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Abstract. The assumptions underlying the maximum-
parsimony (MP) method of phylogenetic tree reconstruc-
tion were intuitively examined by studying the way the
method works. Computer simulations were performed to
corroborate the intuitive examination. Parsimony appears
to involve very stringent assumptions concerning the
process of sequence evolution, such as constancy of sub-
stitution rates between nucleotides, constancy of rates
across nucleotide sites, and equal branch lengths in the
tree. For practical data analysis, the requirement of equal
branch lengths means similar substitution rates among
lineages (the existence of an approximate molecular
clock), relatively long interior branches, and also few
species in the data. However, a small amount of evolu-
tion is neither a necessary nor a sufficient requirement of
the method. The difficulties involved in the application
of current statistical estimation theory to tree reconstruc-
tion were discussed, and it was suggested that the ap-
proach proposed by Felsenstein (1981,J. Mol. Evol.17:
368–376) for topology estimation, as well as its many
variations and extensions, differs fundamentally from the
maximum likelihood estimation of a conventional statis-
tical parameter. Evidence was presented showing that the
Felsenstein approach does not share the asymptotic effi-
ciency of the maximum likelihood estimator of a statis-
tical parameter. Computer simulations were performed to
study the probability that MP recovers the true tree under
a hierarchy of models of nucleotide substitution; its per-
formance relative to the likelihood method was espe-
cially noted. The results appeared to support the intuitive

examination of the assumptions underlying MP. When a
simple model of nucleotide substitution was assumed to
generate data, the probability that MP recovers the true
topology could be as high as, or even higher than, that for
the likelihood method. When the assumed model became
more complex and realistic, e.g., when substitution rates
were allowed to differ between nucleotides or across
sites, the probability that MP recovers the true topology,
and especially its performance relative to that of the like-
lihood method, generally deteriorates. As the complexity
of the process of nucleotide substitution in real se-
quences is well recognized, the likelihood method ap-
pears preferable to parsimony. However, the develop-
ment of a statistical methodology for the efficient
estimation of the tree topology remains a difficult open
problem.
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Introduction

The maximum parsimony (MP) method of phylogenetic
tree reconstruction using nucleotide sequence data per-
forms a site-by-site analysis. For each tree topology, it
calculates the minimum number of nucleotide changes
(substitutions) that are required to explain the observed
site pattern. The numbers of changes are summed over
sites to give a parsimony score for each tree topology,
and the topology having the smallest total number of
changes is taken as the estimate of the phylogeny, which
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is known as the most parsimonious tree. The method was
proposed by Edwards and Cavalli-Sforza (1963; see also
Cavalli-Sforza and Edwards 1967) to analyze gene-
frequency data and by Camin and Sokal (1965) for mor-
phological characters. The application of the method to
molecular sequence data goes back to Pauling and Zuck-
erkandl (1963), Zuckerkandl (1964), and Eck and Day-
hoff (1966), and Fitch (1971) and Hartigan (1973) de-
vised an algorithm for its systematic implementation.

There has been much controversy concerning the
mechanism of the method (see, e.g., Felsenstein 1973,
1978; Farris, 1973, 1977; Felsenstein and Sober 1986;
Sober 1988). The method does not make explicit as-
sumptions concerning the process of sequence evolution.
Indeed, there were suggestions that the method involved
no assumptions at all (e.g., Wiley 1975:236), and there
were further suggestions that reconstruction of phylog-
eny should ideally be free from any assumptions con-
cerning the evolutionary process. Felsenstein (1978)
used a simple model for the evolution of a two-state
character along a four-species tree with highly variable
rates of change among lineages and showed that parsi-
mony can be statistically inconsistent; as the amount of
data (the number of nucleotides in each sequence) in-
creases without bound, the method will produce a wrong
tree with the probability approaching one. According to
Sober’s (1988:166–172) interpretation, both Felsenstein
(1973, 1978) and Farris (1973, 1977) agreed that parsi-
mony does involve assumptions, but they disagreed on
whether Felsenstein’s overly simplified model is relevant
to the performance of parsimony in real data analysis.
Felsenstein (1973, 1978, 1988) suggested that when the
amount of evolution is small and the rate of evolution is
more or less constant among lineages, parsimony may be
an acceptable approximation to likelihood (see also Cav-
alli-Sforza and Edwards 1967; Goldman 1990). More
recent studies have shown that even the existence of a
molecular clock combined with a small amount of evo-
lution does not guarantee the statistical consistency of
the parsimony method, and the situation seems to be-
come worse when more sequences are in the data (Hendy
and Penny 1989; Zharkikh and Li 1993; Takezaki and
Nei 1994). Computer simulations that compared differ-
ent tree reconstruction methods have tended to suggest
that the performance of MP in finite data samples is often
poorer than distance matrix and likelihood methods (Ha-
segawa and Yano 1984; Saitou and Imanishi 1989; Jin
and Nei 1990; Hasegawa and Fujiwara 1993; Huelsen-
beck and Hillis 1993; Kuhner and Felsenstein 1994;
Tateno et al. 1994).

In this paper an attempt will be made to identify the
assumptions underlying the parsimony method of tree
reconstruction. I will do this initially by examining the
way the method works, based on the understanding that,
to justify a treatment of the data, certain assumptions
have to be made concerning the process that has given
rise to the data. Computer simulations will be performed

to corroborate this intuitive examination, with various
substitution models assumed. The model will be made
more and more complex and realistic by adding compo-
nents that are known to reflect characteristics of se-
quence evolution, and the probability that parsimony re-
covers the true tree will be estimated. The working
hypothesis is that when the true model moves further and
further away from the model underlying a method, the
performance of the method may be expected to deterio-
rate.

The main objective of this study is to examine the
differences of parsimony and likelihood methods of tree
reconstruction and to identify important factors that ac-
count for their success or failure. Initially, the assump-
tions of the parsimony method will be intuitively exam-
ined. Then the simulation experiment will be described,
and the results will be presented. The differences and
difficulties of tree reconstruction in comparison with the
estimation of a conventional statistical parameter will be
discussed. This discussion also provides an interpretation
of some ‘‘counterintuitive’’ results found in the simula-
tion experiment.

An Intuitive Examination of Assumptions
Underlying the Parsimony Method of Phylogenetic
Tree Reconstruction

Consider the sequence data of the 895-bp segment of the
mitochondrial genome (mtDNA) of human (H), chim-
panzee (C), gorilla (G), and orangutan (O) (Brown et al.
1982). The segment codes for three tRNAs and parts of
two proteins. The data can be ‘‘summarized’’ as the ob-
served numbers of different site patterns in the form of
Table 1. Sites with identical nucleotides in different spe-
cies (patterns 1–4 in Table 1) and those at which only one
species has a different nucleotide (e.g., patterns 6, 8, 10
in Table 1) are considered ‘‘noninformative,’’ as these
two kinds of sites require no and one change, respec-
tively, for any tree topology and so do not contribute to
the discrimination of the trees. Site patterns represented
by xxyz, xyxz,andyzxx,wherex, y,andzare any different
nucleotides (e.g., patterns 24, 31, and 33 in Table 1), are
also ‘‘noninformative’’ by this criterion, as these patterns
can be explained by two substitutions for any tree topol-
ogy. The only ‘‘informative’’ patterns arexxyy, xyxy,and
xyyx, which support the three bifurcating treesT1 4
((H,C),G,O),T2 4 ((H,G),C,O), andT3 4 ((C,G),H,O),
respectively. For four species, parsimony uses only 36 (4
3 × 12) out of 256 possible site patterns and does not use
the data efficiently. It should be noted that the ‘‘nonin-
formative sites’’ do contain phylogenetic information.
Even the ‘‘constant’’ patterns provide information about
the amount of evolution and the pattern of nucleotide
substitution. For example, the higher frequency ofC
(0.311) than that ofG (0.104) observed in the mtDNA
data suggests thatG probably has a higher rate of change
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than doesC, so that in the long run moreCs are observed
than Gs. Such information could be employed in the
estimation of the phylogeny.

