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SUMMARY

Nucleotides in a DNA sequence may be changing at different rates, because they are located in
different structural and functional regions of the gene, and are thus subject to different mutational
pressures or selective restrictions. Knowledge of substitution rates at specific sites is important for
understanding the forces and mechanisms that have shaped the evolution of the DNA sequences.
The gamma distribution has previously been proposed to model such rate variation among nucle-
otide sites. Based on mixed model methodology we present in this paper a method for predicting
substitution rates at nucleotide sites by using homologous DNA sequences. The predictor is
unbiased and ‘“best’” in the sense that it minimizes the mean squared error and maximizes the
correlation between the predictor and the true value. It is also quite robust to errors in estimates of
parameters in the model. A numerical example is given, with guidelines for the practical use of the
approach. The most influential factor affecting the accuracy of prediction is the number of se-
quences; to get a correlation of over .7 between the predictor and the true value, about six to seven
sequences are needed, depending on the overall similarity of the sequences.

1. Introduction

The deoxyribonucleic acid (DNA) sequences of living organisms provide important information on
the relationships among the species and on the evolutionary process giving rise to the sequences. By
comparing homologous sequences across species, we can not only make inferences concerning
major evolutionary events, but also approach a better understanding of the forces and mechanisms
of molecular evolution. Felsenstein (1981) presented a maximum likelihood framework for modeling
the evolution of DNA sequences that are linked by a tree structure. The method has been widely
used to estimate evolutionary trees from DNA sequence data, and appears superior to other
methods principally based on intuitive arguments (e.g., Hasegawa, Kishino, and Saitou, 1991; Yang,
1994).

Probably the most worrying assumption made in the model of Felsenstein (1981) is that substi-
tution rates are constant across nucleotide sites, which is unrealistic at least for sequences with
biological functions. Wakeley (1993) provided an excellent review of evidences of rate variation over
sites and of early studies on this problem. Recently Yang (1993) suggested an extension to the model
of Felsenstein (1981), in which a gamma distribution is used to describe such spatial rate variation.
In this formulation, rates at different sites are taken to be random variables from the gamma
distribution and are integrated out in the likelihood function. The new model was found to fit real
data rather well (Yang, Goldman, and Friday, 1994).

However, knowledge of the rates themselves is also very useful. First, it is well-known that
different sites or regions in a gene are liable to be changing at different rates, because they are of
different significance to the structure and function of the gene or protein, and thus under different
selective restrictions. Even mutation rates are believed to vary at different regions of the genome.
Predicting those rates may help us understand the mechanisms of molecular sequence evolution.
Second, it has been suspected that when the rates are variable over sites, rates at neighboring sites
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may be (positively) correlated because of the existence of ‘“variable”” and ‘‘conservative” regions
in a gene. By studying the pattern in real sequences, we can gain some insights into the process,
which could help the formulation of a model that can allow such auto-correlated rates.

In Section 2 of this paper we propose a method for predicting substitution rates at sites, based on
mixed model methodology. The predictor is the conditional mean of the rate given the observed
data. In Section 3 we will examine the properties of the predictor and the effects of parameter values
on the accuracy of prediction. In Section 4 the method is applied to data comprising the mitochon-
drial DNA (mtDNA) sequences from several primate species. Special attention is directed to the
robustness of the predictor to errors in estimates of parameters in the model. Finally in Section 5 we
discuss the potential uses of the approach.

2. Theory
2.1 The Model

2.1.1 The data. Let the number of species (sequences) be s and the length of sequence be n. The
data can be denoted by an s x n matrix X = {x;;}, where x;; means the jth nucleotide in the ith
sequence. x; takes a value from 1, 2, 3, or 4, representing the four nucleotides, T, C, A, or G,
respectively. We assume that nucleotide substitutions at different sites are independent and follow
the same general stochastic process. Therefore one datum corresponds to one column in X, such as
x;. The x; (j = 1, 2, ..., n) are then identically and independently distributed, and follow a
multinomial distribution. The number of categories in the distribution, that is, the number of
possible site patterns, is 4°, with the probability of occurrence in each category determined by the
tree and the parameters in the model.

2.1.2 The tree. The sequences are assumed to be related by a tree structure. The single unrooted
tree, T, for three species, is shown in Figure 1. The branch lengths, t = {¢,, #,, #;}, are measured by
the average numbers of nucleotide substitutions per site along the branches, to be explained below.

