
1600

Mol. Biol. Evol. 15(12):1600–1611. 1998
q 1998 by the Society for Molecular Biology and Evolution. ISSN: 0737-4038
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Models of amino acid substitution were developed and compared using maximum likelihood. Two kinds of models
are considered. ‘‘Empirical’’ models do not explicitly consider factors that shape protein evolution, but attempt to
summarize the substitution pattern from large quantities of real data. ‘‘Mechanistic’’ models are formulated at the
codon level and separate mutational biases at the nucleotide level from selective constraints at the amino acid level.
They account for features of sequence evolution, such as transition-transversion bias and base or codon frequency
biases, and make use of physicochemical distances between amino acids to specify nonsynonymous substitution
rates. A general approach is presented that transforms a Markov model of codon substitution into a model of amino
acid replacement. Protein sequences from the entire mitochondrial genomes of 20 mammalian species were analyzed
using different models. The mechanistic models were found to fit the data better than empirical models derived
from large databases. Both the mutational distance between amino acids (determined by the genetic code and
mutational biases such as the transition-transversion bias) and the physicochemical distance are found to have strong
effects on amino acid substitution rates. A significant proportion of amino acid substitutions appeared to have
involved more than one codon position, indicating that nucleotide substitutions at neighboring sites may be corre-
lated. Rates of amino acid substitution were found to be highly variable among sites.

Introduction

Amino acid sequences of conservative proteins are
widely used to infer distant phylogenetic relationships
such as early divergences near the root of the universal
tree of life (Iwabe et al. 1989; Brown and Doolittle
1995; Hashimoto and Hasegawa 1996). For distant re-
lationships, the use of nucleic acid sequences can be
problematic, as alignment may be difficult, base fre-
quencies may vary among species, and saturation of
substitutions may have diluted phylogenetic information
(see, e.g., Yang and Roberts 1995). In such cases, use
of protein sequences may be advantageous (Hasegawa
and Hashimoto 1993).

The first phylogenetic analysis of protein sequence
data by a rigorous likelihood approach appears to be that
of Bishop and Friday (1985, 1987). Their analysis was
based on a Poisson process model of amino acid sub-
stitution assuming an equal substitution rate between
any two amino acids and assuming a molecular clock
(i.e., constancy of substitution rates among lineages).
Neither assumption appears realistic. Kishino, Miyata,
and Hasegawa (1990) relaxed these assumptions by
adapting the maximum-likelihood approach of Felsen-
stein (1981) for nucleotide sequences, which does not
rely on the existence of a molecular clock. Furthermore,
the empirical matrix of substitution frequencies between
amino acids compiled by Dayhoff, Schwartz, and Orcutt
(1978) was used to account for different substitution
rates between amino acids. The development of a com-
puter program for protein maximum likelihood has pop-
ularized the approach (Adachi and Hasegawa 1992,
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1996a), which is now widely used for phylogenetic
analysis of protein sequence data.

The empirical model of Dayhoff, Schwartz, and Or-
cutt (1978) and its update by Jones, Taylor, and Thorn-
ton (1992) were constructed by averaging over many
proteins over different timescales. The relative substi-
tution rates between amino acids are fixed in those mod-
els, no matter which protein is analyzed (see Wilbur
[1985], Goldman and Yang [1994], and Thorne, Gold-
man, and Jones [1996] for criticisms of the empirical
models). However, we expect that proteins with different
functions or from different genomes should have differ-
ent patterns of amino acid substitution. It is thus inter-
esting to develop models which account for the biolog-
ical processes involved in amino acid substitution, i.e.,
mutational biases in the DNA, translation of the DNA
into protein according to the genetic code, and accep-
tance or rejection of the resulting amino acid under se-
lective constraints on the protein. Such ‘‘mechanistic’’
models should naturally be formulated at the codon level
and may involve parameters that characterize the sub-
stitution pattern in the protein. In contrast to analysis of
nucleotide sequences, for which a number of probabi-
listic models have been suggested (see, e.g., Yang
[1994a] and Zharkikh [1994] for reviews), not many
models of amino acid substitution are available. Several
Markov-process models of codon or amino acid substi-
tution were proposed in the literature, but they were
used to predict amino acid frequencies in a protein (Jorré
and Curnow 1975) or to calculate mutational distances
between amino acids determined by the genetic code
(Coates and Stone 1981); none of them was used in
comparative analysis of real sequence data.

In this paper, codon-based mechanistic models of
amino acid substitution are developed. A general ap-
proach is presented which transforms a Markov-process
model of codon substitution into an amino acid substi-
tution model by grouping synonymous codons that en-
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FIG. 1.—The most likely phylogeny of the 20 species analyzed in
this paper (Cao et al. 1998). Branches are drawn in proportion to es-
timates of their lengths under the REV 1 G model. The tree topology
(but not the branch lengths) is used in the paper to compare different
amino acid substitution models.

code the same amino acid. Empirical models of amino
acid substitution derived previously (Dayhoff, Schwartz,
and Orcutt 1978; Jones, Taylor, and Thornton 1992) and
in this paper are used for comparison. The problem of
substitution rate variation among amino acid sites is also
examined using the gamma-rates model of Yang
(1994b), developed for nucleotide sequences. A large
data set containing all proteins in the mitochondrial ge-
nome from 20 species of mammals was analyzed to
compare the different models.

Data

The data are from Cao et al. (1998) and consist of
all 12 proteins encoded by the same strand of the mi-
tochondrial genome from 17 eutherian species and their
outgroups (two marsupials and one monotreme). The 12
proteins were concatenated into one long sequence and
analyzed as one data set, since they appear to have sim-
ilar substitution patterns and since some of the models
considered in this paper involve many parameters that
require a large amount of data to estimate reliably. The
other protein, ND6, is encoded by the opposite strand
of the DNA with quite different base and codon biases
and was not used. The species are human (Homo sap-
iens, D38112), common chimpanzee (Pan troglodytes,
D38113), bonobo (Pan paniscus, D38116), gorilla (Go-
rilla gorilla, D38114), Bornean orangutan (Pongo pyg-
maeus pygmaeus, D38115), Sumatran orangutan (Pongo
pygmaeus abelii, X97707), common gibbon (Hylobates
lar, X99256), harbor seal (Phoca vitulina, X63726),
grey seal (Halichoerus grypus, X72004), cat (Felis ca-
tus, UU20753), horse (Equus caballus, X79547), Indian
rhinoceros (Rhinoceros unicornis, X97336), cow (Bos
taurus, J01394), fin whale (Balaenoptera physalus,
X61145), blue whale (Balaenoptera musculus, X72204),
rat (Rattus norvegicus, X14848), mouse (Mus musculus,
J01420), wallaroo (Macropus robustus, Y10524), opos-
sum (Didelphis virginiana, Z29573), and platypus (Or-
nithorhynchus anatinus, X83427). After removal of sites
with alignment gaps, regions in which the alignment
was ambiguous, and overlapping regions between ATP6
and ATP8 and between ND4 and ND4L, the sequence
had 3,331 amino acid sites. Uncertainties exist concern-
ing the relationship among primates (A in fig. 1), fer-
ungulates (B), rodents (C), and the outgroup (D). The
most likely relationship is ((AB)CD), shown in figure 1
(Cao et al. 1998). The other two tree topologies con-
cerning the relationship of those four groups, i.e.,
((AC)BD) and ((AD)BC), were also used in fitting sev-
eral models implemented in this paper. For estimating
parameters and comparing models, the three tree topol-
ogies produced virtually identical results. The tree to-
pology of figure 1 was used to obtain results presented
in this paper.

