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Abstract. The assumptions underlying the maximum- examination of the assumptions underlying MP. When a
parsimony (MP) method of phylogenetic tree reconstrucsimple model of nucleotide substitution was assumed to
tion were intuitively examined by studying the way the generate data, the probability that MP recovers the true
method works. Computer simulations were performed taopology could be as high as, or even higher than, that for
corroborate the intuitive examination. Parsimony appearshe likelihood method. When the assumed model became
to involve very stringent assumptions concerning themore complex and realistic, e.g., when substitution rates
process of sequence evolution, such as constancy of suliere allowed to differ between nucleotides or across
stitution rates between nucleotides, constancy of ratesites, the probability that MP recovers the true topology,
across nucleotide sites, and equal branch lengths in thend especially its performance relative to that of the like-
tree. For practical data analysis, the requirement of equdlihood method, generally deteriorates. As the complexity
branch lengths means similar substitution rates amongf the process of nucleotide substitution in real se-
lineages (the existence of an approximate moleculaguences is well recognized, the likelihood method ap-
clock), relatively long interior branches, and also few pears preferable to parsimony. However, the develop-
species in the data. However, a small amount of evolument of a statistical methodology for the efficient
tion is neither a necessary nor a sufficient requirement oéstimation of the tree topology remains a difficult open
the method. The difficulties involved in the application problem.

of current statistical estimation theory to tree reconstruc-

tion were discussed, and it was suggested that the ap<ey words: Maximum likelihood — Maximum par-
proach proposed by Felsenstein (1981Mol. Evol.17:  simony — Molecular evolution — Molecular systemat-
368-376) for topology estimation, as well as its manyics — Phylogeny — Computer simulation

variations and extensions, differs fundamentally from the
maximum likelihood estimation of a conventional statis-
tical parameter. Evidence was presented showing that the )

Felsenstein approach does not share the asymptotic efffitroduction

ciency of the maximum likelihood estimator of a statis-

tical parameter. Computer simulations were performed tarhe maximum parsimony (MP) method of phylogenetic
study the probability that MP recovers the true tree undetree reconstruction using nucleotide sequence data per-
a hierarchy of models of nucleotide substitution; its per-forms a site-by-site analysis. For each tree topology, it
formance relative to the likelihood method was espe-calculates the minimum number of nucleotide changes
cially noted. The results appeared to support the intuitivgsubstitutions) that are required to explain the observed
site pattern. The numbers of changes are summed over
sites to give a parsimony score for each tree topology,

Present addresDepartment of Integrative Biology, University of Cal- and the topology having the smallest total number of
ifornia, Berkeley CA 94720-3140, USA changes is taken as the estimate of the phylogeny, which
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is known as the most parsimonious tree. The method wat corroborate this intuitive examination, with various
proposed by Edwards and Cavalli-Sforza (1963; see alssubstitution models assumed. The model will be made
Cavalli-Sforza and Edwards 1967) to analyze geneimore and more complex and realistic by adding compo-
frequency data and by Camin and Sokal (1965) for mornents that are known to reflect characteristics of se-
phological characters. The application of the method taquence evolution, and the probability that parsimony re-
molecular sequence data goes back to Pauling and Zuckovers the true tree will be estimated. The working
erkandl (1963), Zuckerkandl (1964), and Eck and Day-hypothesis is that when the true model moves further and
hoff (1966), and Fitch (1971) and Hartigan (1973) de-further away from the model underlying a method, the
vised an algorithm for its systematic implementation. performance of the method may be expected to deterio-
There has been much controversy concerning theate.
mechanism of the method (see, e.g., Felsenstein 1973, The main objective of this study is to examine the
1978; Farris, 1973, 1977; Felsenstein and Sober 198ajifferences of parsimony and likelihood methods of tree
Sober 1988). The method does not make explicit asfeconstruction and to identify important factors that ac-
sumptions concerning the process of sequence evolutioount for their success or failure. Initially, the assump-
Indeed, there were suggestions that the method involvetions of the parsimony method will be intuitively exam-
no assumptions at all (e.g., Wiley 1975:236), and theréned. Then the simulation experiment will be described,
were further suggestions that reconstruction of phylog-and the results will be presented. The differences and
eny should ideally be free from any assumptions condifficulties of tree reconstruction in comparison with the
cerning the evolutionary process. Felsenstein (1978gstimation of a conventional statistical parameter will be
used a simple model for the evolution of a two-statediscussed. This discussion also provides an interpretation
character along a four-species tree with highly variableof some “counterintuitive” results found in the simula-
rates of change among lineages and showed that pardion experiment.
mony can be statistically inconsistent; as the amount of
data (the number of nucleotides in each sequence) in-
creases without bound, the method will produce a wrongAn Intuitive Examination of Assumptions
tree with the probability approaching one. According to Underlying the Parsimony Method of Phylogenetic
Sober’s (1988:166-172) interpretation, both Felsensteiffree Reconstruction
(1973, 1978) and Farris (1973, 1977) agreed that parsi-
mony does involve assumptions, but they disagreed o€onsider the sequence data of the 895-bp segment of the
whether Felsenstein’s overly simplified model is relevantmitochondrial genome (mtDNA) of human (H), chim-
to the performance of parsimony in real data analysispanzee (C), gorilla (G), and orangutan (O) (Brown et al.
Felsenstein (1973, 1978, 1988) suggested that when thE982). The segment codes for three tRNAs and parts of
amount of evolution is small and the rate of evolution istwo proteins. The data can be “summarized” as the ob-
more or less constant among lineages, parsimony may teerved numbers of different site patterns in the form of
an acceptable approximation to likelihood (see also CavTable 1. Sites with identical nucleotides in different spe-
alli-Sforza and Edwards 1967; Goldman 1990). Morecies (patterns 1-4 in Table 1) and those at which only one
recent studies have shown that even the existence of gpecies has a different nucleotide (e.g., patterns 6, 8, 10
molecular clock combined with a small amount of evo-in Table 1) are considered “noninformative,” as these
lution does not guarantee the statistical consistency ofwo kinds of sites require no and one change, respec-
the parsimony method, and the situation seems to betively, for any tree topology and so do not contribute to
come worse when more sequences are in the data (Hendlye discrimination of the trees. Site patterns represented
and Penny 1989; Zharkikh and Li 1993; Takezaki andby xxyz, xyxzandyzxx,wherex, y,andzare any different
Nei 1994). Computer simulations that compared differ-nucleotides (e.g., patterns 24, 31, and 33 in Table 1), are
ent tree reconstruction methods have tended to suggeatso “noninformative” by this criterion, as these patterns
that the performance of MP in finite data samples is oftencan be explained by two substitutions for any tree topol-
poorer than distance matrix and likelihood methods (Ha-ogy. The only “informative” patterns arexyy, xyxyand
segawa and Yano 1984; Saitou and Imanishi 1989; Jixyyx, which support the three bifurcating tre@s =
and Nei 1990; Hasegawa and Fujiwara 1993; Huelsen{(H,C),G,0),T, = ((H,G),C,0), andl; = ((C,G),H,0),
beck and Hillis 1993; Kuhner and Felsenstein 1994;respectively. For four species, parsimony uses only=36 (
Tateno et al. 1994). 3 x 12) out of 256 possible site patterns and does not use
In this paper an attempt will be made to identify the the data efficiently. It should be noted that the “nonin-
assumptions underlying the parsimony method of tredormative sites” do contain phylogenetic information.
reconstruction. | will do this initially by examining the Even the “constant” patterns provide information about
way the method works, based on the understanding thathe amount of evolution and the pattern of nucleotide
to justify a treatment of the data, certain assumptionsubstitution. For example, the higher frequency ®f
have to be made concerning the process that has givei®.311) than that of5 (0.104) observed in the mtDNA
rise to the data. Computer simulations will be performeddata suggests th& probably has a higher rate of change
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Table 1. The observed site-pattern frequencie3 in the 895-bp mtDNA sequences of human (H), chimpanzee (C), gorilla (G), and orangutan
(O) (Brown et al. 1982)

