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ABSTRACT 
Statistical  properties of a DNA sample  from  a  random-mating population of constant  size  are studied 

under the finite-sites model. It is  assumed  that there is no migration and no recombination occurs 
within the locus. A Markov process model is used for nucleotide substitution,  allowing  for  multiple 
substitutions at a single site. The evolutionary rates among sites  are  treated as either constant or variable. 
The general likelihood calculation using numerical  integration  involves  intensive computation and is 
feasible  for  three or four sequences only; it may be  used  for  validating  approximate  algorithms.  Methods 
are developed to approximate the probability  distribution of the number of segregating  sites  in  a  random 
sample of n sequences, with either constant or variable substitution  rates  across  sites.  Calculations  using 
parameter  estimates obtained for  human D-loop mitochondrial DNAs show  that  among-site  rate  variation 
has  a  major effect on the  distribution of the  number of segregating sites; the distribution under the 
finite-sites model with  variable  rates among sites is quite different from  that under the  infinite-sites 
model. 

B ECAUSE  of its high evolutionary rate, the  control 
(D-loop) region of the mitochondrial genome has 

been widely used in studies of human populations (see, 
e.&, VIGILANT et al. 1991; WARD et al. 1991). Most popula- 
tion genetics models for analyzing DNA sequence poly- 
morphisms were developed under the infinite-sites 
model (KIMURA 1969; WATTERSON 1975), which  assumes 
that every mutation occurs at a different site in the se- 
quence. Although this model may provide reliable a p  
proximations for nuclear DNAs or regions of the mito- 
chondrial  genome with  low mutation rates, the 
assumption is clearly  violated for  human D-loop  mitc- 
chondrial DNAs (mtDNAs). For example, in the 360-bp 
sequences of the D-loop region of 63  individuals from 
a North American Indian tribe, the Nuu-Chah-Nulth 
from Vancouver Island (WARD et al. 1991),  the minimum 
number of changes on the most-parsimonious tree, 
which is an underestimate of the  number of mutations 
in the sample, is 41,  while the  number of  variable  sites 
in the sample is 26, suggesting that many  sites  must  have 
experienced  more  than  one  mutation. Nucleotide sites 
in the D-loop region appear  to be under quite different 
selectional constraints, and as a result, their evolutionary 
rates are highly  variable (TAMURA and NEI 1993; WA- 
KELEY 1993).  The among-site rate variation  suggests that 
most evolutionary changes occur at a few sites in the 
sequence, while  most other sites do not experience any 
substitutions at all. As the infinite-sites assumption is 
clearly  violated for the mtDNA data, GRIFFITHS and TA- 
V& (199413) devised algorithms for removing sites 
and/or individuals to make the  data conform with the 
infinite-sites assumption. 
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The statistical properties of a DNA sample under  the 
finite-sites model with  variable substitution rates among 
sites may be quite different from those under  the infi- 
nite-sites model. Indeed,  recent simulation studies gen- 
erating sequences at the level  of variation found in hu- 
man mtDNAs  have  shown that among-site rate variation 
has significant effects on distributions of population 
genetics statistics (BERTORELLE and SLATKIN  1995; ARIs 
BROSOU and EXCOFFIER 1996). For example, rate varia- 
tion causes patterns in the distribution of pairwise  dif- 
ferences that were  previously attributed to demo- 
graphic processes such as population expansion 
(BERTORELLE and SLATKIN  1995; see also  LUNDSTROM 
et al. 1992). It shifts the distribution of the  number of 
segregating sites in a DNA sample, invalidating TAJIMA’S 
(1989) D statistic for testing neutrality, which was devel- 
oped  under  the infinite-sites model. In one example, 
TAJIMA’S D statistic rejected neutrality with as high a 
frequency as  23%  when evolutionary rates varied among 
sites, although  the  data were generated under the  neu- 
tral model (BERTORELLE and SLATJSIN 1995). 

