Among-site rate variation and its impact

on phylogenetic analyses
Ziheng Yang

eginning in the 1960s!, evo-

lutionary studies have re-

vealed that substitution

rate variation exists among
sites in almost all genes or pro-
teins, with the possible exception
of some pseudogenes or ‘junk’ DNA,
Although mutation rates may vary
among sites?, the major reason for
the variation of evolutionary rates
appears to be different selective
constraints at different sites owing
to the functional and/or structural
requirements of the gene or pro-
tein. For example, estimated sub-
stitution rates at the first (r,),

Although several decades of study have
revealed the ubiquity of variation of
evolutionary rates among sites, reliable
methods for studying rate variation were
not developed until very recently.
Early methods fit theoretical distributions
to the numbers of changes at sites
inferred by parsimony and substantially
underestimate the rate variation.
Recent analyses show that failure to
account for rate variation can have
drastic effects, leading to biased dating of
speciation events, biased estimation of
the transition:transversion rate ratio, and
incorrect reconstruction of phylogenies.

The discrete-distribution model
assumes that the rate for a site
comes from one of several rate
classes. With X classes, the model
involves 2(K-1) free parameters
(K frequency parameters with
their sum equal to one and K rate
parameters with the mean rate
equal to one). The model is gener-
ally used with two or three rate
classes only. The simplest but also
the most-frequently used model of
this nature is an ‘invariable-sites
model’, which assumes that a pro-
portion of sites have rate zero,
while other sites change at the same

second (r,) and third (r;) codon
positions are almost always in the
order r, < r; < 13, and proteins per-
forming fundamentally important
roles tend to evolve more slowly
than other proteins (e.g. see Ref. 3).
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rate!’3-15, A major problem with
this model is that estimates of the
proportion of invariable sites de-
pend to a large extent on the num-
ber and relatedness of sequences
(taxa) in the data, indicating the

If all sites in a sequence change
at the same rate, the number of substitutions per site for a
group of sequences should follow a Poisson distribution. Fitch
and Margoliash! counted the minimum number of nucleotide

inadequacy of the model; ideally

this parameter should reflect the extent of rate variation.
Based on biological considerations, one should expect a

continuum of rates at sites!. The most-commonly used
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changes at each site in cytochrome c, and found that the
Poisson distribution did not fit the data unless a certain num-
ber of ‘invariant’ and ‘hypermutable’ sites were excluded. 2T
Their analysis effectively used three classes of rates for sites.

Continuous distributions are also used to model rate
variation among sites, and by far the most-commonly used
continuous distribution is the gamma distribution?-7. When
rates at sites are gamma distributed, the numbers of substi-
tutions at sites should follow a negative binomial distribution.
Golding® provided an excellent summary of early studies
that employ this idea. A number of formulae have also been
suggested for estimating the sequence divergence under the
gamma model, enabling the rate variation to be taken into
account in distance-based phylogenetic analyses58-12, These
methods, however, require the parameter of the gamma dis-
tribution to be specified or independently estimated.

Early studies of rate variation attempted to fit theoreti-
cal distributions to the numbers of changes at sites inferred
by the parsimony method, and suffer from the systematic 0 A : : ; " ]
errors introduced in the inference (see below). When more 0 0.5 1 1.5 2 2.5 3
reliable methods were developed, it became clear that Substitution rate ()
these parsimony-based methods considerably underesti-
mate the extent of among-site rate variation.
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Fig. 1. The density function, f(r), of the gamma distribution of substitution rates
at sites (r). The gamma distribution has a shape parameter o and a scale param-
eter f, with mean o/ and variance a/2. Since the rate is a proportional factor,
fis fixed to be equal to a so that the mean of the distribution is 1 and the variance
is 1/a. The single parameter o is then inversely related to the extent of rate vari
ation. The distribution with a < 1 is L-shaped, meaning that most sites have very
low substitution rates or are virtually ‘invariable’, while a few sites exist (substi-
tutional ‘hot spots’) with very high rates. The distribution with & > 1 is bell-shaped,
meaning that most sites have intermediate rates while few sites have very low or
very high rates. When o approaches o, the model reduces to the case of a con-
stant rate for all sites. By adjusting &, the gamma model can account for different
levels of rate variation in real data.