Codon-based models were used to analyze both the
nucleotide and amino acid sequences. For this purpose,
only data from the seven primate species were used, as
the nucleotide sequences from the large data set appear
to be too divergent. For example, the proportions of syn-
onymous differences between the placentals and the

marsupials were often around 75%, so the method of
Nei and Gojobori (1986) was either inapplicable or gave
very large estimates of synonymous rates (dS . 2 sub-
stitutions per site). Nonsynonymous rates in those com-
parisons were dN ø 0.2. Within primates, the largest
estimates of synonymous and nonsynonymous rates
were dS ø 0.9 and dN ø 0.06. The subset of the se-
quence data is referred to as the small data set.

Models of Amino Acid Substitution

Models considered in this paper differ in their as-
sumptions concerning the pattern of amino acid substi-
tution, i.e., the relative substitution rates between amino
acids. A continuous-time Markov process is used to
model amino acid substitution with a 20 3 20 matrix
of instantaneous substitution rates given by Q 5 {qij}.
The diagonals of the matrix are determined by the math-
ematical requirement that row sums of the matrix are all
zero; that is, qii 5 2Sj±i qij. As time and rate are con-
founded in such an analysis, the rate matrix is scaled so
that the average rate of substitution is one:

2 p q 5 1, (1)O i ii
i

where pi is the equilibrium frequency of amino acid i.
Time (or distance or branch length) is then measured by
the expected number of amino acid substitutions per
site. Given the rate matrix Q, the matrix of transition
probabilities over time t can be calculated as P(t) 5
{pij(t)} 5 eQt, where pij(t) is the probability that amino
acid i changes into amino acid j after time t. A standard
numerical algorithm can be used to calculate the eigen-
values and eigenvectors of Q to calculate P(t) (see Yang
1994a). The likelihood function can then be calculated
using the approaches of Felsenstein (1981; see also
Kishino, Miyata, and Hasegawa 1990; Goldman and
Yang 1994) under models of one single rate for all sites
and of Yang (1994b) under models of variable rates
among sites. A numerical optimization algorithm is used
to obtain maximum-likelihood estimates of parameters.

The simplest model of amino acid substitution is
the Poisson model, which assumes an equal rate of
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change between any two amino acids (Bishop and Fri-
day 1987). The equal-input (proportional) model as-
sumes that the substitution rate is proportional to the
frequency of the target amino acid; that is, qij 5 mpj,
where m is a scale factor determined by equation (1).
These models are known to fit real data poorly (see, e.g.,
Cao et al. 1994a, 1994b; Hashimoto and Hasegawa
1996) but are used here for comparison. Other models
considered in this paper are of two kinds: empirical and
mechanistic. The former summarizes the substitution
pattern from a large amount of protein sequence data
without considering what factors affect amino acid sub-
stitution. The latter attempts to describe the biological
processes involved in amino acid substitution, such as
mutational biases at the DNA level and selective con-
straints at the protein level.

Empirical Models of Dayhoff et al. and Jones et al.

The empirical model of amino acid substitution of
Dayhoff, Schwartz, and Orcutt (1978) is implemented
following Kishino, Miyata, and Hasegawa (1990). The
updated matrix of Jones, Taylor, and Thornton (1992) is
based on a much larger database. Counts of amino acid
differences in pairwise sequence comparisons were pro-
vided by Dr. D. Jones and transformed into a matrix of
substitution rates using the approach of Yang and Kumar
(1996). The models are constructed to be time-revers-
ible, such that the rate matrix is in the form Q 5 SP,
where S 5 {sij} is a symmetrical matrix (with sij 5 sji

for any i and j), and P 5 diag{p1, p2, . . . , p20} (see,
e.g., Yang 1994a; Zharkikh 1994). The elements of the
rate matrix (sij and pj) are fixed irrespective of the pro-
tein analyzed. When amino acid frequencies in the real
data differ considerably from those predicted under the
empirical models of Dayhoff, Schwartz, and Orcutt
(1978) or Jones, Taylor, and Thornton (1992), use of
amino acid frequencies as free parameters in the models
provides a better fit. Then, only the sij’s are specified by
the empirical models, and the pj’s are estimated from
the data. These models, known as the Dayhoff-F and
JTT-F models in the Molphy package (Adachi and Has-
egawa 1996a), will be used in this paper.

The General Reversible Model

The general reversible Markov process model of
amino acid substitution, referred to as ‘‘REV,’’ places
the following constraint on the structure of the rate ma-
trix:

piqij 5 pjqji, for any i, j. (2)

Equivalently, the rate can be written as qij 5 sijpj, where
sij 5 sji. The constraint reduces the number of free pa-
rameters in the rate matrix from 379 (5400 2 20 2 1)
to 208 (520 3 19/2 2 1 1 19). (Since only relative
rates are considered, the number of free parameters is
reduced by one.) The frequency parameters pj are rou-
tinely estimated using the observed frequencies in the
data, while elements in the symmetrical matrix, S 5
{sij}, are estimated by maximum likelihood. This param-
eter-rich model provides a basis with which other, sim-
pler, models can be compared.

The general reversible model of amino acid sub-
stitution was first implemented by Adachi and Hasega-
wa (1996a, 1996b). The authors used the model to es-
timate the substitution pattern in mitochondrial proteins
from a diverse range of species (including chicken, frog,
fish, and lamprey as well as mammals) and supplied the
estimated rate matrix as an empirical model in the
protml program, i.e., the mtREV24 model (Adachi
and Hasegawa 1996a). This empirical model is also
used in our analysis. Comparison of this model with
others will give us an indication as to whether it is ap-
propriate to use a fixed-rate matrix such as mtREV24 in
cases in which the data set is too small to estimate the
rate matrix reliably or the estimation will be computa-
tionally too costly.