This paper studies the distribution of a random sam- 
ple of  DNA sequences under the finite-sites model, with 
substitution rates assumed to be either  constant or vari- 
able across  sites.  Special attention will be paid to  the 
number of segregating sites. A Markov-process model 
is used for nucleotide substitution, so that multiple hits 
at one site are allowed. For its  simplicity, good fit to 
real data  and widespread use, the gamma distribution 
will be used to accommodate the among-site rate varia- 
tion. This distribution involves a shape  parameter a, 
which can be estimated quite reliably using phyloge- 
netic methods (YANG 1993, 1994b; YANG and KUMAR 
1996). An estimate for  the D-loop region of human 
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mtDNAs that includes the two hypervariable segments 
was 0.17 (YANG and KUMAR 1996) and this  value will be 
used in later calculations. When the gamma model is 
difficult to implement,  a discrete rate-class model will 
be used instead. Results obtained from phylogenetic 
analyses suggest that  the gamma model and  the discrete 
rate-class model produce very similar results (YANG 

1995). 

TWO SEQUENCES 

Constant rate for sites: We consider a random-mat- 
ing large population of constant size N, without migra- 
tion. The  gene  sequence has m completely linked sites. 
The haploid Wright-Fisher model is considered. With 
time measured in units of N generations,  the coales- 
cence time ( t )  for two sequences chosen at random 
from the  population is exponentially distributed with 
mean 1 (see, e.g., HUDSON  1990): 

f c t )  = e-', t > 0. (1) 

A Markov process will be used for nucleotide substitu- 
tion. Let the substitution rate per site per generation 
be p, and 8 = 2Np.  Estimates  of 8 from human mtDNAs 
were  -0.05 (see, e.g., FU 1994; KUHNER et al. 1995), and 
this value will be used in later calculations. With time 
measured in units of N generations, the substitution 
rate per site per N generations will be p = '/&I. Let 
p,( t)  be the transition probability from nucleotide x to 
nucleotide y in time t; this can be calculated for  a variety 
of substitution models (see, e.g., TAV& 1986; YANC 
1994a). As an example, suppose that  the probability of 
change between any two nucleotides is the same ( JUKES 
and CANTOR 1969).  Under this equal-probability model 

The probability that  a site is variable (segregating) in 
two sequences separated time t ago is 

q(t) = 1 - pxx(2t) = - 3/4e-s'3@. (3) 

Conditional on t, the probability of observing S segre- 
gating sites in two sequences of length m is  given by the 
binomial probability 

The  unconditional distribution is then 

Equation 6 was obtained by binomial  expansions of (1 - 
q( t) ) m-S and q( t )  i+s. In this  study,  however,  Mathematica 
(WOLFRAM 1991) and  a self-written C program were  used 
to evaluate  numerically the integral in  Equation  5. 

Gamma rates for sites: The substitution rate for a 
site is assumed to be  a  random variable  drawn from a 
gamma distribution. The density  of the distribution is 

r > O , a > O , p > O ,  

where a and p are  the shape and scale parameters, 
respectively.  Because mutation rate p and p are con- 
founded, we set ,8 = a so that  the mean of the distribu- 
tion is one, with the variance to be l/a. The mutation 
rate for  the  entire  sequence (mp) is then  equal to that 
under the constant-rate model. The probability that  a 
site is segregating in two sequences separated time t 
ago is 

J O  

= 3/4 - 3/4 ( ) . (8 )  
a n  

a + 8/3 pt 

Note that this approaches Equation 3 when a -+ w. The 
distribution of S is 

c 

Figure 1 shows the distributions of Sin two random 
sequences of m = 500  sites under three models. The 
distribution under the infinite-sites model is calculated 
using Equation 9.5  of T A V ~  (1984), which is repro- 
duced below  as Equation 30, while those under the 
finite-sites models are calculated using Equations 5 and 
9. As one may expect, relaxing the infinite-sites  assump- 
tion, especially assuming gamma rates at sites, increases 
probabilities for small S and decreases those for large 
S. The constant-rate model gives a similar distribution 
of S as the infinite-sites model,  but  the gamma model 
is much more different. The variance of the distribution 
under the gamma model is only 35% that  under  the 
infinite-sites model. The  present result conflicts with 
ROGERS (1992), who suggested that  the infinite-sites 
model did not  introduce  much bias. The main reason 
for this discrepancy seems to be ROGERS'  use of a much 
lower mutation  rate, one estimated for the  entire mito- 
chondrial  genome,  although some of  his  discussions 
concerned  the  control region. 