2 21

2716 211 11 11
n 21772 38133 65717 63264 67719 63243 11124 11112 11311 1
Patterni AGCTG TCATC ACCCA CCTTT TGCAG AGAAT TATAC GGTGC ACTGC C Human

AGCTA TTACC ACCCA TCCTC TGCCA GGTAC CGTAT AAAGC GTTAA C Chimpanzee
AGCTG TTGTT ATCAA CACCT CGCAA AAAAC TGCCC AGAGT ATTAA T Gorila
AGCTA CCACC GTTCC CACCT TAATA AAATT AAAAT GGGCG CTACA A Orangutan

Supported tree 2 3 2 1 11 1 3 3 2 3

2The 46 observed patterns are arranged columnwise in the order of occurrence in the data, for example, the first two patterns, AAAA and GG(
are observed at 222 and 71 sites, respectively. The three tree topologies supported by the “informative” patierns éfid,C),G,0), T, =
((H,G),C,0),T; = ((C,G),H,0O); other site patterns are “noninformative” by the parsimony analysi§.,;S6,, and T; are supported by 17 5 +
3+6+3),9(=2+3+4),and 13 8 + 3+ 1 + 1) sites, respectively, anf, is the most parsimonious tree

Table 2. Log-likelihood values and parameter estimates obtained by fitting the HK¥85+ dG modet

Tree o ™ i s fo [N (N ¢, R a

(HCGO) -2,100.42 0.038 0.043 0.066 0.238 0.275 5.963 0.631 26.957 0.611
((HC)GO) -2,097.26 0.016 0.038 0.043 0.051 0.219 0.277 5.347 0.587 25.337 0.764
((HG)CO) -2,100.42 0.000 0.038 0.043 0.066 0.238 0.275 5.962 0.631 26.951 0.612
((HO)CG) -2,099.86 0.009 0.029 0.041 0.064 0.222 0.279 5.780 0.632 25.063 0.691

2The 895-bp mtDNA sequences of human (H), chimpanzee (C), gorillagorilla, and orangutan, respectively, whilg is the interior branch

(G), and orangutan (O) (Brown et al. 1982) were analyzed by assumindength. The base frequency parameters are estimated using the averages
the HKY85 model of nucleotide substitution (Hasegawa et al. 1985).0f observed frequencies; they are 0.2542, 0.3313, 0.3106, and 0.1039
Different rate parameters,( = 1, c,, c;, c,) were assumed for the three for T, C, A,andG, respectively. The maximum-likelihood tree topology
codon positions and for sites from the tRNA-coding region, and aunder the model is (HC)GO). This table is used to explain the protocol
discrete-gamma model (dG, with eight rate categories) was assumed @f phylogenetic tree estimation by maximum likelihood and the as-
account for the remaining rate variation. Branch lengths in each of thesumptions to be made to justify the practice of summarizing the se-
tree topologies were also estimated by maximum likelihood, whgre quence data in the form of Table 1

te, tg, andtg are the lengths of branches leading to human, chimpanzee,

than doe<C, so that in the long run mor@s are observed imate to combine these sites into one category (as in
than Gs. Such information could be employed in the Table 1).
estimation of the phylogeny. Similar arguments may be used to examine other as-
In order to justify the practice of summarizing the pects of the parsimony analysis. For instance, the method
sequence data in the form of Table 1, two assumptionsreats all nucleotide differences in the same way—
concerning the substitution process are necessary: (Patterns likeTTCC, TTAA, TTGGre further combined
The stochastic processes of nucleotide substitution armto one categoryxxyy—which suggests that substitu-
identical at different sites; (2) Substitutions occur inde-tions between different nucleotides, such as transitions
pendently among sites. These two assumptions ensuand transversions, are assumed to occur with equal prob-
that data at different sites are identically and indepen-ability. This is similar to the model of Jukes and Cantor
dently distributed (i.i.d.) in which case Table 1 is a le- (1969), which assumes the same substitution rate be-
gitimate summary of the original data. In fact, both as-tween any two nucleotides. The major difference is that
sumptions are unrealistic for the mtDNA data. For parsimony fails to account for different branch lengths,
example, Table 2 presents results obtained from fitting @and short and long branches are treated in the same way
model that uses independent rate parameters for the threehen the numbers of changes are inferred and counted.
codon positions and for sites in the tRNA region. Esti- This lack of a time structure in the method (Thompson
mates of these rate parameters are in the proportion 1975; Goldman 1990) is justifiable only if all branches
0.28:5.35:0.59. The model is still unrealistic as it as-are equally long. For practical data analysis, the require-
sumes the same transition/transversion rate ratio andhent of equal branch lengths means similar substitution
gamma parameter for different codon positions. Never+ates among lineages, relatively long interior branches,
theless, it should be noted that under this model, sites and, most often, few species in the data. Despite previous
different codon positions, even if their nucleotide com-suggestions (e.g., Camin and Sokal 1965; Felsenstein
positions are identical, are treated differently. Without1973, 1978), a small amount of evolution does not ap-
the assumption of among-site homogeneity, it is illegit-pear to be a requirement for the method. Counting the
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1 3 2B:t; = t,, t3 = t; +1,, 1, > t5. However, it is the shape
of the tree rather than the clock assumption that is im-
t, ty portant. Trees 3A and 3B have two long branches and
two short branches separated, which is the shape Felsen-
5 6 stein (1978) used to show the inconsistency of the par-
simony method and which appears to be the most com-
monly used tree shape in previous simulation studies.
t, ty Trees 4A and 4B have three short branches and one long
branch, while trees 5A and 5B have three long branches
2 4 and one short branch.