In order to justify the practice of summarizing the
sequence data in the form of Table 1, two assumptions
concerning the substitution process are necessary: (1)
The stochastic processes of nucleotide substitution are
identical at different sites; (2) Substitutions occur inde-
pendently among sites. These two assumptions ensure
that data at different sites are identically and indepen-
dently distributed (i.i.d.) in which case Table 1 is a le-
gitimate summary of the original data. In fact, both as-
sumptions are unrealistic for the mtDNA data. For
example, Table 2 presents results obtained from fitting a
model that uses independent rate parameters for the three
codon positions and for sites in the tRNA region. Esti-
mates of these rate parameters are in the proportion 1:
0.28:5.35:0.59. The model is still unrealistic as it as-
sumes the same transition/transversion rate ratio and
gamma parameter for different codon positions. Never-
theless, it should be noted that under this model, sites at
different codon positions, even if their nucleotide com-
positions are identical, are treated differently. Without
the assumption of among-site homogeneity, it is illegit-

imate to combine these sites into one category (as in
Table 1).

Similar arguments may be used to examine other as-
pects of the parsimony analysis. For instance, the method
treats all nucleotide differences in the same way—
patterns likeTTCC, TTAA, TTGGare further combined
into one category,xxyy—which suggests that substitu-
tions between different nucleotides, such as transitions
and transversions, are assumed to occur with equal prob-
ability. This is similar to the model of Jukes and Cantor
(1969), which assumes the same substitution rate be-
tween any two nucleotides. The major difference is that
parsimony fails to account for different branch lengths,
and short and long branches are treated in the same way
when the numbers of changes are inferred and counted.
This lack of a time structure in the method (Thompson
1975; Goldman 1990) is justifiable only if all branches
are equally long. For practical data analysis, the require-
ment of equal branch lengths means similar substitution
rates among lineages, relatively long interior branches,
and, most often, few species in the data. Despite previous
suggestions (e.g., Camin and Sokal 1965; Felsenstein
1973, 1978), a small amount of evolution does not ap-
pear to be a requirement for the method. Counting the

Table 1. The observed site-pattern frequencies (ni) in the 895-bp mtDNA sequences of human (H), chimpanzee (C), gorilla (G), and orangutan
(O) (Brown et al. 1982)

2 2 1
2 7 1 6 2 1 1 1 1 1 1

ni 2 1 7 72 3 8 1 3 3 6 5 7 1 7 6 3 2 6 4 6 7 7 1 9 6 3 2 4 3 1 1 1 2 4 1 1 1 1 2 1 1 3 1 1 1

Patterni AGCTG TCATC ACCCA CCTTT TGCAG AGAAT TATAC GGTGC ACTGC C Human
AGCTA TTACC ACCCA TCCTC TGCCA GGTAC CGTAT AAAGC GTTAA C Chimpanzee
AGCTG TTGTT ATCAA CACCT CGCAA AAAAC TGCCC AGAGT ATTAA T Gorilla
AGCTA CCACC GTTCC CACCT TAATA AAATT AAAAT GGGCG CTACA A Orangutan

Supported tree 2 3 2 1 1 1 1 3 3 2 3

a The 46 observed patterns are arranged columnwise in the order of occurrence in the data, for example, the first two patterns, AAAA and GGGG,
are observed at 222 and 71 sites, respectively. The three tree topologies supported by the ‘‘informative’’ patterns areT1 4 ((H,C),G,O),T2 4

((H,G),C,O),T3 4 ((C,G),H,O); other site patterns are ‘‘noninformative’’ by the parsimony analysis. SoT1, T2, andT3 are supported by 17 (4 5 +
3 + 6 + 3), 9(4 2 + 3 + 4), and 13(4 8 + 3 + 1 + 1) sites, respectively, andT1 is the most parsimonious tree

Table 2. Log-likelihood values and parameter estimates obtained by fitting the HKY85+ C + dG modela

Tree t̂0 t̂H t̂C t̂G t̂O ĉ2 ĉ3 ĉ4 k̂ â

(HCGO) −2,100.42 0.038 0.043 0.066 0.238 0.275 5.963 0.631 26.957 0.611
((HC)GO) −2,097.26 0.016 0.038 0.043 0.051 0.219 0.277 5.347 0.587 25.337 0.764
((HG)CO) −2,100.42 0.000 0.038 0.043 0.066 0.238 0.275 5.962 0.631 26.951 0.612
((HO)CG) −2,099.86 0.009 0.029 0.041 0.064 0.222 0.279 5.780 0.632 25.063 0.691

a The 895-bp mtDNA sequences of human (H), chimpanzee (C), gorilla
(G), and orangutan (O) (Brown et al. 1982) were analyzed by assuming
the HKY85 model of nucleotide substitution (Hasegawa et al. 1985).
Different rate parameters (c1 4 1,c2, c3, c4) were assumed for the three
codon positions and for sites from the tRNA-coding region, and a
discrete-gamma model (dG, with eight rate categories) was assumed to
account for the remaining rate variation. Branch lengths in each of the
tree topologies were also estimated by maximum likelihood, wheretH,
tC, tG, andtO are the lengths of branches leading to human, chimpanzee,

gorilla, and orangutan, respectively, whilet0 is the interior branch
length. The base frequency parameters are estimated using the averages
of observed frequencies; they are 0.2542, 0.3313, 0.3106, and 0.1039
for T, C, A,andG, respectively. The maximum-likelihood tree topology
under the model is ((HC)GO). This table is used to explain the protocol
of phylogenetic tree estimation by maximum likelihood and the as-
sumptions to be made to justify the practice of summarizing the se-
quence data in the form of Table 1
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numbers of changes and calculation of the differences of
such counts among trees, although not accurate in the
presence of long branches, are justified even with a large
amount of evolution.

Accounting for the rate heterogeneity across sites
does not necessarily violate the i.i.d. assumption of data
among sites (Yang 1993), and it is not intuitively clear
whether or not parsimony assumes rate constancy among
sites. The problem concerns the weighting of sites during
the calculation of the score for tree selection. In a like-
lihood analysis, highly variable sites usually have low
probabilities of occurrence and contribute more to the
likelihood score (Yang et al. 1994). Parsimony assumes
weight zero for ‘‘noninformative’’ sites and weight one
for all remaining sites. (That ‘‘equal weighting’’ is not
the same as ‘‘no weighing’’ was nicely discussed by
Swofford and Olsen 1990.) The equal weighting adopted
by parsimony is insufficient to handle information con-
tained in the data even if rates are constant at sites, and
appears worse when rates are variable (Yang et al. 1994).
So parsimony may be expected to perform worse when
rate variation among sites exists than when rates are
constant.

Trees and Models Assumed in the Computer
Simulation of This Study

The Shape of the Model Tree as Reflected in the
Lengths of Its External Branches

Only four-species trees are considered in this study, and
the model tree topology is shown in Fig. 1. Ten sets of
branch lengths (Table 3) are used to represent different
shapes of trees as reflected in the external branch
lengths: (t1, t2) − (t3, t4). The probability of recovering
the true tree by any method is expected to rise monoton-
ically with the interior branch length (t0), and sot0 is not
used in the representation of the three shapes. The ‘‘B’’
trees have branches that are 0.2 times as long as those of
the ‘‘A’’ trees. Trees 1A and 1B have equal external
branch lengths. A molecular clock holds in tree 2A and

2B: t1 4 t2, t3 4 t1 + t2, t4 > t3. However, it is the shape
of the tree rather than the clock assumption that is im-
portant. Trees 3A and 3B have two long branches and
two short branches separated, which is the shape Felsen-
stein (1978) used to show the inconsistency of the par-
simony method and which appears to be the most com-
monly used tree shape in previous simulation studies.
Trees 4A and 4B have three short branches and one long
branch, while trees 5A and 5B have three long branches
and one short branch.