MORE THAN TWO SEQUENCES 

General case: A sample of TL sequences taken from 
the  population  are  connected to a single common an- 
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FIGURE 1.-The probability f(S) of observing S segregating 
sites  in  a  random  sample of two sequences under three mod- 
els: the infinite-sites model (B), the  finite-sites model with 
constant substitution  rate among sites (O), and the finite-sites 
model with the gamma  distribution of rates among sites (a 
= 0.17) (0). The sequence has m = 500 sites with mB = 500 
X 0.05 = 25. The means of the three  distributions  are 25, 
23.4, and 18.3, respectively,  while  their  variances  are 645, 
506.1, and 223.2. 

cestor through  an ancestral tree (genealogy) (Figure 
2).  Under  the coalescent model,  the time q during 
which there  are j distinct ancestors approximately fol- 
lows an  exponential distribution with mean 1/ (4)  = 2/ 
[ j (  j - 1 )  1, where time is measured in units of Ngenera- 
tions (see e.g., TAJIMA 1983; HUDSON 1990). The  joint 
distribution of the waiting  times is then 

f(T2, T3, . . . , T,) 

FIGURE 2.-An example genealogy ( C ; )  for four individu- 
als. T2, T,, and T4 are  waiting  times  between coalescence 
events, while t l ,  f, and 5 are node times. 

as counts of different site patterns,  represented by the 
nucleotide compositions in different sequences. Let the 
nucleotides for the hth pattern be X'h '  = (XI,,, q h ,  . . . , 
Xnh,] ' ,  where xjh is the nucleotide in the fi sequence. 
Obviously there  are 4" possible site patterns  for n se- 
quences. Let the  number of sites in the sample that 
have the hth pattern be mh. The conditional probability 
of observing data m = (ml ,  m, . . . , mg], given  genealogy 
G and  node times tl, h, . . . , tn-l, is given by the 
multinomial probability 

f(ml G, tl, t2, * - * 9 tn-1) 

4" 

= C n I G, tl, t2, * * . 9 t n - ~ ) l ~ h j  (13) 
h= 1 

where c = m!/nhmh!.  The probability of data m is then 
an  integration over the  node times  of a specific genea- 
logical tree and a summation over  all  possible genealo- 
gies: 

The distribution of node times tl, t2, . . . , tn-l (Figure 
2) can be obtained  through a linear transform as 

tl > L2 > * - .  > tn-l. (11) 

As each of the ( n  - l)!n!/2n-1 genealogies for ?E individ- 
uals has equal probability under  the coalescent model, 
the joint density of genealogy G and its node times is 

AG, tl, t2, . . . , tn-1) = exp { - n-l jq} . (12) 
j= 1 

Substitutions are assumed to occur  independently 
among sites. The sample data can  then  be summarized 

[Am1 G, ti, t2, - 3 tn-1) f(G ti, t2, . . ., tn-1)l  

X dtn-l * * dkdt,. (14) 

For the example genealogy G, of Figure 2, the condi- 
tional probability of observing the hth  site pattern in 
Equation 13 can be calculated as follows under the 
model of constant rate for sites (.g., FELSENSTEIN 1981): 

x ((l l  - k)p)p-hq,+(('l - h ) p )  

x p,hX,,(6p)p~h,h(t3pL)p~h,h(t2p)pqh~h(t2pL), (15) 

where T~~ is the probability of observing nucleotide q h  

at  the  root  (node 7) of the  tree, given by the equilib- 
rium frequency of the  nucleotide; for the equal-proba- 
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FIGURE 3.-The log likelihood function of 0 under two 
evolutionary models: the equal-probability model of JUKES 
and CANTOR (1969) (JC69) and the substitution model of 
HASEGAWA et al. (1985) in combination with a discrete-gamma 
model of rates among sites (YANG 1994b) (HKY85 + Gamma). 
With the HKY85 model, the transition/transversion rate ratio 
(a/@ in those authors’ notation) is fixed at 35, and the 
gamma parameter is fixed at a = 0.17; these are maximum 
likelihood estimates for this segment of  mtDNA. Three West 
Pygmy sequences taken from the  data o f V I G I m  et al. (1991) 
(sequence numbers 1, 2, and 38) are used, and there  are 684 
aligned sites in  the sequence. Twelve different site patterns 
are observed in  the  data, which are listed  below, together with 
their numbers of occurrences: 

West Pygmy (seq. 1): T C A G C A T G G A C A 

West Pygmy (seq. 2): T C A G C G T G G A C G 

WestPygmy (seq. 38): T C A G T A C C A G A G 
155 205  211 90 10 2 4 2  2  1 1 1 

bility substitution model, 7 r x  = 1/4 for any x. The summa- 
tions are taken over the unknown nucleotides at  the 
three ancestral nodes. The conditional probabilities un- 
der  other genealogical trees can be calculated similarly. 