The Reversible Model Disallowing Changes at
Multiple Codon Positions

This model, referred to as ‘‘REV0,’’ disallows in-
stantaneous substitutions between amino acids that are
different at two or three codon positions. The underlying
assumption of the model is that mutations are indepen-
dent at the three codon positions and that DNA level
processes do not cause correlation among neighboring
nucleotides. As a result, the probability that more than
one codon position changes in a small time interval
should be negligible. It should be noted that the prob-
ability of change from any amino acid to another is pos-
itive over any positive time interval; that is, pij(t) . 0
for any t . 0. The model merely assumes that amino
acids differing at two or three codon positions cannot
interchange without going through other, intermediate,
amino acids. Under the universal genetic code, this mod-
el involves 93 (5 75 2 1 1 19) free parameters for the
rate matrix, as there are 75 one-step amino acid pairs
(pairs of amino acids separated by one codon position
difference). Under the mammalian mitochondrial code,
there are 70 one-step amino acid pairs, so the rate matrix
involves 88 (5 70 2 1 1 19) free parameters.

Construction of an Amino Acid Substitution Model
from a Markov Model of Codon Substitution

Suppose that substitutions between sense codons
are described by a time-reversible Markov process with
rate matrix Q 5 {quv}, where quv (u ± v) is the rate of
substitution from codon u to codon v. For the mam-
malian mitochondrial code, which has 60 sense codons,
Q is a matrix of size 60 3 60. Since the process is
reversible, we have puquv 5 pvqvu for any u and v, and
the rate can be written as quv 5 suvpv, where S 5 {suv}
is a symmetrical matrix. Let i 5 aau and j 5 aav be the
amino acids encoded by codons u and v, respectively.
Here, we use the same symbols, q, s, and p for both
codons and amino acids, and their subscripts indicate
whether they refer to codons (u and v) or amino acids
(i and j).

Let I and J represent the sets of codons that code
for amino acids i and j, respectively; that is, aau 5 i for
u ∈ I, and aav 5 j for v ∈ J. After combining synony-
mous codons that code for amino acid j into one state,
we have pJ 5 Sv∈J pv to be the equilibrium frequency
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of amino acid j. Since substitutions to any synonymous
codon (v) of amino acid j lead to amino acid j, the sub-
stitution rate from codon u to amino acid j is

q 5 q 5 s p . (3)O OuJ uv uv v
v∈J v∈J

The substitution rate from amino acid j to codon u is an
average of substitution rates from synonymous codons
(v) of amino acid j to codon u, weighted by the proba-
bility pv/pJ that amino acid j is encoded by codon v:

pvq 5 q 5 p q /p 5 p q /p . (4)O OJu vu u uv J u uJ Jpv∈J v∈JJ

The new Markov process, in which all synonymous co-
dons for amino acid j are combined into one state, is
time-reversible as puquJ 5 pJqJu. Using similar argu-
ments, we obtain the substitution rates between amino
acids i and j by further combining synonymous codons
for amino acid i into one state,

q 5 q 5 p q /p 5 p (s p )/pO O O OJI Ju u uJ J u uv v J
u∈I u∈I u∈I v∈J

5 [p p s /(p p )]p , (5)O O u v uv I J I
u∈I v∈J

q 5 p q /p . (6)IJ J JI I

Let

s 5 p p s /(p p ), (7)O OIJ u v uv I J
u∈I v∈J

and then qIJ 5 sIJpJ with sIJ 5 sJI. The resulting 20 3
20 matrix Q 5 {qIJ} 5 {qij} will be the rate matrix for
a reversible Markov process of amino acid substitution.
Since the codon frequencies are unavailable from the
protein sequence data, we use equal frequencies for syn-
onymous codons that code for the same amino acid to
derive the symmetrical matrix S. Amino acid frequen-
cies (pi) are estimated using the observed frequencies
in the data. Parameters in the substitution rate matrix
include those in the codon substitution model and the
amino acid frequencies.

Amino Acid Distance and Substitution Rate

A simplified version of the model of Goldman and
Yang (1994) specifies the rate of substitution from co-
don u to codon v as

0, if the two codons differ at more

than one position,p , for synonymous transversion,vq 5 (8)uv kp , for synonymous transition,v

vp , for nonsynonymous transversion,v
vkp , for nonsynonymous transition, v

where k is the transition/transversion rate ratio, v is the
nonsynonymous/synonymous rate ratio (5dN/dS in the
notation of Nei and Gojobori 1986), and pv is the equi-
librium frequency of codon v. When nucleotide (codon)
sequences are analyzed, we use base frequencies at the
three codon positions to calculate codon frequencies
(pv), with 9 (5[3 3 (4 2 1)]) free parameters used.

When amino acid sequences are analyzed, pv are cal-
culated from amino acid frequencies under the assump-
tion that synonymous codons are equally frequent, as
mentioned above. Equation (8) is similar to the simu-
lation model used by Gojobori (1983) or the model of
Muse and Gaut (1994) and ignores differences in sub-
stitution rate between different amino acids. However, it
is well known that different amino acids interchange at
very different rates. In general, amino acids with similar
physicochemical properties tend to replace each other
more often than do dissimilar amino acids (e.g., Epstein
1964, 1967; Zuckerkandl and Pauling 1965; MacLachan
1972; Grantham 1974), presumably to maintain the con-
formation of the protein. Our purpose here is to compare
several physicochemical distance measures between
amino acids and determine what relationship between
distance and rate best describes the real process of ami-
no acid substitution. Thus, v in equation (8) is replaced
by vij, where i (5aau) and j (5aav) are the two amino
acids involved. The model specified by equation (8) is
called the ‘‘equal-distance’’ model, as it is equivalent to
using the same distance between any pair of amino ac-
ids. Following Miyata, Miyazawa, and Yasunaga (1979),
we refer to vij as the ‘‘acceptance’’ rate. When vij varies
with amino acids i and j, the overall dN/dS ratio can be
estimated using the approach of Goldman and Yang
(1994).