The Model of Nucleotide Substitution Assumed for
Generating the Data

The substitution model of Hasegawa et al. (1985) and its
special forms were assumed. According to this model,
the rate of substitution from nucleotidei to j (i Þ j) is

Qij = H kpj,
pj,

for transitions:T↔ C, A↔ G
for transversions:T,C↔ A,G (1)

wherek is the transition/transversion rate ratio andpj is
the equilibrium frequency of nucleotidej. The model is
designated ‘‘HKY85.’’ Simpler models that were used
include that of Kimura (1980), represented ‘‘K80,’’
which is equivalent to HKY85 by settingpT 4 pC 4
pA 4 pG 4 1⁄4, and that of Jukes and Cantor (1969),
referred to as ‘‘JC69,’’ which is a special case of K80
with k 4 1. Three values were used fork in the K80 or
HKY85 models: 1, 5, and 20. The frequency parameters
in the HKY85 model were fixed atpT 4 0.1,pC 4 0.2,
pA 4 0.3, andpG 4 0.4.

The gamma distribution was used to describe variable
substitution rates among sites. The shape parametera of
the distribution is inversely related to the extent of rate
variation (Yang 1993). The ‘‘discrete-gamma’’ (dG)
model of Yang (1994c) was used in this paper both for
generating and for analyzing the data, with four equal-
probability categories used to approximate the continu-
ous gamma. Three values ofa were used:̀ (no rate
variation), 0.8 (slight rate variation), and 0.2 (severe rate
variation).

Generation of the Simulated Data

Two sequence lengths (N) were used: 250 and 500. For
each combination of parameter values and sequence
length,r simulated samples were generated withr deter-
mined by calculating the standard error of the estimated
probability (P) of recovering the correct tree:sP 4 [P(1
− P)/r]1/2. For every 200 replicates,sP was calculated
using the current estimate ofP. For the parsimony
method,r was determined such thatsP ø 0.005 with the
restriction thatr ù 500, while for the likelihood method,
sP ø 0.01 was used with the restriction 200ø r ø 1,000.

The probabilities of observing all site patterns were
calculated by the approach of Felsenstein (1981) for
models assuming a constant rate for all sites (a 4 `) or

Fig. 1. A model tree of four species. The branch lengths,t = (t0, t1,
t2, t3, t4), are measured by the expected numbers of nucleotide substi-
tutions per site.
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by the approach of Yang (1994c) for the discrete-gamma
models. These probabilities are then used to generate the
observed numbers of site patterns, which constitute the
data to be analyzed by each tree reconstruction method.
The three methods examined in this study are maximum
parsimony, maximum likelihood assuming the JC69 sub-
stitution model, and maximum likelihood assuming the
true model used to generate the data. These are referred
to as the MP, JC, and TRUE methods. For the TRUE
method, thek parameter in the K80 and HKY85 models
and thea parameter in the (discrete-) gamma model were
estimated by iteration from the simulated data for each
tree, while the frequency parameters in the HKY85
model (theps) were estimated by using the averages of
the observed nucleotide frequencies.

Results of the Computer Simulation Experiment

Factors Affecting the Probability of Recovering the
True Tree

Before presenting results of the simulation experiment,
we briefly discuss effects of some important factors that
affect the performance of any tree reconstruction
method. Tree 1A of Table 3 and the parsimony method
are used as an example, and the results are shown in Figs.
2–4.

Let p1, p2, p3 be the probabilities of observing the
three site patternsxxyy, xyxy,andxyyx,respectively. (1 −
p1 − p2 − p3 will be the probability of observing all other
patterns.) With tree 1A, we havep1 > p2 4 p3, for which
case Zharkikh and Li (1992:1129) derived an approxi-
mate formula for calculating the sample size required by
parsimony to recover the true tree with a prespecified
probability (P)

NP = F=p2/p + zP =p1 + [1 − (1/p)]p2
Dp

G
2

+
1

Dp
(2)

whereDp= p1 − p2, andzP is the one-tail standard normal
variate corresponding to probabilityP, e.g.,z0.95= 1.65.
The probability of recovering the true tree given the
sample sizeN is

P(N) = F SDp=N − 1/Dp − =p2/p

=p1 + (1 − 1/p)p2
D (3)

whereF(●) is the cumulative density function of the
standard normal distribution, and can be calculated by
using the method of Hill (1973). Eq. 3 was found to give
results very similar to those obtained from simulations
(results not shown), in accordance with the high accuracy
of Eq. 2 reported by Zharkikh and Li (1992). Results for
the contour graphs of Figs. 2–4 were calculated using
Eq. 3.

Table 3. Branch lengths and tree shapes examined in the computer simulation

Tree t0 t1 t2 t3 t4 Tree shape

1A 0.1 0.5 0.5 0.5 0.5 (equal external branches)
1B 0.02 0.1 0.1 0.1 0.1

2A 0.1 0.5 0.5 0.6 1.4 (short, short)–(long, long)
2B 0.02 0.1 0.1 0.12 0.28

3A 0.1 0.1 0.5 0.2 1 (short, long)–(short, long0
3B 0.02 0.02 0.1 0.04 0.2

4A 0.05 0.05 0.05 0.05 0.5 (short, short)–(short, long)
4B 0.01 0.01 0.01 0.01 0.1

5A 0.05 0.5 0.5 0.5 0.05 (long, long)–(long, short)
5B 0.01 0.1 0.1 0.1 0.01

Fig. 2. The contour graph of the probability (P, ×100) that MP re-
covers the true tree as a function of the amount of evolution represented
by b and the transistion/transversion rate ratiok. The K80 model was
assumed to generate data, while branch lengths are based on tree 1A of
Table 1:t 4 (0.1b, 0.5b, 0.5b, 0.5b, 0.5b) (see Fig. 1). The sequence
length isN 4 500.
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The variableb in Figs. 2 and 3 measures the amount
of evolution, and branch lengths are proportional to it.
Clearly the best performance is achieved at intermediate
values ofb as both very similar and very different se-
quences contain little phylogenetic information. The
probability of recovering the true tree improves dramat-
ically with bwhenb is small and deteriorates slowly with
bwhenb is larger than the optimum value. The effects of
b and a are somewhat confounded, and the optimum

values ofb are smaller when substitution rates are highly
variable, i.e., whena is very small (Fig. 3). The interior
branch length (t0) is of great importance to the success of
tree reconstruction. The probabilityP steadily increases
with t0 (Fig. 4). Generally speaking,P increases witha
(Figs. 3 and 4), which confirm the previous observation
that sequences with no or little rate variation across sites
provide more information concerning the phylogeny than
sequences involving severe rate variation (Yang 1995b).
The effect of the transition/transversion rate bias (k) is
minor in comparison with that ofa and branch lengths
(Fig. 2). Overall, extreme bias (i.e., largek) leads to a
decrease in the probability of recovering the true tree.

The observations that an intermediate amount of evo-
lution and long interior branches lead to high probability
of recovering the true tree can be expected to apply ir-
respective of the tree reconstruction method, the shape of
the tree, or the model of sequence evolution. The effects
of a andk, however, may be confounded with the effects
of branch lengths. Indeed, complicated patterns arise in
the simulations concerning the effects of these param-
eters, as will be described below.

Simulation Results When the Substitution Model of
Kimura (1980) Is Assumed

Results obtained by assuming trees 1A, 1B, 2A, 2B, 3A,
and 3B of Table 3 are presented in Table 4, and results
obtained from trees 4A, 4B, 5A, and 5B are presented in
Table 5. Although only nine combinations ofk anda
were examined for each tree, it is useful to bear in mind
that the estimated probabilities for any method represent
a ‘‘performance surface’’ over thek–a plane.

Trees 1A and 1B (Equal External Branch Lengths)
There is a general deterioration in the performance of

MP and JC when rate variation across sites becomes
serious or when the transition/transversion rate bias gets
large. The TRUE method, however, appears to improve
with the increase ofk when tree 1A is assumed although
it also becomes worse with the decrease ofa. For both
trees 1A and 1B, MP is considerably poorer than the two
likelihood methods. JC also has lower probabilities of
recovering the true tree than TRUE. In both cases, the
differences are larger whena 4 0.2 ork 4 20, that is,
under a more complex model.