When rates are variable  across  sites,  this conditional 
probability will be calculated as an average  over  sites, 
i.e., over the rate distribution. The gamma model of 
rates for sites  involves intensive computation WANG 
1993),  and  a discrete rate-class model is much simpler 
to use. Suppose there  are Kclasses of sites,  with frequen- 
cies fi, h, . . , , f K  and rates q ,  r2, . . , , rK. We have & fk 
= 1 and &fkrk = 1. Conditional on rate rk for  the site, 
we have, for  the genealogy of Figure 2, 

so that 

FIGURE 4.-Three genealogical trees and their node times 
for three individuals. 

The discrete-gamma model of YANG (1994b) uses K 
equal-probability categories to approximate the contin- 
uous gamma. In this case, fk = 1/K, and  the rks are 
calculated as functions of parameter a of the gamma 
distribution. 

Figure 3 shows the probability of observing the  data 
(the likelihood function) as a  function of 6,  with the 
integral of Equation 14 calculated numerically. Three 
West  Pygmy sequences from the  data of VIGILANT et 
al. (1991) were  analyzed using two models: the equal- 
probability model of JUKES and CANTOR (1969) (JC69) 
and the model of HASEGAWA et al. (1985) with gamma 
rates among sites (HKY85+Gamma). The HKY85 
model involves four  more parameters than  the JC69 
model and accounts for both nucleotide frequency dif- 
ferences and transition/transversion rate bias. The 
maximum likelihood estimate of 6 under the JC69 
model is 8 = 0.021 5 0.015  with t = -1088.64,  while 
that under  the HKY85+Gamma model is 8 = 0.024 5 
0.018  with 42 = -1042.54. Note that HKY85+Gamma 
fits the  data significantly better  than JC69 (2At = 92.20 
compared with x:% = 9.24  with 5  d.f.). Obviously there 
is not much information for estimating 6 in  only three 
sequences and  the  standard  errors of the estimates are 
quite large. It is, nevertheless, a general pattern  that 
use  of a simple model causes underestimation of 6 .  

Calculation of data probabilities by Equation 14 in- 
volves evaluation of an (n - 1)dimensional integral 
for each genealogy G and summation over  all  possible 
genealogies. The approach of numerical integration 
adopted in this paper is not computationally feasible 
for  data of more  than  four sequences (which  involve 
three-dimensional integrals).  It may be useful for val- 
idating  approximate  methods based on Monte Carlo 
integrations (FELSENSTEIN 1992;  GRIFFITHS and TAV& 
1994a; KUHNER et al. 1995), as such algorithms are typi- 
cally so complicated that  their correctness is not always 
clear. When the model of Jums and CANTOR (1969) is 
applied to  the case  of three sequences, however, some 
simplifications are possible,  as  shown  below. 

Three sequences: The  three possible genealogies for 
three individuals are shown in Figure 4. The  joint den- 
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TABLE 1 

Site configurations in a sample of three DNA sequences 
and  their  probabilities  under the three  genealogies 

of Figure 4 

Probability under 
No. of sites 

i Configuration (q) c; G GS 

0 xxx mo p o ( h > t 2 )  p o ( h , t 2 )  po(tl,k) 
1 x 9  ml Pl (h9t2 )  p2(4,k)  p2(tl,h) 

2 4 x  mz p2(tl,k) pl ( t l , t2)  p2(tl,k) 

3 YXX % p 2 ( h , t 2 )  P2( t l , t2 )  pl(tl,k) 
4 9 z  p4(hrk) p4( t l ,k )  p4(tl,&2) 

The p functions are defined in Equation 19. 

sity  of genealogy G and  node times tl and f is (See 
equation 12) 

f(G7 tl, f) = e -(fl+z$),  tl > f > 0. (18) 

