+T". By the same argument, the performance of
MLfr relative to that of F84+T" or MLdG can be expected
to improve when there are more species in the data, as
the accuracy of rate prediction is mainly determined by
the number of sequences (Yang and Wang, in press). The
major shortcoming of MLfr is its ad hoc nature; for in-
stance, it fails to provide a natural measure of the mod-
el’s goodness of fit to data. As the computation required
by MLAG is only a few times that for the single rate
model (MLO), MLfr is not recommended for real data
analysis.

Addendum

After submission of the manuscript for this paper, Tateno
et al. (1994) published a simulation study that compared
several tree reconstruction methods with the data gener-
ated assuming gamma-distributed rates for sites. The
maximum likelihood program (ML) used by those au-
thors assumes a single rate for all sites, while the distance
matrix method (neighbor-joining, NJ; Saitou and Nei
1987) uses pairwise distances estimated assuming either
a single rate or gamma-distributed rates at sites. The
results obtained by those authors (Tables 1-4 in Tateno
et al. 1994) appear fully compatible with those of the

present study, although their conclusions somewhat dif-
fer from those of this study. Tateno et al. (1994) appeared
to have performed the comparison from a point of view
of practical data analysis, and did not make a clear dis-
tinction between a tree estimation method and a com-
puter program. For example, they suggested that ML was
slightly more sensitive to violation of the assumptions in
estimating topology than was NJ with gamma distances.
This comparison is not fair, since no assumption is vio-
lated for NJ with gamma distances while ML ignores rate
variation at sites. If ML is compared with NJ without the
gamma correction, in which case both methods assume
the same wrong model, ML has much higher probability
of recovering the true tree than NJ (Table 3 in Tateno et
al. 1994). For other values of parameters examined by
those authors, all methods recovered the true tree with
probabilities near to 1, and they concluded that the meth-
ods in general showed more or less the same perfor-
mance. This conclusion may be incorrect and may be due
to the authors’ use of a single (large) sequence length; if
only one sequence length, n = 2,000, had been used in the
present study, no difference would have been detected
among MLdg, MLfr, LSG, and MLO for the parameter
combination o = 0.8, b =0.5, although their performances
are quite different (Table 1).
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