For parameter combinationk 4 1 anda 4 `, JC
performs slightly better than TRUE. The TRUE method
which assumes the K80 model estimatesk from the data,
and is not so efficient as JC, which makes use of the fact
that the realk 4 1. This observation is true for other
trees and is expected to apply for other cases where a
model more complicated than the true model is used.

All methods recover the true tree with higher prob-
abilities when tree 1B is assumed instead of tree 1A; the
long branches of tree 1A mean too much noise in the
sequences. The performance of MP relative to the like-

Fig. 3. The contour graph of the probability (P, ×100) that MP re-
covers the true tree as a function of the amount of evolution measured
by b and thea parameter of the gamma distribution for variable rates
at sites. The true model if JC69 + dG and branch lengths aret 4 (0.1b,
0.5b, 0.5b, 0.5b, 0.5b) (see Fig. 1). The sequence length isN 4 500.

Fig. 4. The contour graph of the probability (P, ×100) that MP re-
covers the true tree as a function of the interior branch length (t0) and
the a parameter of the gamma distribution for variable rates among
sites. The JC69 + dG model was assumed to generate data, with branch
lengthst 4 (t0, 0.5, 0.5, 0.5, 0.5) (see Fig. 1). The sequence length is
N 4 500.
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lihood methods does not seem to be any better for tree 1B
than for tree 1A; the relative performance of MP is not
improved by reducing the amount of evolution involved
in the sequences.

Trees 2A and 2B: (Short, Short)–(Long, Long)
These two trees produced complicated results con-

cerning the performance of the three methods. All six

possible ranks of the three methods in performance were
observed for different combinations ofk anda. Many of
the differences are so large that it appears safe to draw
the conclusion that each of the tree methods performs
best for at least one combination of parameters. The per-
formance surfaces of the three methods cross with one
another over thek-a plane. Whenk 4 1 anda 4 `, the
probability of recovering the true tree by MP is much

Table 4. Estimated probabilities (×100) that the true tree is recovered by different methods when the K80 model is assumeda

N

a = ` a = 0.8 a = 0.2

MP JC TRUE MP JC TRUE MP JC TRUC

1A: equal branch lengths
k = 1 250 64.2 75.8 75.2 59.8 68.1 65.2 46.1 54.9 52.3

500 78.5 88.3 87.8 73.3 79.5 79.7 57.4 61.2 61.1

k = 5 250 60.5 70.5 77.2 58.1 65.4 69.2 47.3 54.6 53.6
500 72.7 82.9 91.0 70.8 77.0 80.5 58.2 60.8 64.7

k = 20 250 53.6 59.2 78.4 52.3 55.7 66.9 45.9 53.7 58.9
500 64.5 70.6 89.6 64.0 68.3 84.4 54.6 60.6 69.7

1B: equal branch lengths
k = 1 250 82.8 88.6 88.5 72.3 77.5 75.8 55.5 65.3 63.9

500 95.9 96.5 96.5 87.2 91.5 91.4 70.1 79.2 77.0

k = 5 250 77.9 80.9 82.7 66.8 75.1 77.2 51.9 59.5 61.9
500 92.5 93.0 94.0 82.2 88.7 89.9 65.4 70.5 76.3

k 4 20 250 72.7 80.5 81.9 61.8 68.5 70.0 49.0 57.5 57.2
500 88.0 90.8 93.1 76.2 80.4 82.4 59.6 65.3 70.0

2A: (short, short)–(long, long)
k = 1 250 56.8 44.8 44.6 54.3 58.5 51.5 43.3 45.1 39.7

500 68.3 52.7 52.5 66.4 70.2 62.4 52.5 57.5 50.1

k = 5 250 54.0 48.3 53.5 53.6 56.8 52.1 44.4 50.6 45.1
500 65.0 57.1 67.3 64.2 64.7 61.3 53.8 55.7 47.7

k = 20 250 48.6 47.1 62.7 50.2 49.9 59.2 44.2 50.8 48.6
500 58.7 56.0 75.9 59.4 60.7 68.4 52.9 56.1 53.2

2B: (short, short)–(long, long)
k = 1 250 73.9 74.1 73.4 63.0 70.6 64.0 48.6 59.5 51.5

500 88.1 87.7 87.6 77.4 82.4 77.5 61.6 67.2 57.8

k = 5 250 69.6 71.9 74.2 59.5 62.6 62.9 47.9 55.0 49.7
500 84.6 84.0 87.3 73.1 74.6 79.1 58.1 60.5 57.7

k = 20 250 65.5 67.0 67.0 56.5 56.4 53.6 45.2 51.8 47.4
500 81.0 78.9 80.4 70.0 71.4 68.5 54.6 59.9 59.9

3A: (short, long)–(short, long)
k = 1 250 34.7 78.7 78.1 39.3 63.1 72.4 36.6 45.2 54.2

500 29.9 90.2 90.3 38.9 70.7 84.9 39.7 47.2 64.0

k = 5 250 30.6 73.0 84.8 37.7 62.5 73.6 36.9 46.8 57.9
500 25.8 84.2 95.5 37.8 73.5 86.2 39.6 49.8 68.2

k = 20 250 21.1 57.1 83.0 32.6 53.4 75.4 36.8 45.9 63.4
500 15.3 59.2 92.8 31.6 61.5 86.6 40.4 53.7 77.2

3B: (short, long)–(short, long)
k = 1 250 82.4 91.6 91.4 67.9 84.6 85.3 47.9 65.5 70.6

500 95.0 97.3 97.7 81.6 96.0 96.0 56.6 75.8 83.9

k = 5 250 75.9 89.1 90.8 61.2 79.2 83.0 43.6 60.6 70.1
500 87.9 97.7 98.7 73.7 88.1 92.2 50.2 68.4 82.0

k = 20 250 68.2 81.5 85.6 52.4 69.2 76.2 37.0 49.,0 60.0
500 80.1 95.4 95.8 60.2 80.9 88.5 39.3 55.5 74.6

aMP stands for maximum parsimony, JC for maximum likelihood assuming the JC69 substitution model, and TRUE for maximum likelihood
assuming the true model. The true model used for generating the data is K80 fora = `, or K80 + dG for a = 0.8 and 0.2
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higher than the probability for JC or TRUE. There are
also many cases where JC is much better than both MP
and TRUE. The fact that MP or JC can perform better
than TRUE deserves special attention. In Fig. 5, the as-
ymptotics asN → ` were examined, with MP and JC
(which assumes the true model, JC69) for the casek 4
1,a 4 ` taken as an example. For this purpose, the ratio
of the probabilities for the two methods,PML/PMP, is not
an adequate measure of the efficiency of ML relative to
MP. A better measure isEML,MP 4 (1 −PMP)/(1 −PML),
which is plotted in Fig. 5. The limit ofEML,MP asN→ `
appears to be zero although a mathematical proof of this
assertion does not seem possible. Another suitable mea-
sure is the inverse ratio of the sequence lengths needed
by the two methods to recover the true tree with a pre-
specified probabilityP, that is,E*ML,MP 4 NP,MP/NP,ML.
NP,MP can be calculated using the approximate formula
(Eq. 2) of Zharkikh and Li (1992) for this set of branch
lengths, whileNP,ML can be crudely estimated from Fig.
5. ForP 4 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,NP,MP is calcu-
lated to be 167, 310, 538, 906, 1,593, 2,316, respectively,
whileNP,ML is estimated as 380, 910, 1600, 3,200, 5,100,

Fig. 5. MP can be better than ML! The estimated probability (P,
×100) that the true tree is recovered by MP (j), and by ML assuming
the true model (JC69) (d), as a function of the sequence length (N).
The JC69 model was assumed to generate data, with branch lengths
taken from tree 2A of Table 3:t 4 (0.1, 0.5, 0.5, 0.6, 1.4) (see Fig. 1).
The tree has the shape ‘‘(short, short)-(long, long).’’ The number of
simulations for ML is 2,000, while that for MP is determined bysp <
0.005. The efficiency (m) of ML relative to MP is calculated asEML,MP
4 (1 − PMP)/(1 − PML).