Several distance measures between amino acids
have been suggested in the literature. Sneath (1966)
used as many as 134 side chain properties but weighed
them equally, so the distance does not appear useful. In
this paper, we consider only the three properties used by
Grantham (1974): composition (c), polarity (p) and vol-
ume (v). Composition is defined as the atomic weight
ratio of noncarbon elements in end groups or rings to
carbons in the side chain (Grantham 1974). Polarity and
volume (size) are known to have a great impact on the
folding of the protein, and are the only properties used
by Epstein (1967) and Miyata, Miyazawa, and Yasunaga
(1979). For each property x (5c, p, or v), we define the
distance between amino acids i and j as dij 5 zxi 2 xjz.
Distances based on composition range from 0 (for many
amino acid pairs) to 2.75 (between Cys and any of Ala,
Ile, Leu, Met, Phe, or Val), distances based on polarity
range from 0 (for Arg-Gln) to 8.1 (for Leu-Asp), and
distances based on volume range from 0.5 (for Pro-Ser)
to 167 (for Gly-Tyr). Besides the three distances based
on the three properties, we also use distance measures
published by Grantham (1974) and Miyata, Miyazawa,
and Yasunaga (1979). Grantham’s distance is given as

2 2d 5 [1.833(c 2 c ) 1 0.1018( p 2 p )ij i j i j

2 1/21 0.000399(v 2 v ) ] . (9)i j

and ranges from 5 for Leu-Ile to 215 for Cys-Trp. Mi-
yata, Miyazawa, and Yasunaga’s distance has a similar
form,

2 2 2 2d 5 Ï( p 2 p ) /s 1 (v 2 v ) /s , (10)ij i j Dp i j Dv

where sDp and sDv are the standard deviations of zpi 2
pjz and zvi 2 vjz, respectively. The distance ranges from
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Table 1
Log-Likelihood Values and Parameter Estimates Under
Empirical Models for the Amino Acid Sequences of the
Large Data Set

Model p ,
Tree

Length â D,

One rate for all sites
Poisson . . . . . . . . . . .
Equal input . . . . . . . .
Dayhoff-F . . . . . . . . .
JTT-F. . . . . . . . . . . . .
mtREV24-F . . . . . . .
REV0 . . . . . . . . . . . .
REV . . . . . . . . . . . . .

0
19
19
19
19
88

208

242,774.51
240,448.55
237,380.84
236,922.84
236,372.15
236,844.94
236,207.95

1.534
1.543
1.603
1.600
1.605
1.786
1.622

Gamma rates for sites
Poisson 1 G. . . . . . .
Equal input 1 G . . .
Dayhoff-F 1 G . . . .
JTT-F 1 G . . . . . . . .
mtREV24-F 1 G . . .
REV0 1 G . . . . . . . .
REV 1 G . . . . . . . . .

1
20
20
20
20
89

209

240,611.30
238,167.60
235,333.80
234,910.37
234,566.40
234,442.15
234,247.52

1.630
1.735
1.852
1.819
1.842
2.472
2.204

0.358
0.340
0.367
0.372
0.413
0.348
0.372

2,163.21
2,280.95
2,047.04
2,012.47
1,805.75
2,402.79
1,960.43

NOTE.—p is the number of parameters in the substitution model not includ-
ing the 37 branch lengths. a is the gamma shape parameter, and D, is the log-
likelihood difference between the single-rate and gamma-rates models. Tree
length is the expected number of amino acid substitutions per site along the tree.

0.06 for Pro-Ala to 5.13 for Gly-Trp. Grantham’s and
Miyata, Miyazawa, and Yasunaga’s distance measures
have a correlation coefficient of 0.76.

We consider a monotonic geometric relationship
between distance (dij) and acceptance rate (vij)

v 5 a exp {2bd /d }, a $ 0, (11)ij ij max

as well as a linear relationship

v 5 a(1 2 bd /d ) , a $ 0, b # 1. (12)ij ij max

The maximum distance dmax is used to convert different
distance measures to the same scale. The linear rela-
tionship is similar to a formula discussed by Miyata,
Miyazawa, and Yasunaga (1979), while the formula
used by Goldman and Yang (1994) is a special case of
the geometric relationship using Grantham’s distance,
with a 5 1 fixed. When b 5 0, both relationships reduce
to the equal-distance model of equation (8). When nu-
cleotide (codon) sequences are analyzed, both parame-
ters a and b can be estimated from the data. However,
when amino acid sequences are analyzed, synonymous
changes are invisible, and a becomes an inestimable
scaling factor; in that case, parameter b alone will be
estimated.

Different Types of Amino Acid Substitutions

Instead of using a mathematical function to de-
scribe the relationship between the acceptance rate (v)
and distance (d), amino acid interchanges can be clas-
sified into different types (groups) and assigned different
rates. The acceptance rates can then be estimated from
the data. For example, Epstein (1964) considered three
types of amino acid interchanges: (I) those that do not
alter polarity, (II) those between polar amino acids and
glycine or alanine, and (III) those that alter polarity.
Type I interchanges are expected to be frequent, while
type III interchanges are expected to be rare. A few
other classification schemes were discussed by Taylor
(1986). In this paper, we use Grantham’s distance to
classify amino acid pairs into five groups, with the first
group consisting of pairs of highly similar amino acids
and the last group consisting of pairs of very different
amino acids. The different groups of amino acid inter-
changes are assumed to have different v’s, which are
estimated from the data.

The most general model of this kind is also imple-
mented, which assigns an independent acceptance rate
to each one-step amino acid pair; that is, each vij is
treated as a free parameter. This general model is useful
for estimating the acceptance rates from the data without
any constraint and provides a basis for comparison with
other models.

Variable Substitution Rates Across Amino Acid Sites

The discrete-gamma model of Yang (1994b) was
used to account for the variation of substitution rates
across amino acid sites. Eight rate categories were used
to approximate the (continuous-) gamma distribution,
with each category having equal probability of occur-
rence (see Yang 1994b for implementation of the mod-
el).

Results
Analysis of the Large Data Set
Rate Variation Among Sites

The empirical models were used in maximum-like-
lihood analyses of the protein sequences in the large
data set of 20 species. Log-likelihood values and esti-
mates of the tree length (sum of branch lengths along
the tree) are listed in table 1. For the Dayhoff-F and
JTT-F models, amino acid frequencies were treated as
free parameters and estimated by the observed frequen-
cies in the sequence data. The substitution models were
used assuming either a single rate for all sites or gamma-
distributed rates among sites (Yang 1994b). Estimates of
the gamma shape parameter (a) are shown, as are the
log-likelihood differences (D,) between the single-rate
and gamma-rates models (table 1). The single-rate mod-
el is a special case of the gamma model with a 5 `
(see, e.g., Yang 1994b). Thus, 2D, can be compared
with the x2 distribution with one degree of freedom to
test for constancy of rates among sites. The observed
statistics (2D,) range from 3,611 to 4,805 among the
substitution models of table 1 and are all much greater
than the critical value x 5 6.64. The gamma model2

1%
thus provides a significantly better fit to the mitochon-
drial protein sequences than does the single-rate model.
There is no doubt that substitution rates are highly vari-
able among amino acid sites (Uzzell and Corbin 1971;
Golding 1983; Reeves 1992). The estimated a for the
gamma model ranges from 0.34 to 0.37, indicating se-
vere rate variation among sites.