Models for variable substitution rates among sites

The standard approach to characterizing among-site rate
variation is to use a statistical distribution, either discrete
or continuous, to approximate rates at sites. The working
hypothesis is that each site has an (unknown) rate that is
determined by its position in the molecule; a fast-changing
site is assumed to experience substitutions at an elevated
rate in all evolutionary lineages no matter what nucleotide
occupies the site.
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Box 1. Models of rate variation -
advantages and disadvantages

Discrete rate-class models

Advantages

Calculations involved in the maximum likelihood analysis are relatively simple and
fast.

Disadvantages

Estimates of parameters such as the proportion of invariable sites are sensitive to
sampling of sequences (taxa), making the interpretation of the model difficult.
Results are not comparable across data sets or analyses if different numbers of
classes are used. For most data sets, two rate classes are not enough to achieve an
adequate fit while three rate classes introduce too many parameters to be estimated.

Continuous rate models (gamma distribution)

Advantages

One parameter completely describes the rate variation and the model is easy to
interpret. The model provides a good fit to many data sets, most often better than a
two-rate-class model, which involves one more parameter than the gamma model.
Disadvantages

The likelihood calculation involves intensive computation and is feasible only for
small data sets (no more than six sequences).

Discrete-gamma model

Advantages

By using well-chosen rate classes to approximate the continuous gamma, this
model appears to have both the easy interpretability and good fit of the continuous
gamma model and the computational efficiency of the discrete rate-class model.

continuous distribution for modelling the rate variation is
the gamma distribution, although the log-normal is used oc-
casionally. The gamma distribution involves a ‘shape’ pa-
rameter ¢ (>0), which determines the extent of rate variation
among sites, with a small o representing extreme rate vari-
ation and a large a representing minor rate variation (Fig. 1).
The distribution is either bell-shaped or L-shaped depend-
ing on whether or not « is greater than one; this makes the
distribution suitable for accommodating different levels of

rate variation in various data sets. Some workers also added
a proportion of invariable sites to the gamma model'#16, As
discussed by Golding®, this may not be worthwhile as the
gamma distribution is sufficiently general to allow for very
low rates at some sites.

The advantages and disadvantages of the discrete rate-
class model versus the continuous gamma model are sum-
marized in Box 1. The gamma model often fits data better
than a two-rate-class model®!718 but not as well as a three-
rate-class model'”. However, the gamma model involves
one parameter while the two- and three-rate-class models
involve two and four parameters, respectively. The gamma
model appears preferable owing to its easy interpretability
and good fit to many data sets (Box 1).

Yang!"1® developed models that account for rate dif-
ferences among genes and rate variation within the same
gene. These models account for the heterogeneity of differ-
ent genes and are useful for combined analysis of multiple
sequence data. Models that allow for the correlation of sub-
stitution rates at adjacent sites were also considered!”.20, A
strong positive correlation is found in the analyzed data;
this does not seem to affect parameter estimates greatly
but affects the calculation of their variances!’. Gu et al.'6 ex-
tended the maximum likelihood gamma model’ to include
invariable sites, and Kelly and Rice?! investigated the prob-
lem without assuming a specific distribution. Since phylo-
genetic analyses appear more or less robust to the form of
the distribution for the rates!?, these models are expected
to produce results similar to the simple gamma model.

Estimation of the o parameter of the gamma
distribution

If substitution rates are identical among sites, the num-
bers of substitutions at sites should follow a Poisson distri-
bution, and if rates are gamma
distributed, the numbers of

Table 1. Maximum likelihood estimates of the a parameter2

changes will follow a negative
binomial distribution. This

. principle has been used to esti-

Sequences Species a Refs
a P mate the gamma parameter,
Nuciear genes o, and to test for rate con-
o- and f-globin genes, positions 1 and 2 5 mammals 0.36 10,23 stancy among sites, with the
Albumin genes, all positions 5 vertebrates 1.05 44 method of maximum parsi—
Insulin genes, all positions 5 vertebrates 0.40 44

¢-myc genes, all positions 5 vertebrates

Prolactin genes, all positions 5 vertebrates
16S-like rRNAs, stem region 5 species
16S-like rRNAs, loop regjon 5 species
ym-globin pseudogenes 6 primates
Viral genes
Hepatitis B virus genomes 13 variants
Mitochondrial genes
12S rRNAs 9 rodents
895-bp mtDNAs 9 primates
Positions 1 and 2 of 13 genes® 11 vertebrates
Position 1 of four genes 6 primates
Position 2 of four genes 6 primates
Position 3 of four genes 6 primates
D-loop region of mtDNAs¢ 25 humans