Under  the substitution model of JUKES and CANTOR 
(1969), many site patterns have equal probability of 
occurrence. As a result, the  data  (nucleotide composi- 
tions) at a site can take one of  five distinct configura- 
tions: xxx, xxy, xyx,  yxx, and xyz, where x, y, and z repre- 
sent any different nucleotides. These configurations will 
be labeled 0, 1, 2, 3, and 4, respectively. Conditional 
on genealogy C; of Figure 4 and its node times tl and 
f, the probabilities of observing these configurations at 
a site can  be  obtained as 

pO(t1, f) = (1 + 3a + 6b + 6~)/16, 

p l ( t l ,  f) = (3 + 9a - 66 - 6~)/16, 

&(t i ,  f) = (3 - 3a + 66 - 6~)/16, 

pS(t1, f) = (3 - 3a + 6b - 6~)/16, 

p 4 ( t l ,  f) = (6 - 6a - 1 2 b  + 12c)/16, 

where 

a = e-8/3$r 

b = e-8/311fi , 
= e-4/3(2$+P)~. 

Note that p ,  = p, and pi = 1. 
The sample data can be summarized as counts of  sites 

with the five configurations; let  them be %, ml, m, ms, 
and q, respectively,  with X i  m, = m to be  the  number 
of  sites in the  sequence. The conditional probability of 
observing data m = {m,,, ml, %, ms, %I is 

4 

AmI G, tl, f) = c n  p?, (21) 
i=O 

where C = m!/n:=o mi!. 
The probabilities of observing the five site configura- 

tions under genealogies C; and (Figure 4) can be 
obtained similarly. As summarized in Table 1, these 
probabilities are p o ,  &, A, &, p4 for G, and p o ,   p 2 ,  f i ,  
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$ 1 ,  p 4  for Gs, from which f(m I G, tl, f) and f(m I G, t ~ ,  
f) are obtainable. 

Assembling these results, we obtain  the probability 
of observing data m in a random sample of three se- 
quences as 

x e-(f1+2L) 2 dfdt l .  (22) 

With gamma rates over  sites, the probabilities of 
Equation 19 are calculated by averaging over the 
gamma distribution, as st pi(tlr, br)g(r)dr. This means 
that Equations 19 and 22 still hold,  but a, b, c of  Equa- 
tion 20 should  be replaced by 

= + CY "3 t J  

The probability f(S) of observing S segregating sites 
in three sequences of m sites can be calculated as the 
sum of probabilities of  all configurations (%, ml, m, 
q, Q) that satisfy m,, = m - Sor  ml + % + ms + m4 
= S. Equivalently, since 

AS) can also be calculated as 

For the case  of constant rate for all  sites, the  approach 
used to derive Equation 6 can be used to obtain 

&+jl+&+A=i+S 

(- 1  )Jl+ji+j~15j03j16j~+~~ 

P ( ~ Z  + 5 )  + 11 [*IS p( j l  +k) + "/3 pj3 + 31 . (26) 

Figure 5 shows AS) under the infinite-sites model 
and  under  the finite-sites model with substitution rates 
among sites assumed to be  constant or gamma-distrib 
uted. The parameters used are  the same as in Figure 
1, except  that  the  present sample contains three se- 
quences instead of two. While the distribution under 
the constant-rate model is similar to  that under the 



1946 Z. Yang 

0 10 20 30 40 50 60 70 EO 90 160 
S 

FIGURE 5.-The probabilityf(S) of observing S segregating 
sites in a random  sample of three  sequences  under  three 
different  models:  the  infinite-sites  model (W), the  finite-sites 
model  with  constant  substitution  rate  among  sites (O), and 
the  finite-sites  model  with  the  gamma  distribution of rates 
among  sites (a  = 0.17) (0). The  sequence  has m = 500 
nucleotides  with mB = 500 X 0.05 = 25.  The  means of the 
three  distributions  are 37.5, 34.9,  and  26.8,  respectively,  while 
their  variances  are  817.8,  613.1,  and  249.1. 

infinite-sites model,  the distribution with gamma rates 
is quite different. Relative to  the infinite-sites model, 
the among-site rate variation together with the finite- 
sites assumption causes a 23% reduction in the  mean of 
the  distribution, and a 60% reduction in the variance. 