The tree length, that is, the total number of amino
acid substitutions per site along the tree, ranges from
1.5 to 1.8 under models of a single rate for all sites, and
from 1.6 to 2.5 under the gamma models. In general,
simple models tend to underestimate sequence distances
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or tree lengths. Furthermore, the rate variation among
sites has a greater effect on estimation of branch lengths
and tree lengths than the substitution pattern. Those re-
sults are consistent with early observations based on nu-
cleotide sequences. For example, it was noted that ig-
noring either the rate variation among sites or the tran-
sition-transversion bias leads to underestimation of se-
quence distances or branch lengths in a phylogenetic
tree, but the rate variation has a much more serious ef-
fect than the transition bias (e.g., Yang, Goldman, and
Friday 1994).

It is noted that the relative performances of the six
different amino acid substitution models did not change
regardless of whether the gamma model was used to
account for variable rates among sites (table 1). Thus,
some of the analyses in this paper comparing different
models (patterns) of amino acid substitution are per-
formed assuming a single rate for all sites. In such cases,
it is expected that accounting for the rate variation
among sites would not change our conclusions concern-
ing the substitution pattern, although it would lead to
significant improvement of the fit of the models to data.

Empirical Models of Amino Acid Substitution

Consistent with previous analyses of mitochondrial
and nuclear proteins using empirical models (e.g., Cao
et al. 1994a, 1994b), the log-likelihood values indicating
the goodness of fit of the models are in the following
order: Poisson , equal-input , Dayhoff-F or JTT-F (ta-
ble 1). The empirical models of Dayhoff, Schwartz, and
Orcutt (1978) and Jones, Taylor, and Thornton (1992)
fit the mitochondrial data much better than the equal-
input model. The log-likelihood differences (D,) range
from 2,834 to 3,526 in such comparisons. The equal-
input model is unrealistic, as it ignores differences in
substitution rate between amino acids. JTT-F has higher
log-likelihood values than Dayhoff-F. This appears to be
the case for most data sets (see, e.g., Cao et al. 1994a,
1994b), although exceptions do exist (unpublished data).

The general reversible model (REV) is significantly
better than Dayhoff-F or JTT-F. For example, twice the
log-likelihood difference between REV and JTT-F is
2D, 5 1,429.78 under the single-rate model and 2D, 5
1,325.70 under the gamma-rates model. The critical val-
ue for those comparisons is 237.15 with df 5 189, and
JTT-F is rejected irrespective of the assumption about
rates at sites. Relative substitution rates under different
models are plotted in figure 2. The three amino acid
pairs with the highest rates differ among the models and
are Asp-Glu, Asn-Asp, and Ile-Val under Dayhoff-F;
Ile-Val, Asp-Glu, and Lys-Arg under JTT-F; and Ile-Val,
Tyr-His, and Asn-Asp under REV or REV 1 G. Two
important factors appear to account for the poor fit of
the Dayhoff-F and JTT-F models to those mitochondrial
data. The first is the use of different genetic codes in
the nuclear and mitochondrial genomes, as pointed out
by Adachi and Hasegawa (1996b). For example, the
Dayhoff-F and JTT-F models were constructed from nu-
clear proteins and predict frequent interchanges between
arginine and lysine (fig. 2), which are separated by one
substitution at the second codon position in the nuclear

code. In the mitochondrial code, the two amino acids
are separated by at least two codon position differences,
and substitutions between them are rare (see rate esti-
mates under REV and REV 1 G in fig. 2). The second
factor appears to be the inadequacies of the estimation
procedures used to construct the empirical matrices of
Dayhoff, Schwartz, and Orcutt (1978) and Jones, Taylor,
and Thornton (1992). For example, rates under Dayhoff-
F and JTT-F are much more homogeneous than those
under REV, which are in turn more homogeneous than
those under REV 1 G (fig. 2). In previous analyses of
nucleotide sequences, it was noted that parsimony
(which was used to construct the Dayhoff-F matrix), as
well as likelihood assuming one rate for all sites, was
ineffective in correcting for multiple hits and underes-
timated the transition-transversion bias (Wakeley 1994;
Yang, Goldman, and Friday 1994). A similar interpre-
tation should apply to the rate differences among models
observed here. Of course, rates estimated under the REV
model may involve biases and sampling errors too.
However, it may be expected that only small rate esti-
mates (for infrequent amino acid interchanges) involve
substantial errors and that rates for frequent interchanges
are estimated reliably. It appears feasible to use a pa-
rameter-rich model such as REV to estimate the amino
acid substitution pattern when a large amount of protein
sequence data are available.

We also note that the mtREV24 model of Adachi
and Hasegawa (1996a, 1996b) gave much better fit to
the mitochondrial proteins than did the models of Day-
hoff, Schwartz, and Orcutt (1978) and Jones, Taylor, and
Thornton (1992). While this result is not surprising, as
the mtREV24 rate matrix was originally derived from
mitochondrial proteins, it does provide justification for
the use of the model in analyzing mitochondrial data,
even if the species in the data set are not the same as
those used by Adachi and Hasegawa (1996a).

Comparison between REV0 and REV constitutes a
test of the hypothesis that amino acid (codon) substitu-
tions proceed in a stepwise manner, with each step in-
volving a change at only one codon position. The test
statistic is 2D, 5 2 3 [236,207.95 2 (236,844.94)] 5
1,273.98 under the single-rate model and 2D, 5 2 3
[234,247.52 2 (234,442.15)] 5 389.26 under the gam-
ma model (table 1). The critical value is x 5 158.952