Table 5. The estimated probabilities (×100) of recovering the true tree by different methods when the K80 model and trees 4A, 4B, 5A, and 5B
are assumeda

N

a = ` a = 0.8 a = 0.2

MP JC TRUE MP JC TRUE MP JC TRUE

4A: (short, short)–(short, long)
k = 1 250 97.1 97.7 98.3 92.0 92.4 87.0 76.8 79.6 63.2

500 99.8 99.5 99.5 98.5 99.0 96.2 90.7 91.8 74.2

k = 5 250 95.9 94.7 96.0 89.4 88.6 86.7 74.8 77.6 65.4
500 99.8 99.0 99.5 98.0 98.0 98.5 89.4 86.7 78.7

k = 20 250 95.0 91.8 90.0 86.1 84.1 78.9 72.1 71.1 69.4
500 98.7 98.0 99.0 96.8 95.6 92.7 86.2 84.7 84.3

4B: (short, short)–(short, long)
k = 1 250 85.2 87.6 87.9 80.8 83.6 82.7 73.7 77.8 77.0

500 97.5 98.5 98.5 94.8 97.4 96.4 90.5 91.8 89.7

k = 5 250 83.6 88.6 89.1 78.9 85.7 84.7 71.0 76.6 74.8
500 96.9 98.0 98.0 93.8 95.3 93.7 88.3 91.1 89.3

k = 20 250 81.9 86.8 86.3 76.6 81.7 79.3 69.1 73.4 72.2
500 95.9 95.8 96.2 91.6 93.0 91.2 85.3 88.3 84.3

5A: (long, long)–(long, short)
k = 1 250 60.0 64.5 64.2 52.2 58.3 54.2 40.8 46.8 44.1

500 72.5 73.5 73.4 64.8 68.8 64.2 48.9 57.5 53.8

k = 5 250 56.3 59.0 65.0 50.9 54.9 57.5 41.2 48.4 46.7
500 69.2 71.6 77.4 62.2 67.6 66.7 49.6 55.0 51.8

k = 20 250 52.1 52.5 61.7 47.7 51.0 59.0 39.9 44.6 51.2
500 62.5 63.1 79.4 56.6 60.3 72.4 45.8 50.3 58.9

5B: (long, long)–(long, short)
k = 1 250 68.2 76.5 76.5 58.1 71.0 68.3 46.1 56.1 52.6

500 84.5 88.4 88.3 74.5 79.2 78.3 59.4 69.2 66.0

k = 5 250 63.8 72.9 71.7 54.1 62.4 62.8 44.8 55.0 55.9
500 80.3 83.6 83.7 68.7 75.2 73.8 55.3 62.8 65.8

k = 20 250 60.0 65.6 65.1 51.9 56.4 57.5 42.1 49.7 48.1
500 75.0 80.2 80.2 64.7 70.0 69.2 51.2 56.2 54.4

aSee note to Table 4
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and 7,950, respectively, and their ratio (E*ML,MP) is then
0.439, 0.341, 0.336, 0.283, 0.312, and 0.291, respec-
tively. So both measures suggest deterioration rather than
improvement of the performance of ML relative to MP
with the increase ofN.

The fact that it is possible for ML assuming the true
model to perform worse than MP or ML assuming a
worse model, even whenN → `, will be discussed later.
For the specific cases of trees 2A and 2B, the results are
relatively easy to explain. The parsimony is well known
to have a tendency to group long branches together and
short branches together irrespective of the true topology
(e.g., Felsenstein 1978), a property known as ‘‘long
branches attract’’ (e.g., Penny et al. 1987). Felsenstein
(1978) provided a detailed explanation of this property in
terms of the probabilities of observing site patternsxxyy,
xyxy, and xyyx. This tendency might be considered a
‘‘bias’’ in the parsimony method and is shared by like-
lihood or distance methods when an overly simplified
model is assumed (e.g., Yang 1994b, 1995b). However,
when the true tree does have the long branches clustered
together, as in trees 2A and 2B, this property actually
becomes an advantage and makes it possible for MP or
JC to outperform ML assuming the true model.

In the case of tree 2A, the performance of MP be-
comes poorer with the increase ofk and/or decrease ofa
and is much poorer than JC or TRUE whenk 4 20 ora
4 0.2. The two likelihood methods show different pat-
terns with changes ofk anda; the best performance of
JC occurs atk 4 1 anda 4 0.8 while the best perfor-
mance of TRUE occurs atk 4 20 anda 4 `.

All methods perform better for tree 2B than for tree
2A, which suggests that tree 2A involves too much evo-
lution. It is noteworthy that the superiority of MP over
the likelihood methods found atk 4 1 anda 4 ` for
tree 2A disappears when the branches are shortened to
those of tree 2B, where MP is either worse or not any
better than the likelihood methods. Figure 6 shows the
probabilities of recovering the true tree by MP and JC
when the true model is JC69, as functions of the amount
of evolution measured byb. The performance of MP
relative to ML improves with the (proportional) increase
of branch lengths in the tree, and a small amount of
evolution is not a necessary requirement for parsimony.

Trees 3A and 3B: (Short, Long)–(Short, Long)
The parsimony method is inconsistent for all combi-

nations ofk anda when tree 3A is assumed. This is true
for the casek 4 20 anda 4 0.2, where the probability
of recovering the true tree increases whenN is increased
from 250 to 500. The inconsistency of MP means that is
it necessarily inefficient (Yang 1995b). JC is uniformly
poorer than TRUE, too, especially for largek and small
a. The differences among methods are quite large for
almost all parameter combinations. The high probabili-
ties for the TRUE method indicate that the notion of

‘‘long branches attract’’ is dependent on the tree recon-
struction method.

When tree 3B is assumed instead of 3A, MP improves
greatly; indeed, for this tree, MP is consistent for all
values ofk anda except the combinationk 4 20 anda
4 0.2. Thus, the small amount of evolution involved in
tree 3B remedied the problem of MP to some extent,
although the method is still much poorer than both JC
and TRUE. The performance of the three methods is
invariably in the order MP < JC < TRUE. All methods
deteriorate with the increase ofk and decrease ofa, with
MP and JC particularly so.

Trees 4A and 4B: (Short, Short)–(Short, Long)
All methods generally deteriorate with the increase of

k or decrease ofa, although TRUE appears to improve
with k whena 4 0.2 for tree 4A. The differences among
methods are not large in the case of tree 4A. When tree
4B is assumed, the probabilities of recovering the true
tree by any method are lower than those for tree 4A. For
short sequences (N 4 250), parsimony is poorer than
both JC and TRUE for all combinations of parameters
for tree 4B and the differences are considerable in some
cases, while for long sequences (N 4 500), the three
methods perform more or less the same.

Trees 5A and 5B: (Long, Long)–(Long, Short)
All three methods are consistent for all combinations

of k anda and for both trees 5A and 5B. Parsimony is
poorer than both JC and TRUE for all values of param-
eters and for both trees. In the case of tree 5A, the dif-
ferences in the probability range from 1 to 4% atk 4 1

Fig. 6. Does maximum parsimony mean minimum evolution? The
estimated probability (P, ×100) that the true tree is recovered by MP
(j) and by ML (d) that assumes the true model (JC69), as a function
of the amount of evolution measured byb. The branch lengths are
based on tree 2A of Table 3, i.e.,t 4 (0.1b,0.5b,0.5b,0.6b,1.4b). The
sequence length isN 4 500, and the results (not shown) forN 4 250
or 1000 show the same pattern as this graph.
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anda 4 ` to over 10% atk 4 20 anda 4 0.2, and MP
becomes worse when the model becomes more complex.
JC appears to be more efficient than TRUE atk 4 1 and
a 4 0.8 or 0.2, while for other combinations TRUE gives
much better performance than both MP and JC. When
tree 5B is assumed, the performances of JC and TRUE
are similar while MP is much poorer than the likelihood
methods.