APPROXIMATE  DISTRIBUTION OF THE 
NUMBER OF SEGREGATING  SITES 

Constant  rate among sites: The difference between 
a finite-sites model and  an infinite-sites model lies  in 
the allocation of mutations among sites; the total num- 
ber of mutations follows the same distribution under 
the two models. As the distribution of the  number of 
mutations, which is the  number of segregating sites un- 
der the infinite-sites model, is  known  (WATTERSON 
1975), this observation can be used to derive approxi- 
mate methods  to calculate the distribution of the  num- 
ber of segregating sites under the finite-sites model. We 
take a segregating site as a mutated site, a site that has 
been  hit by at least one mutation. This approximation 
ignores the possibility that a site hit by two or more 
mutations may become a nonsegregating site. Since se- 
quences for within-species comparison are very similar, 
such "back" mutations are  expected  to be rare. The 
accuracy of the  approximation will be examined by 
computer simulation. 

The density function of the total time on a genealogy, 
T = E,?& jT,, can be found  through  the convolution of 
the  exponential variables (see Equation 10) as 

Conditional on T, the  number of substitutions ( M )  
along  the  tree, which is the  number of segregating sites 
under the infinite sites model, is a Poisson  variable  with 
parameter mpT = '/2m8T. The probability generating 
function of M is then 

exp(- 1 / 2  d T ( 1  - z)]f(7))dT 

= ( n  - 1) 1 yd'""'(l - y)"-'dy (28) 

= i i .  
j -  1 

j E 2 ]  - 1 + - z) 
(29) 

(WATTEMON 1975), from which the distribution of M 
is obtained as 

x ( )M+l , M =  O , l ,  * - -  
m 8 + i + 1  (30) 

(TAVAR~ 1984: page 152). The probability of  having no 
mutations (M = 0 )  is 

( n  - 1)!T(m8 + 1) 
r(m8 + n) 

For large n, Formula 30  causes underflows and over- 
flows and it is easier to evaluate numerically 

(compare TAVAR~ 1994:  page 153). This can also be o b  
tained by differentiating Equation 28 with respect to z. 

Let H(M, S, m) be the probability that S sites are  hit 
when M mutations are randomly assigned to m sites 
in the sequence. This is equivalent to the occupancy 
problem of putting M balls into m urns and is  well 
studied by statisticians (JOHNSON and KOTZ 1977). Fol- 
1owingJOHNsON and KOTZ (1977: page 115), we obtain 
the following  recursive equation: 

S 
H(M, S, m) = - H(M - 1, S, m) 

m 

+ m -  S f  1 
m 

X H ( M  - 1, S - 1, WZ), (33) 

with H(0,O) = 1, and H(M, S) = 0 for any M < S. The 
first term on the right side is the probability that  the 
first M - 1 mutations occur at S sites and  the Mth 
mutation occurs at  one of these S sites too. The second 
term is the probability that  the first M - 1 mutations 
occur at S - 1 sites and  the Mth mutation occurs at 
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FIGURE 6.-The  probabilityJS) of  observing S segregating  sites  in a random  sample of 30  sequences under  the  infinitesites 
model (D) and  under  the  finite-sites  model  with  either  constant  substitution  rate  among  sites (A) or variable  rates  among  sites 
(B). The  sequence has m = 500  sites  with mB = 500 X 0.05 = 25. (A) Computer  simulations  with lo6 replicates (0) and  the 
approximate  method of  this paper  (Equation  34) (0) are used  for  the  finite-sites  model  with  constant  rate  among  sites. (B) 
The  distribution  for  the  infinite-sites  model (D) is the same as in A, shown here  for  comparison. Two  models of variable  rates 
among  sites are  used.  One assumes two classes  of  sites  in the  sequence in the  proportion 0.91057 and  0.08943  and  with  rates 
0.33546  and  7.7663,  respectively.  The  distribution under this  model  is obtained by both  computer  simulation (with lo6 replicates) 
(0) and  an  approximate  method  (Equation  39) (A).  Another  model  uses  the  gamma  distribution  for  rates  at  sites with parameter 
a = 0.17.  The  distribution  under  this  model is obtained by computer  simulation  only  (with lo6 replicates) (O), since  no 
approximate  method is available.  The  means  and  variances of these  distributions  are  listed  in  Table 2. 

one of the m - S + 1 sites that have not  been  hit by 
any mutation. The recursive equation allows calculation 
of H(M, S, m) for any reasonably large M and S, with 
m fixed. 