Fig. 1. A model tree of four species. The branch lengths,(t,, t,,
t,, ts, t,), are measured by the expected numbers of nucleotide substThe Model of Nucleotide Substitution Assumed for
tutions per site. Generating the Data

The substitution model of Hasegawa et al. (1985) and its
numbers of changes and calculation of the differences ofpecial forms were assumed. According to this model,

such counts among trees, although not accurate in thghe rate of substitution from nucleotideo j (i # j) is
presence of long branches, are justified even with a large

amount of evolution. _ [ xmj, fortransitionsT - C,A - G 1

Accounting for the rate heterogeneity across sites Q {17 for transversionsT,.C - AG (1)
does not necessarily violate the i.i.d. assumption of data . . . .
among sites (Yang 1993), and it is not intuitively clear wherex is the transition/transversion rate ratio amds

whether or not parsimony assumes rate constancy amor%?ee _eqUItIIbJIL‘J‘r:;:(eE;qéjsngy Ofl nucleztl(lje:'hhet model is d
sites. The problem concerns the weighting of sites durinanTLgdnea tehat of KirﬁuraITlpgg:))m?egrseseitevc\;erﬁ}(gg?’

the calculation of the score for tree selection. In a like-" "~~~ . .

lihood analysis, highly variable sites usually have low Which is equivalent to HKY85 by settingy = mc =
probabilities of occurrence and contribute more to the™A ~ TG = J/‘f: and t”hat 9f Jl.JkeS and.Cantor (1969),
likelihood score (Yang et al. 1994). Parsimony assume.g,?fﬁrred_to ash ‘]C69i which is a pr C.'al ﬁase of K80
weight zero for “noninformative” sites and weight one with x = 1. T r‘ee values were used ferin the K80 or

for all remaining sites. (That “equal weighting” is not HKYSS models: 1, 5, and 2.0' The frequency parameters
the same as “no weighing” was nicely discussed byIn th_e HKY850r|nod(iI We;re fixed at; = 0.1,mc = 0.2,
Swofford and Olsen 1990.) The equal weighting adopted™A__ 0.3, andmg = 0.4. . .

by parsimony is insufficient to handle information con- Th? gamma dlstrlbutlon_was used to describe variable
tained in the data even if rates are constant at sites, al X bSt.'tUt.'on _rate_s among sites. The shape parametér
appears worse when rates are variable (Yang et al. 1994 .e.dllstnbuuon Is inversely reI‘,::ltgd o the exten:t, of rate
So parsimony may be expected to perform worse whe ariation (Yang 1993). The d|sqrete_—gamma (dG)
rate variation among sites exists than when rates ar(r-:‘nOdeI Qf Yang (1994c) was used in this paper both for
constant. genera't|.ng and for' analyzing the data}, with four eql_JaI—
probability categories used to approximate the continu-
ous gamma. Three values af were used= (no rate
variation), 0.8 (slight rate variation), and 0.2 (severe rate
variation).

j

Trees and Models Assumed in the Computer
Simulation of This Study

Generation of the Simulated Data
The Shape of the Model Tree as Reflected in the
Lengths of Its External Branches Two sequence lengthd) were used: 250 and 500. For

each combination of parameter values and sequence
Only four-species trees are considered in this study, antength,r simulated samples were generated witleter-
the model tree topology is shown in Fig. 1. Ten sets ofmined by calculating the standard error of the estimated
branch lengths (Table 3) are used to represent differengrobability (P) of recovering the correct treep, = [P(1
shapes of trees as reflected in the external branck P)/r]*2. For every 200 replicatess, was calculated
lengths: ;, t,) — (i3, t,). The probability of recovering using the current estimate d®. For the parsimony
the true tree by any method is expected to rise monotonmethod,r was determined such that < 0.005 with the
ically with the interior branch lengthd), and satyis not  restriction thar = 500, while for the likelihood method,
used in the representation of the three shapes. The “B’o < 0.01 was used with the restriction 260r < 1,000.
trees have branches that are 0.2 times as long as those of The probabilities of observing all site patterns were
the “A” trees. Trees 1A and 1B have equal external calculated by the approach of Felsenstein (1981) for
branch lengths. A molecular clock holds in tree 2A andmodels assuming a constant rate for all sites< «) or
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Table 3. Branch lengths and tree shapes examined in the computer simulation

Tree to ty t, tg t, Tree shape

1A 0.1 0.5 0.5 0.5 0.5 (equal external branches)
1B 0.02 0.1 0.1 0.1 0.1

2A 0.1 0.5 0.5 0.6 1.4 (short, short)—(long, long)
2B 0.02 0.1 0.1 0.12 0.28

3A 0.1 0.1 0.5 0.2 1 (short, long)—(short, long0
3B 0.02 0.02 0.1 0.04 0.2

4A 0.05 0.05 0.05 0.05 0.5 (short, short)—(short, long)
4B 0.01 0.01 0.01 0.01 0.1

5A 0.05 0.5 0.5 0.5 0.05 (long, long)—(long, short)
5B 0.01 0.1 0.1 0.1 0.01

by the approach of Yang (1994c) for the discrete-gamma 2

models. These probabilities are then used to generate the

observed numbers of site patterns, which constitute the

data to be analyzed by each tree reconstruction method. 154

The three methods examined in this study are maximum 50\

parsimony, maximum likelihood assuming the JC69 sub-
stitution model, and maximum likelihood assuming the
true model used to generate the data. These are referresl 14
to as the MP, JC, and TRUE methods. For the TRUE
method, thex parameter in the K80 and HKY85 models 70
and thex parameter in the (discrete-) gamma model were
estimated by iteration from the simulated data for each ©0-5
tree, while the frequency parameters in the HKY85
model (therwrs) were estimated by using the averages of
the observed nucleotide frequencies.
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Results of the Computer Simulation Experiment Fig. 2. The contour graph of the probability?(x100) that MP re-

covers the true tree as a function of the amount of evolution represented

. - . by b and the transistion/transversion rate ratioThe K80 model was
Factors Affecting the Probability of Recovering the assumed to generate data, while branch lengths are based on tree 1A of

