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As phylogenetic analyses find widespread use in 
various fields of biology, studies on methods of phylog- 
eny reconstruction are becoming ever more important. 
Although tree reconstruction has been identified as a sta- 
tistical estimation problem since the pioneering work of 
Cavalli-Sforza and Edwards (1967), the complexity of 
the problem does not seem to be well recognized. In this 
note I report simulation results in which use of a false 
model in the maximum-likelihood method recovers the 
correct tree with higher probabilities than use of the true 
model. Indeed the false model on average recovers the 
correct tree more often than the true model, and the 
difference is not due to small sample sizes or restricted 
to the case of four taxa. The results highlight the com- 
plexity of phylogeny reconstruction and the need for 
more theoretical work on statistical methods for this 
type of estimation problem. 

A simulation study was carried out to examine the 
performance of phylogeny reconstruction by the maxi- 
mum-likelihood method when either the correct evolu- 
tionary model (referred to as the True method) or a 
wrong model (the False method) is assumed. The cor- 
rect model used for simulating data, represented as 
“JC+G,” uses the substitution model of Jukes and Can- 
tor (1969) in combination with a gamma model of rate 
variation among sites in which the rates at different sites 
are multiplied by independent gamma variates normal- 
ized to have mean one (Yang 1994). The gamma param- 
eter (x is inversely related to the extent of among-site 
rate variation and is fixed at (x = 0.2. Probabilities of 
observing all site patterns were calculated under the 
JC+G model, and the observed numbers of site patterns, 
which constitute the simulated data, were sampled from 
these probabilities (Yang 1996). Five sets of branch 
lengths for a tree of four taxa and 12 sequence lengths 
were used (fig. 1); for each tree and sequence length 
combination, 5,000 data sets were generated. Each sim- 
ulated data set was analyzed by the two methods to re- 
cover the correct tree (Felsenstein 198 1; Yang 1994). 
Although (x could be estimated from the data under the 
JC+G model, the correct value (0.2) was used in the 
True method so that the same number of parameters was 
estimated in both methods. The only difference between 
the two methods is that True uses the correct value of 
CY (0.2) while False uses a false value (a). Twice the 
log-likelihood difference between the two models av- 
eraged from 10.0 for tree D to 27.2 for tree A in the 
simulation for N = 100 nucleotides and was greater for 
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longer sequences. The False model can thus be rejected 
rather easily by the likelihood ratio test. The x2 approx- 
imation to the likelihood ratio test is valid in this case 
even though the gamma density is singular at 01 = ~0 as 
the likelihood function under the gamma model is 
smooth at cx = 00 (S. Sawyer, personal communication). 
Intuitively, one should expect True to perform better 
than False in most, if not all, cases. 

The five trees represent different tree shapes (fig. 
1). Tree A has equal external branch lengths, and the 
probability (Pr) that the True method recovers the cor- 
rect tree is lower than that for the False method (PF) in 
small samples (i.e., when N < 2,000), while P, > P, 
in large samples (fig. 1A). The differences between the 
two methods are small for this tree. True is clearly and 
substantially better than False for tree C, which has 
short and long external branches as neighbors and an- 
other pair of short and long external branches on the 
other side of the internal branch (fig. 1C). Both methods 
are consistent; that is, both P, and P, approach 1 when 
N + ~0. However, they approach this limit at different 
rates. The efficiency E of the True method relative to 
the False method is designed to detect such a difference. 
For this tree shape, P, approaches 1 at a much greater 
rate than PF (fig. 1C). 

For the other three trees, P, < PF and True per- 
forms worse than False (fig. lB, D, and E). Tree B has 
two short external branches separated from two long 
branches by an internal branch. Tree D has three short 
and one long external branches, and tree E has three 
long and one short external branches. For all these trees, 
the relative efficiency E of True decreases monoton- 
ically with N, and, in the case of tree D, apparently 
approaches 0. 

Five additional trees whose branch lengths are 0.2 
times as small as those of trees in figure 1 were also 
used in the simulation. These trees showed the same 
patterns as those in figure 1 and so the results are not 
presented. The influencing factor is clearly the tree 
shape determined by the relative branch lengths. To 
summarize, in three out of the five tree shapes for the 
case of four taxa, False performs better than True. The 
poorer performance of True in these three trees is not 
due to small sample sizes, as increasing N actually de- 
creases the efficiency of True relative to False. The dy- 
namics contrasts with the large-sample theory of maxi- 
mum-likelihood estimators of parameters. 