Protein sequences

Mitochondrial cytochrome b 16 deuterostomes

0.47 44 mony used to infer the (mini-

1.37 44 mum) numbers of changes at
0.29 45 sites. The o parameter is usu-
0.58 45 ally calculated by equating
0.68 23 the mean and variance of the
inferred numbers of changes
0.26 46 at sites to the mean and vari-
ance of the negative binomial.
8'12 ig This ‘method of moments’ esti-
013-0.95 8 mator was used extensively
0.18 19 for estimating ¢ until only a
0.08 19 few years ago®d. Recently,
1.58 19 Sullivan et al 22 noted that the
0.7 12 method of moments will over-
estimate o when « is small,

0.44 12

and suggested the use of a

aThese estimates are all obtained from the maximum likelihood analyses of the original sequence data’-1°. For nucleotide
sequences, the assumed substitution model14-34 accounts for both the transition:transversion rate bias and nucleotide
frequency differences. For amino acid sequences, the empirical model of Jones et al.47 is used.

bThe 13 protein-coding genes in the mitochondrial genome are analyzed separately, with only the first and second codon
positions used. The estimates of @ are 0.49, 0.86, 0.13, 0.33, 0.23, 0.23, 0.27, 0.66, 0.39, 0.45, 0.87, 0.46 and 0.95,
for Atp6, Atp8, Cox1, Cox2, Cox3, Cytb, Ndh1, Ndh2, Ndh3, Ndh4, Ndh4L, Nah5 and Ndh6, respectively?8.

The data contain the two hypervariable segments but not the middle segment, which is almost invariable!2.

maximum likelihood criterion
to fit the negative binomial.
The method was further im-
proved by Yang and Kumar!2,
who corrected for multiple hits
within branches of the phylo-
genetic tree under the gamma
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model. These methods are
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computationally fast, even for very large data sets. All three
methods, however, are based on the numbers of changes at
sites inferred by parsimony, which are clearly underesti-
mates. The real problem is that the underestimation is more
serious at fast-changing sites than at slowly-changing sites.
This causes the three parsimony-based methods to under-
estimate the extent of rate variation and overestimate ¢,
especially for distantly related sequences.

A method that avoids these problems is the maximum
likelihood method applied to the original sequence data’.
By using an explicit model of nucleotide substitution, this
method simultaneously accounts for transition/transversion
rate bias, unequal nucleotide frequencies, and rate variation
among sites. However, the method involves intensive com-
putation and is presently feasible for small data sets only. A
more-practical approach is the ‘discrete-gamma’ model'?, in
which several classes of rates are used to approximate the
continuous gamma distribution. The classes are chosen such
that each has equal probability and the mean of the rates
included in a class is used to represent all rates in that class.
This model combines the computational efficiency of the
rate-class model with the good fit of the continuous gamma
model (Box 1). With current computing power, this method
is feasible for analyzing data sets of over 50 sequences.

All methods for estimating « discussed above rely on a
phylogenetic tree. The effect of tree topology was also exam-
ined in several studies!0.17.23.24 It was found that if the used
tree is completely wrong, a will be seriously underestimated.
Nevertheless, estimates obtained using reasonable trees
(for example, trees that maintain well-supported partitions
separated by long internal branches?4) are quite similar.
The relative stability of estimates of a across reasonable
topologies means that reliable estimates of o are obtainable
from real data even if the phylogeny of the species is
uncertain.

[t is also worthwhile to estimate the substitution rate for
each site. Intuitive methods for examining site variability
along the sequence calculate a ‘conservation’ or ‘variability’
score for each site and plot the score along the sequence
using certain smoothing algorithms. These methods do not
use any phylogenetic information but appear to be power-
ful in identifying conserved and variable regions in a DNA or
protein sequence. Methods!7.% that take into account the
phylogenetic relationship of the sequences can be expected
to produce more accurate estimates of substitution rates at
sites, which are often found to correlate with the functional
domains of the genel226,

Table 1 lists estimates of @, obtained from maximum
likelihood analyses of various data sets. Many estimates of
o were obtained using parsimony during the past two or
three decades (see Ref. 5) but these are not listed here as
they are likely to be unreliable (see below). It is noticeable
that most estimates are <1 so that the distribution of rates is
L-shaped (Fig. 1). Larger estimates are obtained for pseudo-
genes or the third codon position, where substitution rates
are more or less homogeneous across sites.