True Tree Table 1:t = (0.1b, 0.50, 0.5, 0.50, 0.50) (see Fig. 1). The sequence
length isN = 500.
Before presenting results of the simulation experiment,
we briefly discuss effects of some important factors that
affect the performance of any tree reconstructionwhereAp =p; —p,, andz; is the one-tail standard normal
method. Tree 1A of Table 3 and the parsimony methodvariate corresponding to probabiliB;, e.g.,z, g5 = 1.65.
are used as an example, and the results are shown in Figehe probability of recovering the true tree given the
2-4. sample sizeN is
Let p;, po P3 be the probabilities of observing the
three site patternsxyy, xyxyandxyyx,respectively. (1 - ( Ap \/N —1/Ap- \/pz/ﬁ)
p, — P, — ps Will be the probability of observing all other P(N) = 3)
patterns.) With tree 1A, we hayg > p, = ps, for which VP + (1 - 1m)p,
case Zharkikh and Li (1992:1129) derived an approxi-
mate formula for calculating the sample size required bywhere ®(®) is the cumulative density function of the
parsimony to recover the true tree with a prespecifiedstandard normal distribution, and can be calculated by
probability @) using the method of Hill (1973). Eqg. 3 was found to give
results very similar to those obtained from simulations
2 (results not shown), in accordance with the high accuracy
[\/ plm+zZa\/p +[1 - (1/w)]p2] 1 of Eq. 2 reported by Zharkikh and Li (1992). Results for
Np = +— : B .
Ap Ap the contour graphs of Figs. 2—4 were calculated using
(2) Egqg.s.
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values ofb are smaller when substitution rates are highly
variable, i.e., whem is very small (Fig. 3). The interior
branch length () is of great importance to the success of
tree reconstruction. The probabilig steadily increases
with t, (Fig. 4). Generally speaking increases withx
(Figs. 3 and 4), which confirm the previous observation
that sequences with no or little rate variation across sites
provide more information concerning the phylogeny than
sequences involving severe rate variation (Yang 1995b).
The effect of the transition/transversion rate bia}y i6
minor in comparison with that ok and branch lengths
(Fig. 2). Overall, extreme bias (i.e., larg¢ leads to a
decrease in the probability of recovering the true tree.
The observations that an intermediate amount of evo-
lution and long interior branches lead to high probability
of recovering the true tree can be expected to apply ir-
respective of the tree reconstruction method, the shape of

° the tree, or the model of sequence evolution. The effects

Fig. 3. The contour graph Of. the probability?( x100) thqt MP re- of « andk, however, may be confounded with the effects
covers the true tree as a function of the amount of evolution measured

by b and thea parameter of the gamma distribution for variable rates of bra_nCh I(_angths. Indee_d’ compllcated patterns arise in
at sites. The true model if JC69 + dG and branch lengths ard0.1b, ~ the S|mU|at_|0nS concerning the effects of these param-
0.50, 0.5, 0.5b, 0.50) (see Fig. 1). The sequence lengttNis= 500.  eters, as will be described below.

0.5

100 Simulation Results When the Substitution Model of
Kimura (1980) Is Assumed

—
—
o—

[o

0.45
90 Results obtained by assuming trees 1A, 1B, 2A, 2B, 3A,
0.44 g4 and 3B of Table 3 are presented in Table 4, and results
0.35 obtained from trees 4A, 4B, 5A, and 5B are presented in
' Table 5. Although only nine combinations efand «
0.3 70 were examined for each tree, it is useful to bear in mind
ol I\ that the estimated probabilities for any method represent
0.251 g0 a “performance surface” over the—« plane.
0.2
0.154 90

Trees 1A and 1B (Equal External Branch Lengths)
There is a general deterioration in the performance of

o1 80 MP and JC when rate variation across sites becomes

s 70 serious or when the transition/transversion rate bias gets

0.05 \\I | ; 60— large. The TRUE method, however, appears to improve
0 0.5 1 1.5 2 with the increase ok when tree 1A is assumed although

o it also becomes worse with the decreasexof-or both
Fig. 4. The contour graph of the probabilit(x100) that MP re-  trees 1A and 1B, MP is considerably poorer than the two
covers the true tree as a function of the interior branch lerigtratd likelihood methods. JC also has lower probabilities of
the a parameter of the gamma distribution for variable rates amongrecovering the true tree than TRUE. In both cases, the
sites. The JC69 + dG model was assum_ed to generate data, with bra_n@hfferences are Iarger when = 0.2 ork = 20, that is,
Engtgs,oto— (to, 0.5, 0.5, 0.5, 0.5) (see Fig. 1). The sequence length IS nder a more complex model.
' For parameter combination = 1 anda = oo, JC
performs slightly better than TRUE. The TRUE method
The variableb in Figs. 2 and 3 measures the amountwhich assumes the K80 model estimatdsom the data,
of evolution, and branch lengths are proportional to it.and is not so efficient as JC, which makes use of the fact
Clearly the best performance is achieved at intermediatéhat the realk = 1. This observation is true for other
values ofb as both very similar and very different se- trees and is expected to apply for other cases where a
guences contain little phylogenetic information. The model more complicated than the true model is used.
probability of recovering the true tree improves dramat- All methods recover the true tree with higher prob-
ically with b whenb is small and deteriorates slowly with abilities when tree 1B is assumed instead of tree 1A; the
b whenb is larger than the optimum value. The effects of long branches of tree 1A mean too much noise in the
b and « are somewhat confounded, and the optimumsequences. The performance of MP relative to the like-
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Table 4. Estimated probabilities (x100) that the true tree is recovered by different methods when the K80 model isfassumed