With four species, if a tree reconstruction method
groups together species 1 with 2, species 3 and 4 will be
automatically clustered. So one may expect results for
trees 4A, 4B, 5A, and 5B to be similar to those for trees
1A and 1B. This appears to be the case, in that parsimony
is never too wrong for these three tree shapes—it is
consistent for all values of parameters examined—and in
that parsimony is almost always poorer than the two
likelihood methods. Although the probability of recov-
ering the true tree depends on values of branch lengths as
well as the tree shape, the shape ‘‘(short, short)–(short,
long)’’ (trees 4A and 4B) seems easier to recover than
the shape ‘‘(long, long)–(long, short)’’ (trees 5A and
5B). This is particularly the case with the parsimony
method.

Simulation Results When the Substitution Model of
Hasegawa et al. (1985) Is Assumed

Due to the similarity of results for trees 4A, 4B, 5A, and
5B to those for trees 1A and 1B, the former trees were
not used anymore when the effects of nucleotide-
frequency bias were examined by assuming the HKY85
model. With very few exceptions, the probabilities that
the three methods recover the true tree for trees 1A, 1B,
2A, 2B, 3A, and 3B when the HKY85 model is assumed
are very similar to, but slightly smaller than, the corre-
sponding probabilities of Table 4 obtained for K80. The
differences are almost always smaller than 5%. The re-
sults under the HKY85 model are not presented due to
space limitation but are available (in a table of the form
of Table 4) from the author unpon request. The few
exceptions mentioned above include several parameter
combinations ata 4 ` for tree 2A, where JC has higher
probabilities of recovering the true tree when HKY85 is
assumed instead of K80.

Concerning differences among methods, the same
patterns were found for the HKY85 model as those found
in Table 4 for K80. For example, all methods generally
become poorer with the increase ofk and decrease ofa.
Parsimony performs better than the two likelihood meth-
odswhena 4 `,k 4 1 in the case of tree 2A. For tree 3A,
parsimony is inconsistent for all parameter values, while
for tree 3B it is inconsistent for the combinationa 4 0.2
and k 4 20 only. The base-frequency bias therefore
seems to reduce the chance of recovering the true tree by
any methods, but the effect seems to be minor. Ignoring

base-frequency bias does not seem to cause much prob-
lem for the tree-reconstruction methods examined here.

Estimation of a Statistical Parameter and
Estimation of a Tree Topology

In this section, the similarities and differences of phylo-
genetic tree estimation when compared with the estima-
tion of a statistical parameter will be examined. A review
of concepts in statistical estimation highlights the com-
plexities of phylogenetic tree reconstruction. Recogniz-
ing these complexities will be helpful for improving cur-
rent tree reconstruction methods or for devising new
ones.

The Problem of Statistical Estimation: Concepts

In statistical parameter estimation, ‘‘[w]e know, or as-
sume as a working hypothesis, that the parent population
is distributed in a form which is completely determined
but for the value of some parameteru’’ (Kendall and
Stuart 1979:1). In other words, the probability function
of observing dataX, f(X; u), is fully specified although
the value of the parameteru may be unknown. A func-
tion of the data,t(X), is called a statistic, and may be
taken as an estimator of the parameteru. The estimatort
is said to be unbiased ifE(t) 4 u, where the expectation
is taken overX, and is said to be consistent if, for any
given small positive numberse andh, we can find anN0
such that prob(t − u > e) < h for all N > N0 (Kendall and
Stuart 1979:3–4). The variance of a consistent and un-
biased estimator cannot be smaller than the Crame´r-Rao
lower bound; that is, for any unbiased estimatort of u,
we have (Kendall and Stuart 1979:8–10)

var(t)ù − 1/EF2log{ f(X;u}

u2
G (4)

An estimator that attains this lower bound for allu is
called a minimum variance bound estimator. When this
bound is not attainable, there may still be an estimator
that has, uniform inu, smaller variance than any other
estimator. Such an estimator may not exist, but if it does,
it is unique and is called a minimum variance estimator
(Kendall and Stuart 1979:17).

Maximum likelihood is a methodology for estimating
parameteru after the dataX are observed. The probabil-
ity of observing the data,f(X; u), is taken as a function of
the parameteru, and the value ofu that maximizesf(X;
u) is the maximum likelihood estimator (MLE) ofu.
Note that changing the value ofu will change the value
of f but not its functional form. Under very general ‘‘reg-
ularity’’ conditions, the MLE has desirable asymptotic
properties: that is, whenN → `, an MLE is consistent,
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asymptotically unbiased, and normally distributed, and
attains the minimum variance bound of (4) (Kendall and
Stuart 1979:38–81).

The Problem of Phylogenetic Tree
Estimation: Complexities

Following the pioneering work of Cavalli-Sforza and Ed-
wards (1967; Edwards 1970), Felsenstein (1981; see also
Felsenstein 1973; Thompson 1975; Bishop and Friday
1985) suggested a method for reconstructing the phylo-
genetic tree using DNA sequence data which has been
known as the maximum likelihood estimation (or, more
often, maximum likelihood inference!) of the phylogeny.
Given a tree topology, the probability of observing the
data, f(X; u), is used as the ‘‘likelihood function’’ for
estimating parametersu, which include branch lengths in
the tree and parameters in the substitution model. The
optimum value of the likelihood for this tree is also ob-
tained. The same process is repeated for other tree to-
pologies, and the (optimum) likelihood values for differ-
ent tree topologies are compared to select the best
topology (see Table 2 for a example). This method has
similarity with the conventional maximum likelihood in
that f(X; u) will be the probability of observing the data
if the true tree, true branch lengths, and true values of
other parameters are used in the function. It, however,
does not fit in the framework of statistical parameter
estimation as the aforementioned working hypothesis is
invalid in the context of topology estimation. Different
topologies involve different sets of branch-length param-
eters; and the functional form off(X; u) changes with tree
topology, so that the distribution of the data is not fully
specified without knowledge of the true topology (Yang
1994b; Yang et al. 1995; see also Nei 1987:325). The
problem of phylogeny reconstruction concerns more the
question of what the (branch length) parameters are than
the question of what numerical values the parameters
take. The implementation of the method is remarkably
more complicated than the traditional maximum likeli-
hood, in that the maximization of the likelihood func-
tion(s) by numerical iteration has, at least in theory, to be
performed as many times as the number of tree topolo-
gies. Literally it is amaximum maximum likelihood
method.

The simple substitution model of Felsenstein (1981)
has been improved in many ways, for example, to ac-
count for more complicated patterns of nucleotide sub-
stitution (e.g., Hasegawa et al. 1985; Yang 1994a) and to
accommodate the variation and dependence of substitu-
tion rates across nucleotide sites (Yang 1993, 1994c,
1995a). The same methodology was applied to homolo-
gous protein sequences (Bishop and Friday 1985, 1987;
Kishino et al. 1990) and protein-coding DNA sequences

with the codon structure taken into account (Goldman
and Yang 1994; Muse and Gaut 1994). Nevertheless, the
methodology has remained unchanged.

The failure to recognize the complexity of the prob-
lem has caused much controversy in theoretical studies
of tree reconstruction methods. Felsenstein (1973, 1978)
referred to the regularity conditions of Wald (1949) for a
proof of the consistency of the maximum likelihood
method for estimating the tree topology. These condi-
tions would include the continuity and differentiability of
the likelihood function with respect to the topology pa-
rameter. Such concepts are not defined. Concerning the
nature of the tree topology, there have been suggestions
that it is a statistical parameter (e.g., Thompson 1975;
Goldman 1990), and there are also suggestions that it is
not (e.g., Felsenstein 1988). As the role of the topology
is to specify the branch-length parameters and the form
of the likelihood function, the topology certainly differs
from a parameter which takes only discrete numerical
values. Note that the topology also differs from a statis-
tical hypothesis, which concerns the values of parameters
rather than what the parameters are. The controversy
concerning the use of the nonparametric bootstrap in the
test of phylogenies suggested by Felsenstein (1985) ap-
pears in a large part to be due to our lack of understand-
ing of the nature of the topology (e.g., Zharkihk and Li
1992; Felsenstein and Kishino 1993; Li and Zharkikh
1994).

