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Mitochondrial D-loop hypervariable region I (HVI) sequences are widely used in human molecular evolutionary
studies, and therefore accurate assessment of rate heterogeneity among sites is essential. We used the maximum-
likelihood method to estimate the gamma shape parameter a for variable substitution rates among sites for HVI
from humans and chimpanzees to provide estimates for future studies. The complete data of 839 humans and 224
chimpanzees, as well as many subsets of these data, were analyzed to examine the effect of sequence sampling.
The effects of the genealogical tree and the nucleotide substitution model were also examined. The transition/
transversion rate ratio (k) is estimated to be about 25, although much larger and biased estimates were also obtained
from small data sets at low divergences. Estimates of a were 0.28–0.39 for human data sets of different sizes and
0.20–0.39 for data sets including different chimpanzee subspecies. The combined data set of both species gave
estimates of 0.42–0.45. While all those estimates suggest highly variable substitution rates among sites, smaller
samples tend to give smaller estimates of a. Possible causes for this pattern were examined, such as biases in the
estimation procedure and shifts in the rate distribution along certain lineages. Computer simulations suggest that
the estimation procedure is quite reliable for large trees but can be biased for small samples at low divergences.
Thus, an a of 0.4 appears suitable for both humans and chimpanzees. Estimates of a can be affected by the
nucleotide sites included in the data, the overall tree length (the amount of sequence divergence), the number of
rate classes used for the estimation, and to a lesser extent, the included sequences. The genealogical tree, the
substitution model, and demographic processes such as population expansion do not have much effect.

Introduction

It is now well known that mutation (substitution)
rates in the human mitochondrial D-loop are highly het-
erogeneous. Initially, two segments of the control region
were noted to be particularly variable and were thus
called hypervariable regions I and II (HVI and HVII),
respectively (Vigilant 1986; Vigilant et al. 1991). Later,
mutation rates were found to be highly variable even
within each of the two fast-evolving segments, with a
few mutational hot spots evolving rapidly while most
sites have very low rates of change or remain unchanged
(Hasegawa et al. 1993; Tamura and Nei 1993; Wakeley
1993). Rate variation among sites is usually modeled by
a gamma distribution (Uzzell and Corbin 1971). The
shape parameter a is the inverse of the coefficient of
variation of mutation rates, with a k 1 meaning rela-
tively little rate variation and a , 1 meaning extreme
rate variation. Previous estimates of the a parameter for
the human D-loop DNA range from 0.11 to 0.47 (Ta-
mura and Nei 1993; Wakeley 1993; Yang and Kumar
1996; Meyer, Weiss, and von Haeseler 1999), indicating
that substitution rates are highly variable among sites in
the D-loop (see also Kocher and Wilson 1991).

Variable mutation rates can have major impacts on
various aspects of molecular evolutionary studies. For
instance, ignoring variable rates among sites may lead
to underestimation of sequence distances (Hasegawa et
al. 1993; Tamura and Nei 1993) and mislead phylogeny
reconstruction (Yang 1996a). It also leads to biased es-
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timates of the time to the most recent common ancestor
from a population sample (Lundstrom, Tavaré, and Ward
1992a; Hasegawa et al. 1993; Tamura and Nei 1993;
Yang 1996b). Tests of selective neutrality can be mis-
leading when the assumed infinite-sites model is violat-
ed and rates vary considerably among sites (Bertorelle
and Slatkin 1995; Aris-Brosou and Excoffier 1996; Ta-
jima 1996). Furthermore, accurate reconstruction of
population demographic history based on pairwise mis-
match analysis requires the among-site rate variation to
be taken into account (Lundstrom, Tavaré, and Ward
1992b; Rogers et al. 1996; Weiss and von Haeseler
1998; Schneider and Excoffier 1999). It thus appears
important not only to estimate the average mutation rate
of the D-loop, but also to characterize the substitution
rate pattern among sites in the DNA sequence.

In this paper, we characterize substitution rates in
HVI of humans and chimpanzees. Using the maximum-
likelihood (ML) method (Yang 1994), we obtain esti-
mates of the transition-transversion rate ratio (k 5 a/b
in the notation of Kimura [1980] and Hasegawa, Kish-
ino, and Yano [1985]) and the gamma shape parameter
(a) for mutation rate heterogeneity among sites. Our ini-
tial objective was to provide reliable parameter estimates
for future studies, which may not include enough data
for independent estimation. However, we found that the
estimates were somewhat variable among different sam-
ples of sequences, and we thus explored possible rea-
sons for the variation. Monte Carlo simulations were
performed to study possible biases in the estimation pro-
cedure. The effects of the assumed genealogical tree,
demographic processes such as population expansion,
inclusion of sites in the data, and possible shifts in the
mutation rate distribution among sites in certain lineages
were explored.
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FIG. 1.—Phylogenetic tree of the human and chimpanzee populations and estimates of the gamma parameter a for HVI from different
samples of sequences. The number of sequences involved in a estimation is given in parentheses for each sample. The time of divergence is in
thousands of years (KY) before present.