o = a=0.8 a=0.2
N MP JC TRUE MP JC TRUE MP JC TRUC
1A: equal branch lengths
k=1 250 64.2 75.8 75.2 59.8 68.1 65.2 46.1 54.9 52.3
500 78.5 88.3 87.8 73.3 79.5 79.7 57.4 61.2 61.1
k=5 250 60.5 70.5 77.2 58.1 65.4 69.2 47.3 54.6 53.6
500 72.7 82.9 91.0 70.8 77.0 80.5 58.2 60.8 64.7
k =20 250 53.6 59.2 78.4 52.3 55.7 66.9 45.9 53.7 58.9
500 64.5 70.6 89.6 64.0 68.3 84.4 54.6 60.6 69.7
1B: equal branch lengths
k=1 250 82.8 88.6 88.5 72.3 775 75.8 55.5 65.3 63.9
500 95.9 96.5 96.5 87.2 91.5 91.4 70.1 79.2 77.0
k=5 250 77.9 80.9 82.7 66.8 75.1 77.2 51.9 59.5 61.9
500 92.5 93.0 94.0 82.2 88.7 89.9 65.4 70.5 76.3
k =20 250 72.7 80.5 81.9 61.8 68.5 70.0 49.0 57.5 57.2
500 88.0 90.8 93.1 76.2 80.4 82.4 59.6 65.3 70.0
2A: (short, short)—(long, long)
k=1 250 56.8 44.8 44.6 54.3 58.5 51.5 43.3 45.1 39.7
500 68.3 52.7 52.5 66.4 70.2 62.4 52.5 57.5 50.1
k=5 250 54.0 48.3 53.5 53.6 56.8 52.1 44.4 50.6 45.1
500 65.0 57.1 67.3 64.2 64.7 61.3 53.8 55.7 47.7
k =20 250 48.6 47.1 62.7 50.2 49.9 59.2 44.2 50.8 48.6
500 58.7 56.0 75.9 59.4 60.7 68.4 52.9 56.1 53.2
2B: (short, short)—(long, long)
k=1 250 73.9 74.1 73.4 63.0 70.6 64.0 48.6 59.5 51.5
500 88.1 87.7 87.6 77.4 82.4 77.5 61.6 67.2 57.8
k=5 250 69.6 71.9 74.2 59.5 62.6 62.9 47.9 55.0 49.7
500 84.6 84.0 87.3 73.1 74.6 79.1 58.1 60.5 57.7
k =20 250 65.5 67.0 67.0 56.5 56.4 53.6 45.2 51.8 47.4
500 81.0 78.9 80.4 70.0 714 68.5 54.6 59.9 59.9
3A: (short, long)—(short, long)
k=1 250 347 78.7 78.1 39.3 63.1 72.4 36.6 45.2 54.2
500 29.9 90.2 90.3 38.9 70.7 84.9 39.7 47.2 64.0
k=5 250 30.6 73.0 84.8 37.7 62.5 73.6 36.9 46.8 57.9
500 25.8 84.2 95.5 37.8 735 86.2 39.6 49.8 68.2
k =20 250 21.1 57.1 83.0 32.6 53.4 75.4 36.8 45.9 63.4
500 15.3 59.2 92.8 31.6 61.5 86.6 40.4 53.7 77.2
3B: (short, long)—(short, long)
k=1 250 82.4 91.6 91.4 67.9 84.6 85.3 47.9 65.5 70.6
500 95.0 97.3 97.7 81.6 96.0 96.0 56.6 75.8 83.9
k=5 250 75.9 89.1 90.8 61.2 79.2 83.0 43.6 60.6 70.1
500 87.9 97.7 98.7 73.7 88.1 92.2 50.2 68.4 82.0
k =20 250 68.2 81.5 85.6 52.4 69.2 76.2 37.0 49.,0 60.0
500 80.1 95.4 95.8 60.2 80.9 88.5 39.3 55.5 74.6

#MP stands for maximum parsimony, JC for maximum likelihood assuming the JC69 substitution model, and TRUE for maximum likelihoo
assuming the true model. The true model used for generating the data is K&8G=fer, or K80 + dG for a = 0.8 and 0.2

lihood methods does not seem to be any better for tree 1Bossible ranks of the three methods in performance were
than for tree 1A; the relative performance of MP is not observed for different combinations efanda. Many of
improved by reducing the amount of evolution involved the differences are so large that it appears safe to draw

in the sequences. the conclusion that each of the tree methods performs
best for at least one combination of parameters. The per-
Trees 2A and 2B: (Short, Short)—(Long, Long) formance surfaces of the three methods cross with one

These two trees produced complicated results conanother over the-a plane. Wherk = 1 anda = o, the
cerning the performance of the three methods. All sixprobability of recovering the true tree by MP is much
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Table 5. The estimated probabilities (x100) of recovering the true tree by different methods when the K80 model and trees 4A, 4B, 5A, and 5
are assuméd

o =00 a=0.8 a=0.2
N MP Jc TRUE MP Jc TRUE MP Jc TRUE
4A: (short, short)—(short, long)
k=1 250 97.1 97.7 98.3 92.0 92.4 87.0 76.8 79.6 63.2
500 99.8 99.5 99.5 98.5 99.0 96.2 90.7 91.8 74.2
k=5 250 95.9 94.7 96.0 89.4 88.6 86.7 74.8 77.6 65.4
500 99.8 99.0 99.5 98.0 98.0 98.5 89.4 86.7 78.7
Kk =20 250 95.0 91.8 90.0 86.1 84.1 78.9 72.1 711 69.4
500 98.7 98.0 99.0 96.8 95.6 92.7 86.2 84.7 84.3
4B: (short, short)—(short, long)
k=1 250 85.2 87.6 87.9 80.8 83.6 82.7 73.7 77.8 77.0
500 97.5 98.5 98.5 94.8 97.4 96.4 90.5 91.8 89.7
k=5 250 83.6 88.6 89.1 78.9 85.7 84.7 71.0 76.6 74.8
500 96.9 98.0 98.0 93.8 95.3 93.7 88.3 91.1 89.3
Kk =20 250 81.9 86.8 86.3 76.6 81.7 79.3 69.1 73.4 72.2
500 95.9 95.8 96.2 91.6 93.0 91.2 85.3 88.3 84.3
5A: (long, long)—(long, short)
k=1 250 60.0 64.5 64.2 52.2 58.3 54.2 40.8 46.8 44.1
500 72.5 73.5 73.4 64.8 68.8 64.2 48.9 57.5 53.8
k=5 250 56.3 59.0 65.0 50.9 54.9 57.5 41.2 48.4 46.7
500 69.2 71.6 77.4 62.2 67.6 66.7 49.6 55.0 51.8
Kk =20 250 52.1 52.5 61.7 471.7 51.0 59.0 39.9 44.6 51.2
500 62.5 63.1 79.4 56.6 60.3 72.4 45.8 50.3 58.9
5B: (long, long)—(long, short)
k=1 250 68.2 76.5 76.5 58.1 71.0 68.3 46.1 56.1 52.6
500 84.5 88.4 88.3 74.5 79.2 78.3 59.4 69.2 66.0
k=5 250 63.8 72.9 71.7 54.1 62.4 62.8 44.8 55.0 55.9
500 80.3 83.6 83.7 68.7 75.2 73.8 55.3 62.8 65.8
Kk =20 250 60.0 65.6 65.1 51.9 56.4 57.5 42.1 49.7 48.1
500 75.0 80.2 80.2 64.7 70.0 69.2 51.2 56.2 54.4
2See note to Table 4
100 T1
higher than the probability for JC or TRUE. There are 90
also many cases where JC is much better than both MP | [ 0.8
and TRUE. The fact that MP or JC can perform better 804 [
than TRUE deserves special attention. In Fig. 5, the as- ! [
ymptotics asN - o were examined, with MP and JC 70- -0.6 g
(which assumes the true model, JC69) for the case a )
1,a = oo taken as an example. For this purpose, the ratio 60 [ 0.4 T
of the probabilities for the two methodB,,, /Pyp, is not [
an adequate measure of the efficiency of ML relative to 50 i
MP. A better measure By_yp = (1 —Pyp)/(1 —Py,), 40 -0.2
which is plotted in Fig. 5. The limit 0E,; \p asN - ] i
appears to be zero although a mathematical proof of this 5, o

assertion does not seem possible. Another suitable mea- 0 2000 4000 6000 8000 10000
sure is the inverse ratio of the sequence lengths needed N

by th,e_ two meth??'s to recpver the true tree with a pre'Fig. 5. MP can be better than ML! The estimated probabiliB; (
specified probabilityP, that is,Efy mp = Npmp/NemL-  x100) that the true tree is recovered by MB)(and by ML assuming

Np mp Can be calculated using the approximate formulathe true model (JC69)®), as a function of the sequence lengh.(

(Eq_ 2) of Zharkikh and Li (1992) for this set of branch The JC69 model was assumed to generate data, with branch lengths

lenaths. whil n r I im from Fig. taken from tree 2A of Table 3: = (0.1, 0.5, 0.5, 0.6, 1.4) (see Fig. 1).