1%
with df 5 120. Accounting for the among-site rate vari-
ation has improved the fit of the REV0 model consid-
erably such that the likelihood difference between REV0
and REV under the gamma model is much smaller than
that under the single-rate model. However, REV pro-
vides a significantly better fit than REV0 irrespective of
the assumption about substitution rates among sites. The
result suggests that certain processes at the DNA level
may have caused interdependence of substitutions at the
three codon positions. Note that correlation among co-
don positions caused by the genetic code and by selec-
tive constraints at the protein level is accounted for by
both REV0 and REV and does not contribute to the
significant difference between the two models. Possible
factors are mutations affecting more than one nucleotide
site, compensatory nucleotide substitutions, and selec-
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FIG. 2.—Plots of relative substitution rates (sij) between amino acids under different models. The sizes (areas) of bubbles are proportional
to the substitution rates and are comparable in different plots. For example, the highest substitution rate (between Ile and Val) under REV 1 G
is 22 times as high as the average rate, while rates between many amino acid pairs are close to zero. Rates under Dayhoff-F and JTT-F are
fixed, while those under REV and REV 1 G are estimated by maximum likelihood from the protein sequences of the large data set. The Poisson
and equal-input models predict the same rate (sij), the average shown at the bottom of the figure, for any pair of amino acids.

tive pressures at the DNA level (Krzywicki and Slon-
imski 1968; Schöniger and von Haeseler 1994). It will
be interesting to analyze more data, especially gene se-
quences from the nuclear and chloroplast genomes, to
find out whether the pattern holds for other genomes and
genes and what factors are responsible.

Analysis of the Small Data Set
Empirical Models of Amino Acid Substitution

More detailed analyses were performed on the
small data set using both amino acid and nucleotide se-
quences. The relative performance of the empirical mod-
els applied to the amino acid sequences (table 2) shows
the same pattern as for the large data set. The log-like-
lihood differences among models are much smaller, ap-
parently due to the reduced discriminating power of the
small data set. However, conclusions reached in analysis
of the large data set are all significantly supported in the
small data set. For instance, the log-likelihood differ-

ences between the one-rate and corresponding gamma-
rates models range from D, 5 134.22 under JTT-F to
D, 5 171.70 under the equal-input model (table 2).
Comparison of twice the log-likelihood differences
(2D,) with x 5 6.63 (df 5 1) suggests that rate con-2

1%
stancy among sites is rejected no matter which substi-
tution model is used. Furthermore, the log-likelihood
difference between REV and JTT-F is D, 5 171.47
when rates are assumed to be identical among sites, and
it is 185.49 when they are assumed to be gamma dis-
tributed. Note that the 189 rate parameters in the REV
models were not estimated from the small data set, and
estimates obtained from the large data set were used as
fixed constants. The likelihood values for the REV mod-
els of table 2 are thus underestimated. Even so, JTT-F
is rejected in favor of REV (2D, compared with x 52

1%
237.15 [df 5 189]). The relative performance of the
mtREV24 model (Adachi and Hasegawa 1996a) is also
similar to that for the large data set.
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Table 2
Analyses of Amino Acid Sequences of the Small Data Set: Empirical Models

Model p , Tree Length â

One rate for all sites
Poisson . . . . . . . . . . . . . . . . . . . . . . . . .
Equal input. . . . . . . . . . . . . . . . . . . . . .
Dayhoff-F. . . . . . . . . . . . . . . . . . . . . . .
JTT-F . . . . . . . . . . . . . . . . . . . . . . . . . .
mtREV24-F . . . . . . . . . . . . . . . . . . . . .
REV (rate matrix Q from

REV 1 G of table 1). . . . . . . . . . . .

0
19
19
19
19

208

216,566.60
215,503.26
214,904.33
214,717.98
214,687.36

214,546.51

0.275
0.275
0.279
0.279
0.280

0.285

Gamma rates for sites
Poisson 1 G . . . . . . . . . . . . . . . . . . . .
Equal input 1 G . . . . . . . . . . . . . . . . .
Dayhoff-F 1 G . . . . . . . . . . . . . . . . . .
JTT-F 1 G . . . . . . . . . . . . . . . . . . . . . .
mtREV24-F 1 G. . . . . . . . . . . . . . . . .
REV 1 G (rate matrix Q from

REV 1 G of table 1). . . . . . . . . . . .

1
20
20
20
20

209

216,399.92
215,331.56
214,765.25
214,58376
214,558.67

214,398.27

0.291
0.295
0.294
0.291
0.298

0.318

0.287
0.278
0.354
0.368
0.392

0.368

NOTE.—p is the number of parameters in the substitution model not including the 11 branch lengths. Tree length is the
expected number of amino acid substitutions per site along the tree. a is the gamma shape parameter.

Table 3
Analyses of Amino Acid Sequences of the Small Data Set: Codon-Based Mechanistic
Models

Model p , k̂ b̂

Equal distance 20 214,718.22 9.157 0

Geometric (eq. 11)
Composition (c) . . . . . . . . . . . . . . . . .
Polarity (p) . . . . . . . . . . . . . . . . . . . . .
Volume (v) . . . . . . . . . . . . . . . . . . . . .
Grantham’s distance (cpv). . . . . . . . .
Miyata, Miyazawa, and

Yasunaga’s distance (pv) . . . . . . . .

21
21
21
21

21

214,713.78
214,676.32
214,668.27
214,681.03

214,658.32

9.357
10.256
11.435
10.555

11.050

0.607
1.623
2.291
1.629

2.093

Linear (eq. 12)
Composition (c) . . . . . . . . . . . . . . . . .
Polarity (p) . . . . . . . . . . . . . . . . . . . . .
Volume (v) . . . . . . . . . . . . . . . . . . . . .
Grantham’s distance (cpv). . . . . . . . .
Miyata, Miyazawa, and
Yasunaga’s distance (pv) . . . . . . . . . .

21
21
21
21

21

214,713.57
214,673.54
214,671.12
214,679.20

214,656.58

9.341
9.817

10.279
10.077

10.173

0.535
1.000
1.000
0.954

1.000

NOTE.—p is the number of parameters in the substitution model not including the 11 branch lengths. Parameter b is
defined in equations (11) and (12), while a in those equations is inestimable from amino acid sequences.

Amino Acid Distance and Substitution Rate

Amino acid sequences of the small data set were
also analyzed using the codon-based mechanistic mod-
els, with one single rate for all sites assumed (table 3).
The equal-distance model (eq. 8) fits the data much bet-
ter than the equal-input model of table 2. While the two
models are not nested and a x2 approximation cannot be
used to compare them, the log-likelihood difference be-
tween the two models (D, 5 785.04) is huge. Both mod-
els account for different amino acid frequencies. How-
ever, the equal-distance model accounts for the ‘‘muta-
tional distance’’ between amino acids determined by the
genetic code and the transition-transversion bias, while
the equal-input model ignores the mutational distance.
Indeed, the equal-distance model is much better than
Dayhoff-F and is as good as JTT-F, indicating that the
genetic code and mutational biases have a great impact
on amino acid substitution rates.