In Table 2, estimates of o obtained using parsimony-
based methods are compared with the more-reliable
likelihood estimates. The three parsimony methods give
substantial overestimates of o, although the two more-
recent methods!222 are able to reduce the bias consider-
ably. In other analyses, parsimony (method of moments)
was found to overestimate o by five or eight times
relative to the maximum likelihood estimates?728, Besides
the estimation methods, the number of sequences (taxa) is
also an important factor affecting the accuracy of the
estimated c.
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Table 2. Estimates of the « parameter by different methods

Maximum Maximum

parsimony likelihood
Data a b c d
D-loop mtDNAs of 25 humans 026 023 0.18 0.17
16S-like rRNAs of 17 eukaryotes 0.57 045 0.37 0.31
mt cytochrome b of 16 deuterostomes 0.93 0.61  0.55 0.44

The maximum parsimony methods infer the (minimum) numbers of changes at
sites, and fit theoretical expectations to these numbers by the method of moments
(a), the likelihood method of Sullivan et al.22 (b}, or the likelihood method of Yang
and Kumar!2 (¢). In a maximum likelihood analysis (d), the discrete-gamma model'®
is fitted to the original sequence data (rather than to the inferred numbers of
changes at sites) in combination with a model of nucleotide or amino acid substi
tution. The estimates are expected to be in the order a > b > ¢ > d, with dbeing the
most reliable. From Ref. 12.

Box 2. Dating speciation events with and without
accounting for the among-site rate variation

Node (i) Constant rate Gamma rates
Distance (ut) Time (t) Distance (ut) Time (t)
1 0.0627 15.77+1.55 0.1024 18.9114.08
2 0.0517 13 0.0704 13
3 0.0307 7.73+1.03 0.0362 6.68+£1.19
4 0.0201 5.04+0.86 0.0239 4.41+£0.93
5 0.0093 2.35+0.64 0.0100 1.85+0.56

In a molecular clock analysis, the same substitution rate u is assumed for ail
branches in the tree. The sequence data do not allow separation of time (t) from
rate, and the distance (ut) is estimated instead, which measures the expected
number of substitutions per site from the ancestral node i to the present time. A
reference time obtained externally (for example, from fossil records) is used to cal
culate the substitution rate. In this example, the divergence time of orang-utan is
fixed at 13 million years gp. Under the constant-rate-for-sites model, this leads to
an evolutionary rate of 0.0517 /(13 x108) = 3.9769 x 10-2 substitutions per site
per year. This rate is then used to convert other distances into times, for example,
t,=0.0201/(3.9769 x10-)=5.04 x 106 years sp for the separation of humans
from chimpanzees. Under the gamma-rates model, the substitution rate is esti-
mated to be 0.0704/(13 x106)=5.4154 x 10-9 substitutions per site per year,
and the time of human-chimpanzee separation is estimated to be f,=4.41 x 108
years Bp. As ignoring the rate variation tends to underestimate large distances
more seriously than it underestimates small distances, the constant-rate model over-
estimates t,, t,, t; and underestimates t,. The data are from 11 mitochondrial tRNA
genes (759 nucleotides). Adapted from Ref. 19.

Time
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Effects of among-site rate variation
Estimation of evolutionary distances and speciation
times

When evolutionary rates are variable among sites but are
assumed to be constant, we tend to overlook some of the
substitutions that have occurred at the fast-changing sites.
Ignoring among-site rate variation therefore tends to give
underestimates of sequence distances?®. Gillespie? showed
that when the Jukes—Cantor formula is used to calculate se-
quence distances when rates are gamma-distributed at sites,
the calculated distance increases logarithmically (rather
than linearly) with the true distance. Thus the formula con-
sistently underestimates the true distance, with the bias
being greater for large distances than for small ones.

The same pattern occurs with the estimation of branch
lengths in a phylogenetic tree, branch length being meas-
ured by the average number of substitutions per site. For
example, Box 2 shows a molecular clock analysis of mito-
chondrial tRNA genes to date speciation events among
human, chimpanzee, gorilla, orang-utan and siamang, with
the reference time (i.e. the divergence time of orang-utan)
fixed at £,= 13 million years BP to ‘calibrate’ the molecular
clock!, The estimated gamma parameter for these data is ¢
= 0.21:0.06. The difference in log likelihood between the
constant-rate model and the gamma-rates model, A€ = 23.04,
is much greater than +%2=3.32 at the 1% significance level,
with one degree of freedom, indicating the existence of sig-
nificant rate variation among sites. Because the lengths of
long branches are more severely underestimated than
those of short branches when rate variation among sites is
ignored, the constant-rate model overestimates divergence
times that are younger than the reference time (¢, £,, t;), and