The probability that S sites are  segregating (or  more 
precisely, are  hit by mutations)  in a sample of n se- 
quences of length m can then  be calculated as 

m 

f ( s )  pMH(M, s, m). (34) 
M= S 

Alternatively, the probability that S sites are  hit by 
mutations,  conditional on the total time Ton the genea- 
logical tree, is 

(35) 

The unconditional probability can be  obtained using 
f(7) of Equation 27 as 

T ( ( m  - S + k)B + 1)  
T ( ( m  - S + k)B + n) X * (36) 

Variable  rates among sites: A model of discrete rate 

classes  will be  considered. Since sites in the same rate 
class  have the same mutation  rate,  the probability of 
the  number of segregating sites in any rate class  given 
the  number of mutations  in  the class is known from 
results of the previous section. The probabilities of  dif- 
ferent allocations of mutations into different classes  of 
sites are also easily obtainable. The probability of the 
number of segregating sites can then be calculated by 
considering how many mutations  occur  in  each class  of 
sites and how  many sites in  the class are  hit by muta- 
tions. The case  of two rate classes is considered  here, 
as using three or more  rate classes would require  much 
more intensive computation. 

Suppose  that the first rate class has ml sites with rate 
rl and  the second  rate class has m, sites  with rate r,. We 
have ml + m, = m to be  the total number of sites in 
the sequence, and mlrl + m,r2 = m, so that mp is the 
total mutation  rate  for the sequence. We regard ml and 
m, as constants rather  than  random variables to simplify 
the analysis; this treatment  should have  only minor ef- 
fect as long as the sequence is not very short. Condi- 
tional on  the occurrence of a mutation, the probability 
that it hits a site in class one is 

ml r1 ’ = mlrl + m,r, 9 

and  the probability that  it hits a site in class two is p ,  = 

(37) 

1 - pl. 
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TABLE 2 
Mean  and  variance of the  number of segregating sites in a random  sample of 30 sequences 

Curve in 
Model  Method Figure 6 Mean Variance 

Infinite  sites  Equation 30 in 6A and 6B 99.0  1105.9 
Finite  sites,  constant  rate  Simulation in 6A 88.5  675.7 

Approximation  (Equation 34) 0 in 6A 89.0  706.3 
Finite sites, two rate  classes  Simulation 0 in 6B 62.5  195.8 

Approximation  (Equation 39) A in 6B 63.4  209.5 
Finite sites, gamma  rates Simulation in 6B 63.7  183.1 

The  full  distributions  and  details of the  models  are  given in the  legend to Figure 6. 

The probability that  Mmutations  occur on the genea- 
logical tree is given by pM of Equation 30. Conditional 
on M, the probability that Ml mutations occur  at sites 
of the first rate class and M2 = M - MI mutations occur 
at sites  of the second class  is  given  by the binomial 
probability 

Within site class i ( i  = 1, 2), the probability that Si sites 
are  hit by the Mi mutations is H(Mi, Si, mi). Summing 
over  all combinations of SI and S, that satisfy Sl + S, = 
S, generated by all combinations of MI and M2,  we ob- 
tain the probability of observing S segregating sites  in 
a sample of size n as 

m M  

M = S  M1=0 

In previous calculations, a gamma parameter a = 
0.17 has been used. This estimate was obtained from 
maximum likelihood analysis  of a  data  set of  25 D-loop 
human mtDNAs (YANG and KUMAR 1996). The log like- 
lihood from this analysis  is 4 = -1624.1. Fitting a two- 
rateclass model ( Y ~ G  1995) to the same data leads to 
the following maximum likelihood estimates: j; = 
0.91057 and j$ = 0.08943 for the  proportions of the 
two rate classes, and fl = 0.33546 and f2 = 7.7663 for 
the rates, with 4 = -1622.4. The two-rateclass model 
involves one more  parameter  than  the gamma model 
and provides a slightly better fit to these data. (The 
constant-rate model has e = -1676.0 and fits the  data 
much  more poorly than  the variable-rates models.) Pa- 
rameter estimates for  the two-rate-class model are used 
to calculate the distribution of the  number of segregat- 
ing sites in a  random sample of  30 sequences. The distri- 
butions under the infinite-sites model and  under the 
finite-sites constant-rate model are also calculated. 
Computer simulations are  performed under the finite- 
sites models to check the accuracy  of the approxima- 
tion. The gamma model is also used in the simulation 

for comparison. The results are shown  in Figure 6, A 
and B, and Table 2. 