1

2 3
Figure 1. The unrooted tree for three species used to explain the prediction method

2.1.3 The pattern of nucleotide substitution. Nucleotide substitution is assumed to follow a
stationary homogeneous Markov process, with the four nucleotides to be the states of the process.
Let Q = {Q,} be the 4 X 4 rate matrix of the process for a site with an average overall rate. In this
study, we use the model of Hasegawa, Kishino, and Yano (1985), designated ““HKY85,”” by which
the probability that a given nucleotide, i, will change into nucleotidej (j # i), in a small time interval
At, is given by

Ar = kAt (for transitions: ToC, A<G)
QAL = w;At (for transversions: ToA, TeG, CoA, C<G) @)

where r; is the equilibrium frequency of nucleotide j, with = m; = 1. The row sums of Q are zero
and therefore the diagonals are given by Q;; = =%, ; Q;; (Grimmett and Stirzaker, 1992). As it is not
possible to estimate time and rate separately, we choose the scale factor w such that the expected
rate of substitution is 1, that is, —2 mQ,; = 1. Time ¢ or branch lengths in a tree will then be
measured by the distance, that is, the expected number of nucleotide substitutions per site.

To calculate the matrix of transition probabilities, P(#) = exp(Q¢), we perform the spectral
decomposition (diagonalization) of Q, that is, Q = U diag{Ay, A;, Ay, A3}V, where Ag, Aq, Ay, and A4
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are the eigenvalues of Q, columns of U are the corresponding right eigenvectors, and rows of V are
the corresponding left eigenvectors, with U = V™. The full eigensolution of Q for the HKY85 model
has been given by Hasegawa et al. (1985). Then we have

P(r) = U diag{exp(Af), exp(Af), exp(Ast), exp(Ast)}V. @
The ijth element of P(¢) is given by

3 3

Py(t) = E UuVij exp(Agt) = E Cij €XP(Agd), (3)

k=0 k=0
where U, and V,; are elements of matrices U and V, respectively, and c;; = U,V;.

2.1.4 Rate variation over nucleotide sites. For any given site, we assume that the rate matrix is rQ,
where the overall rate r is a random variable from a gamma distribution. The gamma distribution
with parameters « and 8 has mean o/8 and variance a/B%. We set 8 = a so that E(¥) = 1 and then
var(r) = 1/a. The probability density function of r is therefore

fr)y=a*T(a) e r* L, r>0, a>0. 4)

The tree structure, T, the branch lengths t of the tree, the rate and frequency parameters in the
HKYS85 model, k, 7, 7mc, ma, and the variance parameter of the gamma distribution, «, are all
parameters in the model, collectively denoted 8 = {T, t, k, 7, 7T, Ta, a}. In the terms of mixed
model theory, @ may be called ““fixed effects’” while the » values are ‘‘random effects.’” Yang (1993)
presented a procedure for the maximum likelihood estimation of @, while our objective in the present
paper is to predict r for a given datum x.

2.2 The Prediction Method
Based on the mixed model theory (e.g., Henderson, 1973), we study f (7|x; 6), the distribution of »
given x. The point predictor, 7, can be defined as the conditional expectation

7 =E(rx; 0) = Jw rf(r|x; 0)dr

0

- Jw s 0)F(r)rif(x; 8) )

0

Consider the three species problem of Figure 1. Let x = {x;, x,, x5}’ be a column in the data matrix
X. As our model cannot identify the root of the tree (Felsenstein 1981), we can arbitrarily set the
“root”” at node 0 in Figure 1. It then follows that (Yang, 1993)

f(xlr; 0) = 2 WXU[PXOXI(t1r)Px0x2(t2r)Px0x3(t3r)] (6)

4 43 3
E Txy 2 [CxolemCxox2Mmzcxox3Mma] expl E )\M,njtj
m=1 j=1

x0=1
()
4
= X B(m, x) exp(rS,,), ®)
m=1
where B(m, x) = 2;0=17Tx0[cx M, CoxoyM, Cxpet,,] aDd S, = 2]3=1A »,tj- The product in the

square bracket in (6) is expanded to give (7), where M,,; is the jth digit when (m — 1) is expressed
as a number of base 4.
It follows from (4) and (8) that