Five physicochemical distances between amino ac-
ids are considered in table 3: Grantham’s, Miyata, Mi-
yazawa, and Yasunaga’s, and the three distances con-
structed using the side chain composition, polarity, and
volume of amino acids, respectively. Both geometric
and linear relationships were used for each distance
measure, and they gave similar performances (table 3).
Use of any of the five distance measures leads to a better
fit to data than does the equal-distance model (table 3),
suggesting that those properties do influence amino acid
substitution. All mechanistic models considered in table
3 gave better fits to data than the empirical models of
Dayhoff, Schwartz, and Orcutt (1978) and Jones, Taylor,
and Thornton (1992) (table 2). The distance based on
composition gave the poorest fit, and we note that this
property was not used by Miyata, Miyazawa, and Ya-
sunaga (1979). Many amino acids are not distinguished
by this property; for example, Ala, Ile, Leu, Met, Phe,
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Table 4
Analyses of the Nucleotide (Codon) Sequences of the Small Data Set

Model p , k̂ â b̂ dN/dS

Equal distance 11 229,967.86 14.249 0.041 0 a

Geometric (eq. 11)
Composition (c) . . . . . . . . . . . . . . .
Polarity (p) . . . . . . . . . . . . . . . . . . .
Volume (v) . . . . . . . . . . . . . . . . . . .
Grantham’s distance (cpv) . . . . . . .
Miyata, Miyazawa, and

Yasunaga’s distance (pv) . . . . . .

12
12
12
12

12

229,961.86
229,917.48
229,900.76
229,911.54

229,890.18

14.299
14.540
15.173
14.773

14.901

0.046
0.062
0.072
0.076

0.080

0.699
1.838
2.557
2.065

2.399

0.041
0.042
0.041
0.042

0.042

Linear (eq. 12)
Composition (c) . . . . . . . . . . . . . . .
Polarity (p) . . . . . . . . . . . . . . . . . . .
Volume (v) . . . . . . . . . . . . . . . . . . .
Grantham’s distance (cpv) . . . . . . .
Miyata, Miyazawa, and

Yasunaga’s distance (pv) . . . . . .

12
12
12
12

12

229,961.34
229,917.34
229,909.83
229,915.68

229,895.91

14.294
14.353
14.672
14.518

14.544

0.046
0.055
0.055
0.061

0.060

0.617
1.000
1.000
0.998

1.000

0.041
0.042
0.041
0.042

0.042

NOTE.—p is the number of parameters in the model not including the 11 branch lengths in the tree. Parameters a and
b are defined in equations (11) and (12), and k is the transition/transversion rate ratio. In each model, base frequencies at
the three codon positions are used to calculate codon frequencies, with 3 3 (4 2 1) 5 9 free parameters used.

and Val were all assigned the value zero. The ranking
of the distance measures based on the three properties
is c , p , v, and volume (size) appears to have the
greatest influence on amino acid substitutions in mito-
chondrial proteins. Grantham’s combined distance based
on all three properties has a performance between dis-
tances based on c and p (table 3). Miyata, Miyazawa,
and Yasunaga’s distance gave the best performance
among all five measures. This is probably because Mi-
yata, Miyazawa, and Yasunaga (1979) constructed their
distances to achieve a high correlation with substitution
rates between one-step amino acid pairs, while Gran-
tham (1974) considered all possible pairs. As pointed
out by Miyata, Miyazawa, and Yasunaga (1979), amino
acids separated by two or three codon position differ-
ences are unlikely to interchange even if they are chem-
ically similar.

The codon substitution models were also applied to
the codon (nucleotide) sequences of the seven primate
species (table 4). The relative performances of different
models are largely the same as those found when the
models were applied to the amino acid sequences (table
3). The ranking of the distances based on the three prop-
erties is again c , p , v, and Grantham’s distance lies
between p and v, slightly better than when it was applied
to the amino acid sequences. Miyata, Miyazawa, and
Yasunaga’s distance gave the best performance among
the five distance measures examined. The geometric and
linear relationships performed similarly. The best com-
bination of distance and distance–rate relationship is Mi-
yata, Miyazawa, and Yasunaga’s distance with the geo-
metric relationship (table 4). Use of nucleotide sequenc-
es makes it possible to estimate model parameters reli-
ably. In particular, estimates of the overall dN/dS ratio
obtained using the approach of Goldman and Yang
(1994) are between 0.041 and 0.042, almost identical
among models (table 4). Estimates of the transition/
transversion rate ratio (k) are very similar among mod-
els and range from 14 to 15, indicating the strong tran-

sition bias in the mitochondrial genome. These estimates
suggest that the transition/transversion rate ratio was
slightly underestimated from protein sequence data (ta-
ble 3). Estimates of parameter b from the amino acid
(table 3) and nucleotide (table 4) sequences are similar.
The results suggest that amino acid sequences can be
safely used to compare different codon substitution
models, although nucleotide (codon) sequences are
needed to estimate the dN/dS rate ratio.

It may be noted that the model of Goldman and
Yang (1994) is equivalent to the geometric relationship
with Grantham’s distance with parameter a 5 1 fixed.
The log-likelihood value under this model is
230,774.01, much lower than that under the equal-dis-
tance model (table 4). The estimate of a without fixing
it at one is 0.076 (table 4), and the assumption of a 5
1 is clearly unrealistic.

Different Types of Amino Acid Substitution

We group amino acid pairs (interchanges) into five
classes based on Grantham’s distance measure (table 5).
The first group includes nine highly similar pairs, with
distances ,26, the second group includes more different
pairs, with distances from 26 to 47, while the fifth group
includes very different pairs, with distances .89. The
five groups are assumed to have different acceptance
rates (v), which are estimated from the nucleotide se-
quences of the small data set (table 5). The log-likeli-
hood value under this model is 229,879.95, with 5k̂
14.446 and dN/dS 5 0.042. The model fits the data better
than the best model of table 4, i.e., the geometric rela-
tionship with Miyata, Miyazawa, and Yasunaga’s dis-
tance. The two models are not nested, and a x2 approx-
imation to the likelihood ratio statistic cannot be ap-
plied. Nevertheless, we note that the log-likelihood dif-
ference for this comparison (D, 5 10.23) is not great.

We also applied the general model that assumes an
independent acceptance rate for each one-step amino
acid pair to the nucleotide sequences of the small data
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Table 5
Estimates of Acceptance Rates for Different Types of Amino Acid Interchanges from
Nucleotide Sequences of the Small Data Set

Class
(distance range) Amino Acid Pairs v

1 (5-26) . . . . . . . . .
2 (26–47) . . . . . . . .
3 (47–68) . . . . . . . .
4 (68–89) . . . . . . . .
5 (89–215) . . . . . . .