Transition:transversion rate ratio (x)

Fig. 2. The contour representation of the log-likelihood surface as a function of the
gamma parameter o for rates at sites and the transition:transversion rate ratio (x).
The substitution model of Hasegawa et al.14 is used and xis the transition:trans-
version rate ratio (o/ 8 in those authors’ notation). Rates at sites are approximated
by a discrete-gamma modell®. Curve a represents the best estimate of x when o
is fixed at a specific value, while curve b represents the estimate of o when « is
fixed. The data are from a segment of mitochondrial DNA {895 bp) from human,
chimpanzee, gorilla, orang-utan and gibbon23. The contour lines represent the log
likelihood for given values of x and &, maximized over the branch lengths.
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underestimates divergence times that are older than the ref-
erence time (¢,). This effect was first reported by Adachi and
Hasegawa®, who used a discrete rate-class model to accom-
modate variable rates among sites.

Estimation of the transition rate bias

In a study of transition bias using pairwise sequence
comparisons, Wakeley3! noted that failure to account for
the among-site rate variation leads to underestimation of
the transition:transversion rate ratio. Intuitively, when tran-
sitions occur with higher frequency than transversions,
many transitional substitutions are expected at the fast-
changing sites. If the among-site rate variation is ignored,
some of the transitions will be overlooked and the tran-
sition:transversion rate ratio will be underestimated3.32,

A similar pattern was reported in maximum likelihood
analyses333, Figure 2 shows a typical log-likelihood surface
as a function of the gamma parameter, ¢, and the tran-
sition:transversion rate ratio, k, highlighting the negative
correlation between estimates of aand . The maximum like-
lihood estimates are & = 0.25 and & = 21.98. However, if rates
are assumed to be constant among sites (o =), k will be
underestimated (X =9.39), whereas if the transition:trans-
version rate bias is ignored (i.e. if xis fixed at 1), & will be
overestimated (a=0.77) and the amount of rate variation
underestimated. The correlation of estimates of the two
parameters means that they should be estimated simulta-
neously. For the mitochondrial genome in which the tran-
sition bias is high, it is important to use an adequate substi-
tution model?!43 when estimating the gamma parameter.

Reconstruction of phylogenies

The existence of among-site rate variation means that
most evolutionary changes occur at only a few sites, while
many other sites never experience any substitutions. Since
neither sites with very few evolutionary changes nor sites
saturated with substitutions provide much phylogenetic
information, sequences with severe rate variation tend to be
less informative, even if the rate variation is adequately
accounted for by the analytical method?’. Furthermore, if
the rate variation is present but ignored, model-based tree
reconstruction methods, such as distance matrix methods
and maximum likelihood methods, can be quite misleading,
as shown by simulation studies and statistical consistency
analysis®27.35-3%, The problem is especially acute if among-
site rate variation is coupled with substitution rate variation
among lineages. Simulations also show that the performance
of the parsimony method in recovering the correct phy-
logeny deteriorates significantly when among-site rate vari-
ation exists35:36.38_ Although the assumptions of parsimony
are not explicitly specified, the method clearly involves some
assumptions about rates as it performs worse when rates
are variable among sites than when they are constant.

Furthermore, evaluation of the reliability of the estimated
phylogeny appears to be quite sensitive to the assumed
model?333, Significance measures, such as the bootstrap pro-
portions, are found to be dependent on whether the among-
site rate variation is accounted for in the model, although
the direction of the effect is not clear33.

Conclusions and perspectives

Analyses of real data during the past few years have
established that among-site rate variation exists and has
important impact on various aspects of phylogenetic analy-
sis, especially if the focus of the analysis is on the process of
sequence evolution. It is, therefore, important to account
for such rate variation in phylogenetic analysis. This can be
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done by adopting the maximum likelihood method, although
the method involves intensive computation for large data
sets. Distance matrix methods can also accommodate the
rate variation if gamma distances with a reliable estimate of
the o parameter are used. The current implementation of the
parsimony method does not adequately deal with the among-
site rate variation, although attempts have been made to
allow for rate variation through unequal weighting of sites
(characters)#04L,

The past few years have also seen the development of
reliable and practical likelihood methods for estimating the
gamma parameter «. Methods using parsimony reconstruc-
tions of character changes to estimate ¢ have also been im-
proved, although even the improved method involves
considerable positive bias. It may be possible to correct for
the biases involved in the numbers of changes inferred by
parsimony and to improve these estimation methods fur-
ther. Results show that the reliability of the parsimony esti-
mates increases with the number of sequences (taxa)s2.
Evolutionary biologists then have the option of using the
likelihood method for small and medium-sized data sets
and the improved parsimony methods for large data sets.