4 a+1
J'f(x|r; 0)f(rydr =3 B(m, X)[ ‘ ] ) )

m=1 a _S’"
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while f(x; 6) is given by Yang (1993) as

a-—3S,,

fix; 0) = ff(XIr; 0)f(rydr =3, B(m, X){ - ] . (10)

n=1

43 B a a+1
m=1 (m’ X) o — Sm

P= — (11)
S_y B(m, x)[ SJ

Substituting (9) and (10) into (5), we have

o —

In practice, @ will be replaced by their estimates. In this paper, we estimate 6 from the likelihood
function based on f(x; 0) (Yang, 1993). This is justified by the invariance property of maximum
likelihood estimators (MLE)

MLE{E(rx; 0)} = E{r|x; MLE(6)}. (12)

From a Bayesian point of view, r is a parameter, with a gamma prior distribution f (r). f (+|x) is then
the posterior distribution. Use of the square error loss will lead to 7 (5) as the Bayesian point
estimator of » (Maritz and Lwin, 1989). Replacement of 8 by their estimates will have an empirical
Bayesian justification (Maritz and Lwin, 1989). The distribution f (#|x) can also be used to construct
the credibility set of the predictor.

3. Evaluation of the Prediction Method

3.1 Properties of the Predictor

By examining the prediction error, 7 — r, we note that 7
(1) is unbiased, E(F — r) = 0;
(2) has the smallest mean squared error, MSE(F) = E(* — r)?;
(3) has the highest correlation with r, p(7, r).

As the predictor is unbiased, the MSE is equal to the variance of its prediction error. Thus the
second property can also be stated as 7 having the smallest prediction error variance.
Let 7 = g(x) be another predictor of r, with g(x) to be any function of x. It follows that

E(7r) = JJ Frf (x|p)f (r)dr dx

= j rf(x) dx

= E(#) (13)

where [ dx means summation over x as x is discrete. Similarly we have E{(F — #)r} = E{(F — 7)7}.
Therefore

E(F — r)? = E(F — /2 + E(F — r)? + 2B{F — /)¢ — 1)}
=E(F - #? + E(F - r?, (14)

which proves the second property.
Furthermore, we note that p(#, ¥) = var(#)/var(r). Equation (13) implies cov(7, ) = cov(F, ),
which leads to the following equation, proving the third property

p*(F, r) = p*(F, P) - p*(7, 1) (15)

3.2 The Accuracy of Prediction as a Function of Parameters

We assess the accuracy of prediction by p(?, ¥) = [var(#)/var(r)]"/?, with @ replaced by the maximum
likelihood estimates. In this subsection we examine the effects of the branch lengths t, and
parameters « and «. The effects of the number of sequences, and of the tree topology, and the
robustness of the prediction method to possible errors in estimates of parameters will be examined
with real data in the next section.
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Due to the complexity of the parameter space, we study only some special cases. The example
tree to be used is shown in Figure 2, where a measures the overall amount of evolution. The HKY85
model of nucleotide substitution is adopted, with frequency parameters fixed at = = .1, 7 = .2,
ma = .3 and 75 = 4.

Figure 2. An example tree of four species used for evaluating the accuracy of prediction

Figure 3 shows the effect of branch lengths, as measured by a. We assume « = .25 and « = 10.
When branch lengths are either very small or very large, the sequences will be either very similar
or very different and the data will contain little evolutionary information. We can therefore expect
the highest accuracy to occur with medium branch lengths, as show by p(#, r) and MSE(#) in Figure
3.

p MSE
0.65 -~ 9 3.2
0.62 Il 1 3.1
0.60 3.0
0.57 1 2.9
0.55 2.8
0.52 1 2.7
0.50 1 2.6
0.47 7 2.5
0.45 | T T | 2.4

0 0.1 0.2 0.3 0.4 0.5
a
Figure 3. The accuracy of prediction, as mli?gsltllrr:dz by p(#, r) and MSE(#), as a function of a in

Figure 4 shows the combined effect of @ and «. Parameter « is fixed at 10. Obviously « can
influence p substantially. The prediction is very poor when « is very large, that is, when there is little
rate variation over sites. Estimates of « from real data are normally in the range .1-1 (Yang et al.
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(1994) and unpublished results), in which cases p is high. For given «, p is highest with medium

values of a, which is consistent with Figure 3.
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Figure 4. The contour graph of p against a and «

The effects of k and « are shown in Figure 5. a is fixed at 0.1. Once again, « is an important factor.

The k parameter, when estimated from real data, is usually in the range 1-10 (Yang et al., 1994) and
unpublished results), and thus has very little effect on p.