DN, HQ, LI, MI, ML, FI, FL, YF, VM
QR, ED, EQ, HR, PA, SN, TP, VI, VL
GA, KQ, KE, SG, TA, TN, TS, WL, VA, VF
HN, HD, PQ, PH, SP, TK, TM, YH
All other pairs with one position difference

0.045
0.066
0.065
0.040
0.020

NOTE.—Amino acid interchanges are grouped into five classes according to Grantham’s distances. Amino acids are
represented by the one-letter codes.

FIG. 3.—Amino acid ‘‘acceptance’’ rate (vij) plotted against Mi-
yata, Miyazawa, and Yasunaga’s distance (dij). The rates were esti-
mated by maximum likelihood from the nucleotide (codon) sequences
of the small data set. Amino acid pairs separated by more than one
codon position difference are not used in the plot, as they are assumed
to have zero instantaneous rates of change.

set. As there are 70 such pairs by the mitochondrial
code, this model involves 80 free parameters (70 accep-
tance rates, one transition/transversion rate ratio k, and
nine parameters for base frequencies at the three codon
positions). The log-likelihood value is 229,667.57, with

5 18.356 and the overall dN/dS 5 0.038. The fivek̂
highest acceptance rates are 0.321 for Thr-Ser, 0.196 for
Ser-Ala, 0.188 for Met-Leu, 0.178 for Asp-Glu, and
0.147 for Ser-Cys. Since all models in tables 4 and 5
are special cases of this general model, we use the like-
lihood ratio test to examine the fit of the simpler models.
Such comparisons suggest that all models in tables 4
and 5 should be rejected. For example, the general mod-
el assumes 70 different v parameters for the 70 one-step
amino acid pairs, while the equal-distance model as-
sumes 1 v parameter. Twice the log-likelihood differ-
ence between the two models is 2D, 5 2 3
[229,667.57 2 (229,967.86)] 5 600.59, much greater
than the critical value x 5 99.23 with df 5 70 2 12

1%
5 69. The equal-distance model is thus rejected, and,

indeed, the acceptance rates for different amino acid
pairs are different. Furthermore, the best model in table
4, that is, Miyata, Miyazawa, and Yasunaga’s distance
with the geometric relationship, is also rejected when
compared with the general model. Twice the log-likeli-
hood difference between the two models is 2D, 5 2 3
[229,667.57 2 (229,890.18)] 5 445.21. The critical
value is x 5 98.02 with df 5 80 2 12 5 68. Figure2

1%
3 plots the acceptance rates (vij) estimated under the
general model against Miyata, Miyazawa, and Yasuna-
ga’s distances. While the acceptance rates between sim-
ilar amino acids tend to be greater than those between
dissimilar amino acids, the relationship between rate and
distance does not appear to be describable by a simple
mathematical function.

Discussion

Analyses of numerous DNA sequences suggest that
transition-transversion bias and nucleotide frequency bi-
ases are two prominent features of DNA sequence evo-
lution. The gain upon adding extra complexities in the
nucleotide substitution pattern is often noted to be minor
(e.g., Yang 1994a). Since both these features of nucle-
otide substitution are considered in the codon substitu-
tion models examined in this paper, the models should
most likely be improved by a better specification of the
acceptance rate (vij; see eq. 8). Physicochemical prop-
erties of amino acids, especially polarity and size, are
known to affect the conformation of the protein and,
thus, the substitution rate between amino acids. In this
paper, we compared two empirical distance–rate rela-
tionships in combination with five physicochemical dis-
tance measures. The results suggest that codon substi-
tution models using simple amino acid distance mea-
sures to specify acceptance rates fit the mitochondrial
protein sequence data better than empirical models of
Dayhoff, Schwartz, and Orcutt (1978) and Jones, Taylor,
and Thornton (1992), constructed from large databases.
Nevertheless, the codon-based models are rejected when
compared with the general model, which treats all ac-
ceptance rates as free parameters. In particular, the re-
lationship between distance and rate does not appear to
permit a simple mathematical description. More work is
needed to better understand the mechanisms of protein
sequence evolution, and reliable estimates of substitu-
tion (sij) or acceptance (vij) rates, which can be obtained
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using methods developed in this paper, may be very
useful in this endeavor.

Gillespie (1991, pp. 40–44) pointed out that the
neutral and selectionist theories of molecular evolution
make different predictions about the relationship be-
tween substitution rate and physicochemical distance.
Instead of the strictly decreasing relationships consid-
ered here (eqs. 11 and 12), which are consistent with
the neutral prediction (Kimura 1983, p. 159), the rate
may have a peak at an intermediate distance if both
negative and positive selection operate on the protein.
A plot (not shown) of our maximum-likelihood esti-
mates of substitution rates (sij’s) against Grantham’s dis-
tance shows a pattern similar to that shown in figure
1.12 of Gillespie (1991). (The acceptance rates of fig. 3
appear better suited for this purpose.) As pointed out by
Gillespie, the highest rates do not occur between the
most similar amino acids but, rather, occur at interme-
diate distances (see fig. 3). However, there does not ap-
pear to be a strong relationship between rate and dis-
tance. To test Gillespie’s (1991) hypothesis of natural
selection more rigorously, we extend the model of equa-
tion (11) so that the highest substitution rate occurs at
a nonzero ‘‘optimum’’ distance c, and we apply the
model to nucleotide sequences of the small data set. The
acceptance rate is specified as

vij 5 a exp{2bzdij/dmax 2 cz}, (13)

where a, b, and c are parameters estimated from the
data. When c 5 0, the model reduces to the strictly
decreasing relationship of equation (11). The log-like-
lihood value under this model with dij given by Gran-
tham’s distance is , 5 229,911.54, with parameter es-
timates 5 14.773, â 5 0.072, b̂ 5 2.065, and ĉ 5k̂
0.022. This model does not fit the data any better than
the monotonic relationship (table 4). The same model
using Miyata, Miyazawa, and Yasunaga’s distance gave
, 5 229,889.94, 5 14.888, â 5 0.075, b̂ 5 2.408,k̂
and ĉ 5 0.027. The improvement in the model’s fit upon
adding the extra parameter c is insignificant (see table
4). We also considered a model similar to equation (13)
but with a linear relationship being used or with param-
eter b 5 1 fixed. The results are somewhat similar and
are not presented here. In sum, these likelihood ratio
tests do not provide support for Gillespie’s (1991) ar-
gument.
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