Simulation studies have also shown that the among-site
rate variation has a significant influence on analyses of
within-species data, such as the D-loop mitochondrial DNAs
from human populations*43, The rate variation shifts the
distribution of the number of segregating sites in a DNA sam-
ple, invalidating Tajima’s D statistic for testing neutrality+.
It also causes the distribution of pairwise sequence differ-
ences to mimic patterns of population expansion. Much of
the population genetics theory suitable for analyzing DNA
sequence polymorphisms is developed under the infinite-
sites model without accounting for among-site rate variation;
the notion that these unrealistic assumptions do not matter
due to the low divergence of within-species data appears to
be a misconception. Appropriate analytical methods have
yet to be developed.

Program availability

Most methods discussed in this review are implemented
in the PAML program package (available at ftp.bio.indiana.
edu:molbio/evolve). The discrete-gamma model!? is also
implemented in the PAUP* package. Calculation of pairwise
distances under the gamma model is available in most phylo-
genetic packages including MEGA and PHYLIP.
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Biodiversity and the productivity

and stability of ecosystems

Kris H. Johnson, Kristiina A. Vogt, Heidi J. Clark,
Oswald J. Schmitz and Daniel J. Vogt

esolution of the relation-

ships between the diver-

sity of life forms occupying

ecosystems and the behav-
jor of those systems is a prime
directive of ecological research.
The problem ultimately encom-
passes all questions about how
species coexist and how communi-
ties of populations influence eco-
system performance. Early theo-
retical discussions established the
axiom that diverse, complex eco-
logical communities are the most
stable!. Results of some field stud-
ies in the 1960s and 1970s began to
challenge the universality of this
paradigm. Theoretical advances
based on mathematical modelling!
indicated that the nature of species
interactions, rather than species
number alone, determines the
stability of ecological systems.
Subsequently, several hypotheses
about diversity and ecosystem
function relationships have been
proposed. Recently, growing con-
cern over the loss of biodiversity
and new empirical evidence has

prompted revisitation of the idea that species diversity
enhances the productivity and stability of ecosystems?.

Hypotheses and theoretical foundations

Four prevalent hypotheses (in addition to the null model)
are summarized in Box 1: the diversity-stability, rivet or rivet-
popper, redundancy, and idiosyncratic response hypotheses.

Attempts to unveil the relationships
between the taxonomic diversity,
productivity and stability of ecosystems
continue to generate inconclusive,
contradictory and controversial
conclusions. New insights from recent
studies support the hypothesis that
species diversity enhances productivity
and stability in some ecosystems, but not
in others. Appreciation is growing for the
ways that particular ecosystem features,
such as environmental variability and
nutrient stress, can influence biotic
interactions. Alternatives to the
diversity—stability hypothesis have been
proposed, and experimental approaches
are starting to evolve to test these
hypotheses and to elucidate the
mechanisms underlying the functional
role of species diversity.
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The diversity-stability hypoth-
esis® introduced the idea that
increasing the number of trophi-
cally interacting species in an eco-
logical community should increase
the collective ability of member
populations to maintain their
abundances after disturbance. In
his presentation of the hypoth-
esis, MacArthur? implicitly recog-
nized the transfer of energy from
one trophic level to another as a
quintessential ecosystem function.
Biomass accumulation is the intui-
tively sensible, practical measure
of energy assimilation, and field
studies that followed used some
measure of biomass as the eco-
system function response variable.
The formalization of the diversity-
stability hypothesis served as the
original impetus for framing eco-
logical questions in terms of the
relationship between diversity and
stability. The hypothesis came to
be popularly acclaimed as a law of
nature in spite of the fact that
results of some field studies failed
to support it!.

The remaining hypotheses were introduced as alterna-
tives to the diversity—stability hypothesis. The rivet hypoth-

esis? suggests that ecosystem resistance - the ability of a

system to absorb changes in abundances of some species
without drastically changing ecosystem performance (e.g.
biomass production)s — can decline as species are deleted
even if system performance appears outwardly unaffected,

3 72 Copyright © 1996, Elsevier Science Ltd. All rights reserved. 0169-5347/96/$15.00 PII: S0169-5347(96)10040-9 7REE vol. 11, no. 9 September 1996