Since the  approximate  method counts some nonseg- 
regating sites as segregating, we expect it to shift the 
distribution to the  right  and overestimate both the 
mean and variance of the distribution. This is indeed 
the case,  as the approximate distributions have longer 
tails than  the  correct distribution obtained by simula- 
tion (Figure 6, A and B). The approximation is worse 
under the two-rate-class model than under the constant- 
rate model, probably because considerable back  substi- 
tutions leading to nonsegregating sites  have occurred 
at the fast-changing sites.  Overall, the approximation 
appears to be quite accurate. Furthermore, we note  that 
the distributions under  the variable-rates models are 
quite different from that under the infinite-sites model. 
The variances of the  former  are less than 1/5 that of the 
latter (Table 2). FromJOHNsON and KOTZ (1977: page 
log), the  expected  number of mutated sites,  given the 
number of  sites and  the  number of mutations, reaches 
the maximum when rates among sites are identical. 
Therefore  the expected number of segregating sites in 
a sample under a variable-rates model should always be 
smaller than that under  the constant-rate model. It is 
also noteworthy that  the distribution under the gamma 
model is  very close to that under the two-rate-class 
model. 

As shown  in Figure 7, A and B, the accuracy of the 
approximation seems to be high and  does  not seem to 
depend  on  the sample size (n). Figure 7 also  shows that 
the variance under the infinite-sites model increases 
with n without bound, while that under the finite-sites 
model seems to approach  a finite limit. 

DISCUSSION 

Analysis  of the finite-sites model appears to be much 
more difficult than  that of the infinite-sites model. Un- 
fortunately, it is also quite clear from the results of this 
paper  and previous simulation studies (BERTORELLE 
and SLATKIN 1995; ARIS-BROSOU and EXCOFFIER 1996) 
that  the among-site rate variation, in combination with 
the finite-sites assumption, has substantial effects on 
analyses  of  D-loop mitochondrial data. We note  that 
adding  more complexity to  the finite-sites model, such 
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FIGURE 7.-The mean (A) and variance (B) of the number 
of segregating sites as functions of the sample size (n). The 
approximate method given by Equation 34 (e) is compared 
with computer simulation with 500,000 replicates (0). Results 
under the infinite-sites model (W)  are  also shown. 

as using more realistic substitution models that  account 
for base frequency differences and transition/transver- 
sion rate bias does  not pose much additional difficulty 
in the analysis. These factors are, however, not as im- 
portant as the among-site rate variation, from phyloge- 
netic analyses  of among-species data. 

Previously, GRIFFITHS (1980) and O’BRIEN (1982) ob- 
tained the  generating  function of the  number of segre- 
gating sites between two finite sequences, and GOLDING 
and STROBECK (1982) derived recursive equations for 
calculating the probability distribution of nucleotide 
site differences between two sequences. A constant rate 
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was assumed for all  sites.  Results  of this paper may be 
considered an extension to those results, both  to vari- 
able mutation rates among sites and to  more sequences. 
LUNDSTROM et al. (1992) fitted a model of two rate 
classes to some summary statistics for a sample of DNA 
sequences. 

The effect of selection is not considered in this paper, 
and by adopting  a coalescent approach,  neutral evolu- 
tion is assumed. However, the major reason for the 
existence of among-site rate variation is the different 
selectional constraints at different sites (see, e.g., LI el 
al. 1985). The D-loop region of the mitochondrial ge- 
nome, like other genes, is clearly under such selectional 
constraints ( W ~ L E Y  1993). When natural selection is 
operating,  the genealogy of the individuals may not be 
independent of the mutations they carry, and so the 
distributions of genealogies and node times used in this 
paper may not  be accurate. Further studies considering 
more realistic models and incorporating factors such as 
migration and  population size fluctuation are  needed. 

Addendum: After  submission of this paper, TAJIMA 
(1996) published a study  of the finite-sites model. While 
the  present study  aims to approximate the full distribu- 
tion of the  number of segregating sites  in a  random 
sample of n DNA sequences, TAJIMA derived analytical 
expressions for  the expectation (but  not the variance) 
under several substitution models, assuming either con- 
stant rate or gamma rates among sites.  His general con- 
clusion that  the among-site rate variation has a substan- 
tial effect on analysis  of  D-loop mitochondrial data 
conforms with that of  this paper. 
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