Materials and Methods
Compilation of the Human and Chimpanzee Sequences

At the time of this study, over 4,000 mitochondrial
D-loop HVI sequences from humans (Handt, Meyer, and
von Haeseler 1998) and 224 sequences from chimpan-
zees had been published in the literature (Morin et al.
1994; Horai et al. 1995; Goldberg and Ruvolo 1997;
Wise et al. 1997). For ML estimation of substitution rate
parameters, we first compiled a combined data set of
100 human sequences and 100 chimpanzee sequences.
Sequences were selected to be representative of overall
human diversity. Out of the 100 human sequences, 30
were randomly drawn from sub-Saharan Africans, in-
cluding Eastern, Western, and Southern Africans, and 70
were randomly drawn from non-Africans, covering all
other continental regions. Only two sequences are avail-
able from Pan paniscus (P.p.), and both were used. The
other chimpanzee sequences were 18 sequences from
Pan troglodytes troglodytes (P.t.t.), 40 from Pan trog-
lodytes verus (P.t.v.), and 40 from Pan troglodytes
schweinfurthii (P.t.s.) (Morin et al. 1994; Horai et al.
1995; Goldberg and Ruvolo 1997; Wise et al. 1997).
The data set was separated into one set of 100 humans
and another set of 100 chimpanzees, the latter of which
was further separated into data sets containing different
chimpanzee subspecies. In our attempt to understand the
effects of sequence sampling and possible differences in
the rate distribution among populations, larger data sets
were analyzed as well, including a data set of 200 hu-
mans and the complete data set that contains 839 human
sequences and 224 chimpanzee sequences. The 839 hu-
man sequences represent all distinct sequences available
in our database that do not contain many missing nu-
cleotides.

The average nucleotide frequencies in the complete
data set of 1,063 sequences are 22.63% (T), 32.82% (C),
33.93% (A), and 10.61% (G). Out of the 347 alignment
positions, 173 sites involve alignment gaps or undeter-
mined nucleotides; these are all treated as ambiguity nu-
cleotides by ML.

The assumed phylogenetic relationships among
those subspecies/populations are given in figure 1. The
divergence times between subspecies/populations cor-
respond approximately to those given in table 4 of Mor-
in et al. (1994). The HVI region examined in this paper
covers the segment between nucleotides 16,024 and
16,362 in the Cambridge numbering system (Anderson
et al. 1981). Sequences were aligned manually. The
alignment had 347 sites and included eight alignment
gaps compared with the Cambridge sequence. The se-
quence data are available from the authors on request.

Simulations

Using a coalescent approach (Hudson 1990), we
simulated genealogical trees for 200 DNA sequences,
each of 300 nucleotide sites, distributed in six popula-
tions which have diverged according to the population
tree of figure 1. All population sizes were fixed at
10,000 breeding females. The sample size within each
population was the same as in the original combined
data set of 100 humans and 100 chimpanzees. The phy-
logenetic tree for the populations (subspecies) (fig. 1)
was fixed, while genealogical trees within populations
(tree topology and coalescent times) were generated by
simulating a stochastic coalescent process (Hudson
1990).

A random sequence was generated for the root of
the tree, with the four nucleotides having equal proba-
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bilities. Mutations (substitutions) were then added along
branches of the genealogical tree according to the K80
substitution model (Kimura 1980). The transition/trans-
version ratio k was fixed at 20. Three models of muta-
tion rates among sites were used. Two variable-rates
models assume a discrete gamma distribution with eight
rate categories and with the shape parameter fixed either
at a 5 0.26 (our initial estimate of the parameter for
humans, which is also the estimate obtained by Meyer,
Weiss, and von Haeseler 1999) or a 5 0.40 (our final
estimate of the parameter). The third model assumes the
same rate for all sites (a 5 `). Four average mutation
rates were used, that is, a slow, two intermediates, and
a fast rate, fixed at 5 3 1027, 1.25 3 1026, 2.5 3 1026,
and 1.25 3 1025 substitutions per site per generation,
respectively. Those mutation rates correspond to 5%,
12.5%, 25%, and 125% sequence divergence per Myr
and cover the possible range of the mutation rates for
HVI (Jazin et al. 1998; Parsons and Holland 1998). Pos-
sible generation time effects were examined by using an
equal generation time for both humans and chimpanzees
(10 years per generation) or unequal generation times
(20 years per generation for humans and 10 years for
chimpanzees).