56 gt TD’ - 06'5\|P8/||é C(E)l 7b8 g uodg yoe;t ate(.j OI 9 The tree has the shape “(short, short)-(long, long).” The number of
- Fore = 0.9, 0.6, 0.7, U.g, U.9, U. NPMP IS ¢a Cuf simulations for ML is 2,000, while that for MP is determined dy <

lated to be 167, 310, 538, 906, 1,593, 2,316, respectively oos. The efficiency4) of ML relative to MP is calculated B vp

while N\, is estimated as 380, 910, 1600, 3,200, 5,100,= (1 - Pyp)/(1 - Py).
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and 7,950, respectively, and their rati{{_p) is then 100
0.439, 0.341, 0.336, 0.283, 0.312, and 0.291, respec- ]
tively. So both measures suggest deterioration rather than g0
improvement of the performance of ML relative to MP ]
with the increase oN. 80-
The fact that it is possible for ML assuming the true !
model to perform worse than MP or ML assuming a4 70
worse model, even whed - o, will be discussed later.
For the specific cases of trees 2A and 2B, the results are

relatively easy to explain. The parsimony is well known 60
to have a tendency to group long branches together and 50_'
short branches together irrespective of the true topology
(e.g., Felsenstein 1978), a property known as “long 40 ]
UEMERERAN NLELELELEN BRI SRR DAL

branches attract” (e.g., Penny et al. 1987). Felsenstein 0 03 06 0.9 12 15
(1978) provided a detailed explanation of this property in ' Ty ' '

terms of the probabilities of observing site pattexrgy, _ _ . - .

. . . Fig. 6. Does maximum parsimony mean minimum evolution? The
Xy_Xy’ a_nd XyyX. Thls tendency might .be ConSIdere.d 2 estimated probabilityR, x100) that the true tree is recovered by MP
“bias” in the parsimony method and is shared by like- (m) and by ML @) that assumes the true model (JC69), as a function
lihood or distance methods when an overly simplifiedof the amount of evolution measured by The branch lengths are
model is assumed (e.g., Yang 1994b, 1995b). Howevemased on tree 2A of Table 3, i.¢.= (0.1b, 0.5, 0.5, 0.6b, 1.40). The
when the true tree does have the long branches clusterggduence length i§ = 500, and the results (not shown) fsr= 250
together, as in trees 2A and 2B, this property actuallyor 1000 show the same pattern as this graph.
becomes an advantage and makes it possible for MP or
JC to outperform ML assuming the true model.

In the case of tree 2A, the performance of MP be
comes poorer with the increasewfind/or decrease of
and is much poorer than JC or TRUE wher= 20 ora
= 0.2. The two likelihood methods show different pat-
terns with changes of and«; the best performance of
JC occurs ak = 1 anda = 0.8 while the best perfor-
mance of TRUE occurs at = 20 anda = <.

All methods perform better for tree 2B than for tree

“long branches attract” is dependent on the tree recon-
“struction method.

When tree 3B is assumed instead of 3A, MP improves

greatly; indeed, for this tree, MP is consistent for all
values ofk anda except the combination = 20 anda
= 0.2. Thus, the small amount of evolution involved in
tree 3B remedied the problem of MP to some extent,
although the method is still much poorer than both JC
. . and TRUE. The performance of the three methods is
2A, which suggests that tree 2A involves too much evo'invariably in the order MP < JC < TRUE. All methods

lution. It is noteworthy that the superiority of MP over deteriorate with the increase efand decrease of with
the likelihood methods found & = 1 ando. = o for MP and JC particularly so '

tree 2A disappears when the branches are shortened to
those of tree 2B, where MP is either worse or not any _
better than the likelihood methods. Figure 6 shows thel €€S 4A and 4B: (Short, Short)—(Short, Long)
probabilities of recovering the true tree by MP and JC All methods generally deteriorate with the increase of
when the true model is JC69, as functions of the amoun O decrease of, although TRUE appears to improve
of evolution measured by. The performance of MP with k whena = O.2f0r_tree 4A. The differences among
relative to ML improves with the (proportional) increase Methods are not large in the case of tree 4A. When tree
of branch lengths in the tree, and a small amount ofAB is assumed, the probabilities of recovering the true

evolution is not a necessary requirement for parsimony!re€ by any method are lower than those for tree 4A. For
short sequenceN( = 250), parsimony is poorer than

Trees 3A and 3B: (Short, Long)—(Short, Long) both JC and TRUE for all combinations of parameters
The parsimony method is inconsistent for all combi- for tree 4B and the differences are considerable in some

nations ofk anda when tree 3A is assumed. This is true €@S€s, while for long sequence¥ & 500), the three
for the casex = 20 anda = 0.2, where the probability Methods perform more or less the same.

of recovering the true tree increases wiheis increased

from 250 to 500. The inconsistency of MP means that isTrees 5A and 5B: (Long, Long)—(Long, Short)

it necessarily inefficient (Yang 1995b). JC is uniformly  All three methods are consistent for all combinations
poorer than TRUE, too, especially for largeand small  of k anda and for both trees 5A and 5B. Parsimony is
a. The differences among methods are quite large fopoorer than both JC and TRUE for all values of param-
almost all parameter combinations. The high probabili-eters and for both trees. In the case of tree 5A, the dif-
ties for the TRUE method indicate that the notion of ferences in the probability range from 1 to 4%xat= 1
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anda = »to over 10% ak = 20 anda = 0.2, and MP  base-frequency bias does not seem to cause much prob-
becomes worse when the model becomes more complelem for the tree-reconstruction methods examined here.
JC appears to be more efficient than TRUEk at 1 and

a = 0.8 or 0.2, while for other combinations TRUE gives

much better performance than both MP and JC. WherEstimation of a Statistical Parameter and

tree 5B is assumed, the performances of JC and TRU[Estimation of a Tree Topology

are similar while MP is much poorer than the likelihood

methods. In this section, the similarities and differences of phylo-
With four species, if a tree reconstruction methodgenetic tree estimation when compared with the estima
groups together species 1 with 2, species 3 and 4 will bgion of a statistical parameter will be examined. A review
automatically clustered. So one may expect results fobf concepts in statistical estimation highlights the com-
trees 4A, 4B, 5A, and 5B to be similar to those for treesplexities of phylogenetic tree reconstruction. Recogniz-
1A and 1B. This appears to be the case, in that parsimoning these complexities will be helpful for improving cur-

is never too wrong for these three tree shapes—it igent tree reconstruction methods or for devising new
consistent for all values of parameters examined—and ignes.