A further simulation was designed to answer the 
question “How often is the False model better than the 
True model?” As the True method performs better for 
tree shape C and False performs better for tree shapes 
B, D, and E (fig. l), the answer to this question will 
depend on how often these different tree shapes are en- 
countered in the real world. In this study, a Yule process 
was used to generate random coalescent trees (Kuhner 
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FIG. l.-Probability of obtaining the correct tree by the True (PT, 0) and False (PF, 0) methods as a function of the sequence length N. 
E = (1 - PF)I( 1 - Pr) (A) is the “relative efficiency” of the True method relative to the False method. The shape of each tree is superimposed 
on the graph. The unrooted four-taxon tree has five branch lengths: to for the internal branch, t, and t2 for the two branches on one side of the 
internal branch, and t3 and t4 for the two branches on the other side of the internal branch. The branch lengths used in this simulation (in the 
order to, c,, tZ, f3, f4) are 0.1, 0.5, 0.5, 0.5, 0.5 for tree A, 0.1, 0.5, 0.5, 0.6, 1.4 for tree B, 0.1, 0.1, 0.5, 0.2, 1.0 for tree C, 0.05, 0.05, 0.05, 
0.05, 0.5 for tree D, and 0.05, 0.5, 0.5, 0.5, 0.05 for tree E. 

and Felsenstein 1994). To allow for different evolution- 
ary rates among lineages, branch lengths generated un- 
der the molecular clock assumption were chosen at ran- 
dom, with probability l/2 for each case, either to be 
multiplied or divided by loll2 = 3.162, so that fast- 
changing lineages have a rate 10 times higher than slow- 
ly changing lineages. Cases of more than four taxa were 
also examined (fig. 2). The decrease in performance 
with the increase of the number of taxa (n) by both 
methods-decrease in PT and PF and increase in the 
average topological distances DT and D-is probably 
due to the increase in the number of possible topologies 
with n. This number is 3, 15, 105, 945, and 10,395, for 

n = 4, 5, 6, 7, and 8, respectively. For all values of n 
examined, False recovers the correct tree more frequent- 
ly than True. 

The reasons for these counterintuitive results prob- 
ably lie in the complexity of the estimation problem. 
The maximum-likelihood method has played the central 
role in statistical estimation (Edwards 1972). The prob- 
ability of observing the data under the model is consid- 
ered a function of the unknown parameters, which are 
estimated by maximizing this function (the likelihood 
function). Under quite general regularity conditions, 
maximum-likelihood estimators have desirable large- 
sample properties: they are consistent, asymptotically 
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FIG. 2.-The probability of obtaining the correct tree by the True 
(PT) and False (PF) methods as a function of the number of taxa (n) 
when tree topologies and branch lengths are generated from the Yule 
process. DT and D, are the average topological distances between the 
estimated tree and the correct tree by the two methods (Robinson and 
Foulds 1981). For each n, 2,000 replicate data sets were simulated 
except for n = 8, for which only 1,000 replicates were simulated to 
save computation. The correct model is JC+G with cx = 0.2; this value 
was used in the True method. The average total tree length (sum of 
branch lengths along the tree) is fixed at two substitutions per site. The 
sequence length is N = 250 nucleotides. 

unbiased, and most efficient (Wald 1949). In the case of 
phylogeny reconstruction, however, it has not been pos- 
sible to construct a single likelihood function for all tree 
topologies. Instead, Felsenstein’s (198 1) approach to 
phylogeny estimation maximizes the likelihood function 
for each topology separately and compares likelihoods 
of different trees to select the best topology. There is 
then a change of parameter space with the change of 
topology (Yang, Goldman, and Friday 1995). The prob- 
lem is thus similar to comparison of nonnested models. 
Although maximum likelihood was suggested for com- 
paring nonnested models (Cox 1961), not much appears 
to be known about the properties of the approach. It is 
still an open question whether a tree-reconstruction 
method can be found that has properties similar to the 
asymptotic properties of maximum-likelihood estimators 
of parameters. One can imagine that an efficient method 
should not entirely ignore the model-as the False 
method fixes (x at ~0 no matter what the true cx is-but 
rather use the model differently from current methods. 
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