4. Analysis of the mtDNA Sequences From Several Primate Species
4.1 The Predicted Substitution Rates

Brown et al. (1982) determined the sequences of a segment of mitochondrial genomes of human,
chimpanzee, gorilla, orangutan, and gibbon. The aligned sequences contain 895 nucleotide sites. For
ease of computation we will only use the human, chimpanzee, gorilla, and orangutan sequences.

The HKY8S substitution model is used, with gamma-distributed rates over sites (HKY85+T). The

frequency parameters in the HKY85 model are estimated by averaging the observed values over
species: iry = .2542, 7. = .3313, 7, = .3106, 7r; = .1039. The other parameters are estimated by
maximizing the likelihood function; k = 30.05 * 14.67 and & = .20 + .07 (standard errors are
estimated by the curvature method). The unrooted maximum likelihood tree separates the species
in the order human, chimpanzee, gorilla, and orangutan; that is, the tree topology can be represented
as ((human, chimpanzee), gorilla, orangutan).

In Figure 6 the predicted rate is plotted with the expected number of occurrences of the site
pattern, which is virtually the same as the observed number. The graph looks like a gamma
distribution. The correlation calculated from the estimated values of parameters is p = .592. Because
we replaced the parameters with their estimates, this should be taken as the upper limit of the
accuracy of prediction. Our results below suggest, however, that this upper limit is, indeed, almost
reached in practice.

It is noteworthy that Figure 6 involves no ‘‘sampling errors’’ caused by limited data, as f (x) is the
expected frequency for site pattern x. The predicted rates involve errors mainly because our model
only provides one 7 for each x, although a datum x can by generated by different (real) rates. The

accuracy of prediction cannot be improved by increasing the number of data »n, although this will
lead to more reliable estimates of 6.
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The contour graph of p against k and «

4.2 The Robustness of the Prediction Method to Errors in Parameter Estimates

With four species, there are three unrooted bifurcating trees and one star-like tree. In a previous
study, we have found that estimates of parameters in the evolutionary model, for instance, those of
k and a, are very stable across different tree topologies (Yang et al., 1994). In this study, we find that
predicted rates are also stable no matter which tree is assumed. For instance, the correlation,
calculated from the observed site pattern frequencies, between the rates obtained by using the
maximum likelihood tree and those obtained by using the star-like tree, is .985. By (15), it is obvious
that the reduction in accuracy of prediction by using a wrong tree, such as the star-like tree, is trivial
(1-2%).

The predicted values of rates are also very insensitive to changes in parameter estimates. The
estimates of « and « are found to be negatively correlated (Yang et al., 1994). When « is fixed at 12,
the estimate when a single rate over sites is assumed, & = .458. Branch lengths are then seriously
underestimated. Nevertheless, the rates predicted by using these values of k and « have a corre-

lation of .981 with those obtained by using the real MLEs of the parameters; therefore the twofold
difference in these parameters has not caused substantial reduction in p. Similarly, it can be
expected that using the MLEs of the parameters instead of their (unknown) true values will not
cause considerable reduction in p.

4.3 The Number of Sequences

The mtDNA sequence data have been expanded since the publication of Brown et al. (1982). In the
following we analyze a larger dataset containing homologous sequences of this same region from
human, chimpanzee, gorilla, orangutan, gibbon, crab-eating macaque, tarsier, and lemur. The
sequences are aligned by Adrian Friday. After sites involving insertions and deletions are excluded,
there are n = 888 nucleotides in the sequence.

The sequences were added into the dataset one by one, beginning from three. Parameter « was
fixed at 10 for all the analyses and only the star trees are evaluated. The « parameter and branch
lengths in the star trees were obtained by iteration. Estimates of « are .445, .436, .317, .336, .335,
.316, and .283 whens = 3, 4, ..., 9, respectively. p was calculated using two methods. The ““exact™
method sums over all the possible data outcomes, while the ‘‘approximate’” method makes use of
the observed site pattern frequencies. As expected, the improvement in p gets smaller and smaller
when more and more sequences are added to the dataset (Figure 7).