that parsimony is almost always poorer than the two
likelihood methods. Although the probability of recov- o o
ering the true tree depends on values of branch lengths g€ Problem of Statistical Estimation: Concepts
well as the tree shape, the shape “(short, short)—(shorﬁ

. . h statistical parameter estimation, “[w]e know, or as-
long)” (trees 4A and 4B) seems easier to recover thansume as a working hypothesis, that the parent population
the shape “(long, long)—(long, short)” (trees 5A and ghyp ' P pop

A . k . is distributed in a form which is completely determined
rSnZ)t.h;)r(;"S is particularly the case with the parsimony but for the value of some parametét (Kendall and

Stuart 1979:1). In other words, the probability function
of observing dat, f(X; 0), is fully specified although
the value of the parametérmay be unknown. A func-
tion of the datat(X), is called a statistic, and may be
taken as an estimator of the paraméterhe estimatot

Due to the similarity of results for trees 4A, 4B, 5A, and 1S said to be unb|ase_d E(t). = 6, where t_he expectanon
is taken overX, and is said to be consistent if, for any

5B to those for trees 1A and 1B, the former trees were . o .
. _given small positive numbeksandr, we can find arlN,
not used anymore when the effects of nucleotide-
. . . uch that proli(- 6 > €) < for all N > N, (Kendall and
frequency bias were examined by assuming the HKY85: ) . .
. i L Stuart 1979:3—-4). The variance of a consistent and un-
model. With very few exceptions, the probabilities that . .
iased estimator cannot be smaller than the CreRa®
the three methods recover the true tree for trees 1A, 1 ) : ) .
. ower bound; that is, for any unbiased estimataf 6,
2A, 2B, 3A, and 3B when the HKY85 model is assumed )
S . we have (Kendall and Stuart 1979:8-10)
are very similar to, but slightly smaller than, the corre-
sponding probabilities of Table 4 obtained for K80. The 5 _
differences are almost always smaller than 5%. The re- var()= - 1/E logff(X;6} ()
sults under the HKY85 model are not presented due to 962
space limitation but are available (in a table of the form
of Table 4) from the author unpon request. The fewAn estimator that attains this lower bound for allis
exceptions mentioned above include several parametesalled a minimum variance bound estimator. When this
combinations at« =  for tree 2A, where JC has higher bound is not attainable, there may still be an estimator
probabilities of recovering the true tree when HKY85 is that has, uniform irp, smaller variance than any other
assumed instead of K80. estimator. Such an estimator may not exist, but if it does,
Concerning differences among methods, the samé is unique and is called a minimum variance estimator
patterns were found for the HKY85 model as those foundKendall and Stuart 1979:17).
in Table 4 for K80. For example, all methods generally Maximum likelihood is a methodology for estimating
become poorer with the increaseroind decrease @f.  parameted after the datX are observed. The probabil-
Parsimony performs better than the two likelihood meth-ity of observing the datd(X; 0), is taken as a function of
odswherx = «,k = linthe case oftree 2A. Fortree 3A, the paramete#, and the value 06 that maximized(X;
parsimony is inconsistent for all parameter values, whileg) is the maximum likelihood estimator (MLE) of.
for tree 3B it is inconsistent for the combinatian= 0.2  Note that changing the value 6fwill change the value
and k = 20 only. The base-frequency bias thereforeof f but not its functional form. Under very general “reg-
seems to reduce the chance of recovering the true tree hylarity” conditions, the MLE has desirable asymptotic
any methods, but the effect seems to be minor. Ignoringroperties: that is, wheN - <, an MLE is consistent,

Simulation Results When the Substitution Model of
Hasegawa et al. (1985) Is Assumed
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asymptotically unbiased, and normally distributed, andwith the codon structure taken into account (Goldman
attains the minimum variance bound of (4) (Kendall andand Yang 1994; Muse and Gaut 1994). Nevertheless, the
Stuart 1979:38-81). methodology has remained unchanged.

The failure to recognize the complexity of the prob-
lem has caused much controversy in theoretical studies
of tree reconstruction methods. Felsenstein (1973, 1978)
referred to the regularity conditions of Wald (1949) for a
proof of the consistency of the maximum likelihood
method for estimating the tree topology. These condi-
Following the pioneering work of Cavalli-Sforza and Ed- tions would include the continuity and differentiability of
wards (1967; Edwards 1970), Felsenstein (1981, see aldbe likelihood function with respect to the topology pa-
Felsenstein 1973; Thompson 1975; Bishop and Fridayameter. Such concepts are not defined. Concerning the
1985) suggested a method for reconstructing the phylonature of the tree topology, there have been suggestions
genetic tree using DNA sequence data which has beethat it is a statistical parameter (e.g., Thompson 1975;
known as the maximum likelihood estimation (or, more Goldman 1990), and there are also suggestions that it is
often, maximum likelihood inference!) of the phylogeny. not (e.g., Felsenstein 1988). As the role of the topology
Given a tree topology, the probability of observing theis to specify the branch-length parameters and the form
data, f(X; 0), is used as the “likelihood function” for of the likelihood function, the topology certainly differs
estimating parametefs which include branch lengths in from a parameter which takes only discrete numerical
the tree and parameters in the substitution model. Thealues. Note that the topology also differs from a statis-
optimum value of the likelihood for this tree is also ob- tical hypothesis, which concerns the values of parameters
tained. The same process is repeated for other tree toather than what the parameters are. The controversy
pologies, and the (optimum) likelihood values for differ- concerning the use of the nonparametric bootstrap in the
ent tree topologies are compared to select the begest of phylogenies suggested by Felsenstein (1985) ap-
topology (see Table 2 for a example). This method hagears in a large part to be due to our lack of understand-
similarity with the conventional maximum likelihood in ing of the nature of the topology (e.g., Zharkihk and Li
thatf(X; 6) will be the probability of observing the data 1992; Felsenstein and Kishino 1993; Li and Zharkikh
if the true tree, true branch lengths, and true values 01994).
other parameters are used in the function. It, however, It is, nevertheless, no surprise that the likelihood
does not fit in the framework of statistical parametermethod of phylogenetic tree estimation does not share all
estimation as the aforementioned working hypothesis imsymptotic properties of the maximum likelihood esti-
invalid in the context of topology estimation. Different mator of a statistical parameter. Yang (1994b) suggested
topologies involve different sets of branch-length param-a proof that the likelihood estimation of the tree topology
eters; and the functional form &fX; 6) changes with tree is consistent despite the complexity of the parameter
topology, so that the distribution of the data is not fully space. Results of this simulation suggest that the method
specified without knowledge of the true topology (Yang is not always asymptotically most efficient. Intuitively,
1994b; Yang et al. 1995; see also Nei 1987:325). Thealmost all tree-reconstruction methods select the tree ac-
problem of phylogeny reconstruction concerns more thecording to some criterion, which measures the compati-
guestion of what the (branch length) parameters are thahility of the tree with the data. The likelihood method
the question of what numerical values the parametersecovers the true tree if and only if the likelihood value
take. The implementation of the method is remarkablyfor the true tree is greater than those for the wrong trees.
more complicated than the traditional maximum likeli- When a wrong model is used, the likelihood values of all
hood, in that the maximization of the likelihood func- tree topologies are decreased (normally by a great mar-
tion(s) by numerical iteration has, at least in theory, to begin; see, e.g., Yang et al. 1994, 1995), but it is possible
performed as many times as the number of tree topolofor the aforementioned condition (i.e., the likelihood of
gies. Literally it is amaximum maximum likelihood the true tree being the greatest) to be satisfied more often
method. if a wrong model is assumed than if the true model is