It is, nevertheless, no surprise that the likelihood
method of phylogenetic tree estimation does not share all
asymptotic properties of the maximum likelihood esti-
mator of a statistical parameter. Yang (1994b) suggested
a proof that the likelihood estimation of the tree topology
is consistent despite the complexity of the parameter
space. Results of this simulation suggest that the method
is not always asymptotically most efficient. Intuitively,
almost all tree-reconstruction methods select the tree ac-
cording to some criterion, which measures the compati-
bility of the tree with the data. The likelihood method
recovers the true tree if and only if the likelihood value
for the true tree is greater than those for the wrong trees.
When a wrong model is used, the likelihood values of all
tree topologies are decreased (normally by a great mar-
gin; see, e.g., Yang et al. 1994, 1995), but it is possible
for the aforementioned condition (i.e., the likelihood of
the true tree being the greatest) to be satisfied more often
if a wrong model is assumed than if the true model is
assumed. The fact that using a wrong model can recover
the true tree with a higher probability has been observed
in computer simulations where distance-matrix methods
were used (e.g., Saitou and Nei 1987; Sourdis and Krim-
bas 1987; Tateno et al. 1994). Schoeniger and von Hae-
seler (1993) and Tajima and Takezaki (1994) experi-
mented with several distance estimates based on such
‘‘wrong’’ models and found that they could give better
performance than the distances based on the true model.
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In sum, phylogenetic tree reconstruction remains a
difficult estimation problem. Use of the true model fails
quite often to give the best performance in the simula-
tions. The concept of unbiasedness of an estimated to-
pology is yet to be defined, but one can ask the important
question of whether there exists a method that has higher
probability of recovering the true tree than any other
methods for the whole parameter space; such a method
would be equivalent to the minimum-variance estimator
of a statistical parameter. Perhaps it is not that using the
true model sometimes fails to give the best performance
but rather that we have not found the right way of using
the true model.

Yang et al. (1995) noted that different tree topologies
have similarities to different statistical distributions. One
possibility that might be worth exploring is construction
of a ‘‘super model’’ that has all tree topologies as its
special cases, in the same way that a family of distribu-
tions can encompass many different distributions. For
example, the Katz family of discrete distributions (ran-
dom variablex = 0, 1, . . . ,with probability p0, p1, . . .)
can be specified as

px+1/px 4 (a + bx)/(1 + x), x 4 0, 1, . . . (5)

wherea > 0, b < 1. Katz (1946, 1965; see also Johnson
et al. 1992:77–81) showed thatb < 0,b4 0, and 0 <b <
1 in the Katz family give rise to the binomial, Poisson,
and negative binomial distributions, respectively. The
distinction among the distributions is then equivalent to
a test of hypotheses concerning the parameterb in the
Katz family of distributions. Such an approach, if it
could work, would drastically reduce the computation
involved in phylogenetic estimation.

Discussion

It is noteworthy that the simple JC method performed
quite well in the simulations, even though the model
(JC69) is wrong. In almost all cases, it is much more
efficient than parsimony, and, when the tree is difficult to
reconstruct, it is less likely to be misleading than parsi-
mony (results for tree 3A, Table 4). The JC69 model has
computational advantages over more complex models
and they may be made use of. It should also be noted that
other factors may be more important in affecting the
probability of recovering the true tree than the choice of
methods. The shape of the tree and the branch lengths
affect the success of tree reconstruction significantly.
The base frequency bias does not seem to have posed a
great problem, but the transition/transversion rate bias
and, in particular, the variation of substitution rates
across sites generally reduce the probability of recover-
ing the true tree. By careful sampling of species as well

as gene sequences, biologists may be able to control
these factors to their advantage.

The author of this paper has been unable to see any
connection between the parsimony method of phyloge-
netic tree reconstruction and the parsimony or simplicity
principle of science and philosophy, or any scientific
merit of discussions that claim such a connection. In this
study, parsimony is considered a well-defined method of
data analysis and its performance for this purpose is ex-
amined. Nevertheless, both the intuitive examination and
the computer simulation employed in this study for iden-
tifying the assumptions underlying parsimony involve
difficulties. First of all, an analytical method may not be
sensitive to its assumptions, and indeed, the reconstruc-
tion of the tree topology by model-based methods is
known to be quite tolerant to violations of the assump-
tions (e.g., Fukami-Kobayashi and Tateno 1991; Debry
1992; Gaut and Lewis 1995). It is also commonplace that
an assumption made to derive certain results was later
shown to be unnecessary. The greatest difficulty is our
lack of a method that is known to give the best perfor-
mance for all values of parameters, with which other
methods such as parsimony can be compared.

At any rate, the hierarchy of models assumed in this
study can be arranged, say, in the order JC69, K80, K80
+ dG, HKY85 + dG, so that the model becomes more and
more complex and realistic. Then the intuitive examina-
tion suggests that the model underlying parsimony is
closer to JC69 than to HKY85 + dG. This expectation
has certainly been confirmed by the simulation results.
The pattern is clearest when there exist considerable dif-
ferences among the methods, for example, in the case of
tree 2A where MP and JC can outperform ML assuming
the true model, and in the case of tree 3A where both MP
and JC do not perform well. Further evidence is that the
performance of MP (and JC) in comparison with ML
assuming the true model generally deteriorates when the
model becomes more complex (Tables 4 and 5). Recent
attempts to use ‘‘step matrices’’ in the parsimony anal-
ysis (Maddison and Maddison 1992; Swofford 1993),
despite their arbitrary nature, have made it possible for
the method to use, to some extent, information and
knowledge concerning the process of sequence evolution
such as the transition/transversion rate bias, and have
relaxed some of the stringent assumptions about the sub-
stitution process as identified in this paper. An important
factor that does not seem to have been considered is the
difference of branch lengths. Failure to take into account
different branch lengths of the tree appears to be the
major reason for the failure of parsimony in cases such as
trees 3A and 3B. It seems possible to modify the method
so that differences in branch lengths are explicitly con-
sidered in the calculation of the parsimony score. The
resulting method might be a parsimony with a time struc-
ture and, at the same time, a likelihood without iteration,
and might have advantages of both methods.

305



Acknowledgments. I thank Brandon Gaut, Nick Goldman, Masatoshi
Nei, and Jeff Thorne for many helpful comments on the manuscript.
This study was supported by a grant from the National Natural Science
Foundation of China to Z.Y. and by NIH and NSF grants to M. Nei.

References

Bishop MJ, Friday AE (1985) Evolutionary trees from nucleic acid and
protein sequences. Proc R Soc Lond [Biol] 226:271–302

Bishop MJ, Friday AE (1987) Tetropad relationships: the molecular
evidence. In: Patterson C (ed) Molecules and morphology in evo-
lution: conflict or compromise? Cambridge University Press, Cam-
bridge, pp 123–129

Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial
DNA sequences of primates, tempo and mode of evolution. J Mol
Evol 18:225–239

Camin J, Sokal R (1965) A method for deducing branching sequences
in phylogeny. Evolution 19:311–326

Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: mod-
els and estimation procedures. Evolution 21:550–570

Debry RW (1992) The consistency of several phylogeny-inference
methods under varying evolutionary rates. Mol Biol Evol 9:537–
551

Eck RV, Dayhoff MO (1966) Inference from protein sequence com-
parisons. In: Dayhoff MO (ed) Atlas of protein sequence and struc-
ture. National Biomedical Research Foundation, Silver Spring,
MD, pp 161–202

Edwards AWF (1970) Estimation of the branch points of a branching
diffusion process with discussion. J R Stat Soc B 32:155–174

Edwards AWF, Cavalli-Sforza LL (1963) The reconstruction of evo-
lution. Heredity 18:553

Farris J (1973) On the use of the parsimony criterion for inferring
evolutionary trees. Syst Zool 22:250–256

Farris J (1977) Phylogenetic analysis under Dollo’s law. Syst Zool
26:77–88

Felsenstein J (1973) Maximum likelihood and minimum-steps methods
for estimating evolutionary trees from data on discrete characters.
Syst Zool 22:240–249