It should be noted that p is somewhat overestimated. First, we note that for the same data, the p
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Figure 6. The predicted rate for each site pattern plotted with the expected number of
occurrances of the site pattern. The 895-base pair mtDNA data for four species are analyzed
using the HKY85+TI model. Only 46 out of the 4* = 256 possible site patterns are actually
observed in the data and only they are shown in the graph. One site pattern corresponds to one
point in the graph. The four most frequent site patterns are AAAA, TTTT, CCCC, and GGGG,
and predicted rates for those four site patterns only are less than 1, the average. A4, all the 46
observed site patterns; B, 42 site patterns, with the four most frequent site patterns excluded.

calculated by using the star tree is slightly higher than that obtained by using a bifurcating tree. For
example, for the mtDNA data for four species, analyzed in the previous subsection, p = .592 by the
maximum likelihood tree, while p = .600 by the star tree. This discrepancy is expected to be larger
when more sequences are analyzed. In other words, the increase in p is slower than is suggested by
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Figure 7. The accuracy of prediction, p, as a function of the number of species in the dataset.
The nine mtDNA sequences of human, chimpanzee, gorilla, orangutan, gibbon, macaque, tarsier,
and lemur are added into the dataset in this order. Only the star trees are evaluated.

Figure 7. Second, as the star trees instead of the true trees are assumed, parameter estimates used
for predicting the rates are neither the true values nor their genuine maximum likelihood estimates.
Substitution rates predicted this way will involve biases. This effect appears to be minor, however,
judging from the results of the previous section.

5. Discussion

The major limitation on the practical use of the prediction method proposed in this paper is the
maximum likelihood estimation of 8, especially the tree structure, 7. Calculation of f (x; 8) by the
method of Yang (1993) requires intensive computation. Currently only four or five species can be
handled in an endurable amount of computation time if all the tree topologies are to be compared.
The prediction of substitution rates, however, needs much less computation, equivalent to one
round of evaluation of the likelihood function. Exact calculation of p involves much more compu-
tation when s > 5.

One solution that appears acceptable is to use only the star tree to estimate parameters and
predict rates. When only the star tree is evaluated, many more sequences can be handled by the
algorithm. We note that the prediction of substitution rates is tolerant to errors in estimates of the
tree and other parameters. p appear to be more sensitive to such errors, but as the estimates of
parameters are quite stable over tree topologies (Yang et al., 1994), even p is reliably estimated.

Perhaps the most serious unrealistic assumption made in the present model is the independence
of nucleotide substitutions among nucleotide sites. In fact one of our objectives in predicting rates
is to study their possible auto-correlations. Some element of contradiction is thus involved. At the
moment, even a simple model of first-order autocorrelation of rates does not appear to be compu-
tationally feasible. However, we suggest that the maximum likelihood estimation of 6 is not
seriously affected by the violation of the independence assumption. The prediction of rates may be
influenced to a greater extent, but we believe such errors to be acceptably small.

The stability, across tree topologies, of predicted rates as observed in this paper, and of parameter
estimates as observed by Yang et al. (1994), may have practical implications concerning tree
reconstruction. Specifically, parameters can be estimated from the star tree and later be used in the
evaluation of other tree topologies. The rates predicted using the star tree may be used to collapse
the sites into, say, five or ten classes, with one average rate for all the sites within each class. Such
rates for classes of sites can then be used to compare the other tree topologies. The computation
involved with this approximate method will then be comparable to that of Felsenstein’s (1981)
method which assumes a single rate over sites, and its performance relative to the exact method of
Yang (1993) appears to be an interesting open question.
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RESUME

Les nucléotides dans une séquence d’ADN peuvent changer a différents taux parce que situés dans
différentes régions structurelles et fonctionnelles du géne; ils sont donc sujets a des pressions de
mutation ou a des restrictions sélectives différentes. La connaissance des taux de substitution en des
sites spécifiques est importante pour comprendre les forces et mécanismes qui ont modelé 1’évolu-
tion des séquences d’ADN. La distribution gamma a déja été proposée pour modeliser un tel taux
de variation parmi les sites nucléotidiques. Dans ce papier fondé sur la méthodologie du modéle
mixte, nous présentons une méthode de prédiction des taux de substitution aux sites nucléotidiques
en utilisant des séquences d’ADN homologues. Le prédicteur est non biaisé et le ““meilleur’” au sens
ou il minimise I’erreur quadratique moyenne et maximise la corrélation entre le prédicteur et la vraie
valeur. Il est aussi plutdt robuste aux erreurs dans les estimations des paramétres du modele. On
donne un exemple numérique, avec des recommendations pour I’usage pratique de cette approche.
Le facteur le plus influent de la précision de prédiction est le nombre de séquences; il est nécessaire
de disposer de six ou sept séquences pour obtenir une corrélation d’au moins .7 entre la prédiction
et la vraie valeur; ceci dépend de la similarité globale des séquences.
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