The simple substitution model of Felsenstein (1981)assumed. The fact that using a wrong model can recover
has been improved in many ways, for example, to acthe true tree with a higher probability has been observed
count for more complicated patterns of nucleotide subin computer simulations where distance-matrix methods
stitution (e.g., Hasegawa et al. 1985; Yang 1994a) and tavere used (e.g., Saitou and Nei 1987; Sourdis and Krim-
accommodate the variation and dependence of substitiras 1987; Tateno et al. 1994). Schoeniger and von Hae-
tion rates across nucleotide sites (Yang 1993, 1994cseler (1993) and Tajima and Takezaki (1994) experi-
1995a). The same methodology was applied to homolomented with several distance estimates based on such
gous protein sequences (Bishop and Friday 1985, 1987/wrong” models and found that they could give better
Kishino et al. 1990) and protein-coding DNA sequencesperformance than the distances based on the true model.

The Problem of Phylogenetic Tree
Estimation: Complexities
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In sum, phylogenetic tree reconstruction remains aas gene sequences, biologists may be able to control
difficult estimation problem. Use of the true model fails these factors to their advantage.
quite often to give the best performance in the simula- The author of this paper has been unable to see any
tions. The concept of unbiasedness of an estimated taonnection between the parsimony method of phyloge-
pology is yet to be defined, but one can ask the importantetic tree reconstruction and the parsimony or simplicity
guestion of whether there exists a method that has highgarinciple of science and philosophy, or any scientific
probability of recovering the true tree than any othermerit of discussions that claim such a connection. In this
methods for the whole parameter space; such a methostudy, parsimony is considered a well-defined method of
would be equivalent to the minimum-variance estimatordata analysis and its performance for this purpose is ex-
of a statistical parameter. Perhaps it is not that using thamined. Nevertheless, both the intuitive examination and
true model sometimes fails to give the best performancéhe computer simulation employed in this study for iden-
but rather that we have not found the right way of usingtifying the assumptions underlying parsimony involve
the true model. difficulties. First of all, an analytical method may not be

Yang et al. (1995) noted that different tree topologiessensitive to its assumptions, and indeed, the reconstruc-
have similarities to different statistical distributions. Onetion of the tree topology by model-based methods is
possibility that might be worth exploring is construction known to be quite tolerant to violations of the assump-
of a “super model” that has all tree topologies as its tions (e.g., Fukami-Kobayashi and Tateno 1991; Debry
special cases, in the same way that a family of distribu-1992; Gaut and Lewis 1995). It is also commonplace that
tions can encompass many different distributions. Folan assumption made to derive certain results was later
example, the Katz family of discrete distributions (ran- shown to be unnecessary. The greatest difficulty is our

dom variablex = 0, 1, . .. ,with probabilitypy, p;,...)  lack of a method that is known to give the best perfor-

can be specified as mance for all values of parameters, with which other
methods such as parsimony can be compared.

PP = (@+DbX)/I(L+X),x=0,1,... (5) At any rate, the hierarchy of models assumed in this

study can be arranged, say, in the order JC69, K80, K80
wherea > 0, b < 1. Katz (1946, 1965; see also Johnson* 4G, HKY85 +dG, so that the model becomes more and

et al. 1992:77-81) showed thak 0,b = 0, and 0 <b < more complex and realistic. Then the intuitive examina-
1 in the Katz family give rise to the binomial, Poisson, tion suggests that the model underlying parsimony is
and negative binomial distributions, respectively. TheCl0Ser to JC69 than to HKY85 + dG. This expectation
distinction among the distributions is then equivalent tohas certainly been confirmed by the simulation results.
a test of hypotheses concerning the parambter the The pattern is clearest when there exist con§|derable dif-
Katz family of distributions. Such an approach, if it ferences among the methods, for example, in the case of
could work, would drastically reduce the computation (€€ 2A where MP and JC can outperform ML assuming
involved in phylogenetic estimation. the true model, and in the case of tree 3A Wherg both MP
and JC do not perform well. Further evidence is that the
performance of MP (and JC) in comparison with ML
assuming the true model generally deteriorates when the
model becomes more complex (Tables 4 and 5). Recent
attempts to use “step matrices” in the parsimony anal-
It is noteworthy that the simple JC method performedysis (Maddison and Maddison 1992; Swofford 1993),
quite well in the simulations, even though the modeldespite their arbitrary nature, have made it possible for
(JCB9) is wrong. In almost all cases, it is much morethe method to use, to some extent, information and
efficient than parsimony, and, when the tree is difficult to knowledge concerning the process of sequence evolution
reconstruct, it is less likely to be misleading than parsi-such as the transition/transversion rate bias, and have
mony (results for tree 3A, Table 4). The JC69 model hagelaxed some of the stringent assumptions about the sub-
computational advantages over more complex modelstitution process as identified in this paper. An important
and they may be made use of. It should also be noted thdactor that does not seem to have been considered is the
other factors may be more important in affecting thedifference of branch lengths. Failure to take into account
probability of recovering the true tree than the choice ofdifferent branch lengths of the tree appears to be the
methods. The shape of the tree and the branch lengthmajor reason for the failure of parsimony in cases such as
affect the success of tree reconstruction significantlytrees 3A and 3B. It seems possible to modify the method
The base frequency bias does not seem to have posedsa that differences in branch lengths are explicitly con-
great problem, but the transition/transversion rate biasidered in the calculation of the parsimony score. The
and, in particular, the variation of substitution ratesresulting method might be a parsimony with a time struc-
across sites generally reduce the probability of recoverture and, at the same time, a likelihood without iteration,
ing the true tree. By careful sampling of species as welland might have advantages of both methods.

Discussion
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