Felsenstein J (1978) Cases in which parsimony and compatibility meth-
ods will be positively misleading. Syst Zool 27:401–410

Felsenstein J (1981) Evolutionary trees from DNA sequences: a max-
imum likelihood approach. J Mol Evol 17:368–376

Felsenstein J (1985) Confidence limits on phylogenies: an approach
using the bootstrap. Evolution 39:783–791

Felsenstein J (1988) Phylogenies from molecular sequences: inference
and reliability. Annu Rev Genet 22:521–565

Felsenstein J, Kishino H (1993) Is there something wrong with the
bootstrap on phylogenies? A reply to Hillis and Bull. Syst Biol
42:193–200

Felsenstein J, Sober E (1986) Parsimony and likelihood: an exchange.
Syst Zool 35:617–626

Fitch WM (1971) Toward defining the course of evolution: minimum
change for a specific tree topology. Syst Zool 20:406–416

Fukami-Kobayashi K, Tateno Y (1991) Robustness of maximum like-
lihood tree estimation against different patterns of base substitution.
J Mol Evol 32:79–91

Gaut BS, Lewis PO (1995) Success of maximum likelihood phylogeny
inference in the four-taxon case. Mol Biol Evol 12:152–162

Goldman N (1990) Maximum likelihood inference of phylogenetic
trees, with special reference to a Poisson process model of DNA
substitution and to parsimony analysis. Syst Zool 39:345–361

Goldman N, Yang Z (1994) A codon-based model of nucleotide sub-
stitution for protein-coding DNA sequences. Mol Biol Evol 11:
725–736

Hartigan JA (1973) Minimum evolution fits to a given tree. Biometrics
29:53–65

Hasegawa M, Fujiwara M (1993) Relative efficiencies of the maximum
likelihood, maximum parsimony, and neihbor joining methods for
estimating protein phylogeny. Mol Phyl Evol 2:1–5

Hasegawa M, Yano T (1984) Maximum likelihood method of phylo-
genetic inference from DNA sequence data. Bull Biomet Soc Jpn
5:1–7

Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split-
ting by a molecular clock of mitochondrial DNA. J Mol Evol 22:
160–174

Hendy MD, Penny D (1989) A framework for the quantitative study of
evolutionary trees. Syst Zool 38:297–309

Hill ID (1973) Algorithm AS 66: the normal integral. Appl Stat 22:
424–427

Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in
the four-taxon case. Syst Biol 42:247–264

Jin L, Nei M (1990) Limitations of the evolutionary parsimony method
of phylogenetic analysis. Mol Biol Evol 7:82–102

Johnson NJ, Kotz S, Kemp AW (1992) Univariate discrete distribu-
tions, 2nd ed. Wiley, New York

Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro
HN (ed) Mammalian protein metabolism. Academic Press, New
York, pp 21–123

Katz L (1946) On the class of functions defined by difference equation
(x + 1)f(x + 1) 4 (a + bx)f(x) (abstract). Ann Math Stat 17:501

Katz L (1965) Unified treatment of a broad class of discrete probability
distributions. In: Patil GP (ed) Classical and contagious discrete
distributions. Pergamon Press, Oxford, pp 175–182

Kendall M, Stuart A (1979) Advanced theory of statistics, vol 2.
Charles Griffin, London

Kimura M (1980) A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide se-
quences. J Mol Evol 16:111–120

Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood infer-
ence of protein phylogeny and the origin or chloroplasts. J Mol
Evol 31:151–160

Kuhner MK, Felsenstein J (1994) A simulation of phylogeny algo-
rithms under equal and unequal evolutionary rates. Mol Biol Evol
11:459–468

Li WH, Zharkikh A (1994) What is the bootstrap technique? Syst Biol
43:424–430

Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny
and character evolution, version 3. Sinauer, Sunderland, MA

Muse SV, Gaut BS (1994) A likelihood approach for comparing syn-
onymous and nonsynonymous nucleotide substitution rates, with
application to chloroplast genome. Mol Biol Evol 11:715–724

Nei M (1987) Molecular evolutionary genetics. Columbia University
Press, New York

Pauling L, Zuckerkandl E (1963) Chemical paleogenetics: molecular
‘‘restoration studies’’ of extinct forms of life. Acta Chem Scand
17:S9–S16

Penny D, Hendy MD, Henderson IM (1987) The reliability of evolu-
tionary trees. Cold Spring Harb Symp Quant Biol 52:857–862

Saitou N, Imanishi T (1989) Relative efficiencies of the Fitch-
Margoliash, maximum parsimony, maximum likelihood, mini-
mum-evolution, and neighbor-joining methods of phylogenetic tree
construction in obtaining the correct tree. Mol Biol Evol 6:514–525

Saitou N, Nei N (1987) The neighbour joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Schoniger M, von Haeseler A (1993) A simple method to improve the
reliability of tree reconstructions. Mol Biol Evol 10:471–483

Sober E (1988) Reconstructing the past: parsimony, evolution, and
inference. MIT Press, Cambridge, MA

Sourdis J, Krimbas C (1987) Accuracy of phylogenetic trees estimated
from DNA sequence data. Mol Biol Evol 4:159–166

Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP),
version 3.1. University of Illinois, Champaign

Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis

306



DM, Moritz G (eds) Molecular systematics. Sinauer, Sunderland,
MA, pp 411–501

Tajima F, Takezaki N (1994) Estimation of evolutionary distance for
reconstructing molecular phylogenetic trees. Mol Biol Evol 11:
277–286

Takezaki N, Nei M (1994) Inconsistency of the maximum parsimony
method when the rate of nucleotide substitution is constant. J Mol
Evol 39:210–218

Tateno Y, Takezaki N, Nei M (1994) Relative efficiencies of the max-
imum-likelihood, neighbor-joining and maximum-parsimony meth-
ods when substitution rate varies with site. Mol Biol Evol 11:261–
277

Thompson EA (1975) Human evolutionary trees. Cambridge Univer-
sity Press, Cambridge

Wald A (1949) Note on the consistency of the maximum likelihood
estimate. Ann Math Statist 20:595–601

Wiley E (1975) Karl P. Popper, systematics, and classification: a reply
to Walter Bock and other evolutionary taxonomists. Syst Zool 24:
233–242

Yang Z (1993) Maximum likelihood estimation of phylogeny from
DNA sequences when substitution rates differ over sites. Mol Biol
Evol 10:1396–1401

Yang Z (1994a) Estimating the pattern of nucleotide substitution. J Mol
Evol 39:105–111

Yang Z (1994b) Statistical properties of the maximum likelihood

method of phylogenetic estimation and comparison with distance
matrix methods. Syst Biol 43:329–342

Yang Z (1994c) Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate meth-
ods. J Mol Evol 39:306–314

Yang Z (1995a) A space-time process model for the evolution of DNA
sequences. Genetics 139:993–1005

Yang Z (1995b) Evaluation of several methods for estimating phylo-
genetic trees when substitution rates differ over nucleotide sites. J
Mol Evol 40:689–697

Yang Z, Goldman N, Friday AE (1994) Comparison of models for
nucleotide substitution used in maximum likelihood phylogenetic
estimation. Mol Biol Evol 11:316–324

Yang Z, Goldman N, Friday AE (1995) Maximum likelihood trees
from DNA sequences: a peculiar statistical estimation problem.
Syst Biol 44:384–399

Zharkikh A, Li WH (1992) Statistical properties of bootstrap estimation
of phylogenetic variability from nucleotide sequences: I. Four taxa
with a molecular clock. Mol Biol Evol 9:1119–1147

Zharkikh A, Li WH (1993) Inconsistency of the maximum-parsimony
method: the case of five taxa with a molecular clock. Syst Biol
42:113–125

Zuckerkandl E (1964) Further principles of chemical paleogenetics as
applied to the evolution of hemoglobin. In: Peeters H (ed) Protides
of the biological fluids. Elsevier, Amsterdam, pp 102–109

307