Like the real data set analyzed in this paper, the
200 simulated sequences were also analyzed as three
distinct data sets: one of four chimpanzee populations,
one of two human populations, and a third of all six
populations. In total, there are 48 different simulation
conditions. For each simulation condition, 100 data sets
were simulated using a program written by one of us
(L.E.). Simulated DNA sequences as well as the true
genealogical tree were collected into a file, to be sub-
jected to ML analysis using PAUP* version 4.0.0d65
(David Swofford). Parameters a and k were estimated
under the K801G model with eight rate categories
(Yang 1994) using the true genealogical tree. PAUP*
log files were processed to calculate the means and stan-
dard errors of parameter estimates over replicates. In a
few cases, both the true genealogical tree and a neigh-
bor-joining tree (Saitou and Nei 1987) were used. Esti-
mates from the two trees were virtually identical, and
only results from the true tree are presented below. The
effect of the tree topology is further examined using real
sequence data.

Real Data Analysis

We used the ML method to estimate the gamma
shape parameter a for variable substitution rates among
sites. The discrete gamma model is used with eight rate
categories (Yang 1994). The method requires a genea-
logical tree linking the sequences. It would be best to
use the true tree in the estimation. However, due to the
low sequence divergence in the data, the probability of
recovering the true genealogy of sequences is negligibly
small (see, e.g., Hedges et al. 1992). We thus used the
parsimony method to generate multiple candidate trees
to obtain parameter estimates by the ML method and
examine the robustness of the estimates to the tree to-
pology used. Previous experience with phylogenetic
analyses suggests that estimates of parameters do not

change much among trees if the trees are not too wrong
(Yang, Goldman, and Friday 1994; Sullivan, Holsinger,
and Simon 1996). Our working hypothesis is that if the
parameter estimates vary little over different parsimony
trees, the estimates may be expected to be similar to
those obtainable if the true tree were used. An alterna-
tive approach to accounting for the uncertainties in the
genealogical tree is to average over all possible within-
population genealogical trees using a coalescent model
(Griffiths and Tavaré 1994; Kuhner, Yamato, and Fel-
senstein 1995). Such a likelihood approach is theoreti-
cally superior to the approach taken in this paper but
has not been implemented yet. However, we may expect
the two approaches to produce similar estimates of sub-
stitution rate parameters k and a. Parsimony and like-
lihood are known to be highly correlated, especially at
low sequence divergences (see, e.g., DeBry and Abele
1995). Thus, parsimony trees used in our estimation
would make the greatest contributions to the coalescent
likelihood calculation, which averages over all genea-
logical trees.

We used PAUP* to perform heuristic tree search
using the parsimony criterion, with the starting tree gen-
erated by random addition of sequences followed by the
tree-bisection-reconnection (TBR) perturbation. About
five independent searches were carried out for each data
set using different random number seeds. Candidate
trees generated this way were used in ML estimation of
parameters. Use of multiple parsimony trees provides an
indication of the robustness of parameter estimates to
inaccuracies in the recovered tree.

Three different Markov models of nucleotide sub-
stitution were used. The JC691G model (Jukes and
Cantor 1969) assumes equal substitution rates between
any two nucleotides. The K801G model (Kimura 1980)
assumes different rates for transitions and transversions,
while the HKY851G model (Hasegawa, Kishino, and
Yano 1985) accounts for both transition/transversion
bias and nucleotide frequency biases. PAUP* is used to
obtain ML estimates of parameters and branch lengths.
The discrete gamma model of variable rates among sites
is used with eight rate categories (Yang 1994).

After ML estimates of parameters were obtained,
an empirical Bayes approach was used to estimate sub-
stitution rates at individual sites (Yang and Wang 1995).
The substitution rate at a site is estimated by the con-
ditional (posterior) mean of the rate distribution given
the data at that site, and the resulting estimate has the
highest correlation with the unknown true rate. The pro-
gram BASEML in the PAML package (Yang 1998) is
used for this calculation. Rates estimated from different
data sets are compared to examine possible differences
in the rate distribution among populations.

Results
Estimates of Parameters from Real Data

For each data set, parsimony was used to perform
a heuristic tree search to generate candidate tree topol-
ogies, which were then used to estimate substitution pa-
rameters by ML. In the following, we use the combined
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Table 1
Estimates of k and a from Three Different Parsimony
Trees for the Combined Data Set of 200 Humans and
Chimpanzees

Tree and
Maximum-Parsimony

Score , k̂ â

Tree
length

(S)

JC691G
Tree 1 (611 steps) . . .
Tree 2 (613 steps) . . .
Tree 3 (615 steps) . . .

24,189.41
24,194.36
24,187.86

0.455
0.453
0.457

2.085
2.107
2.093

K801G
Tree 1 . . . . . . . . . . . . .
Tree 2 . . . . . . . . . . . . .
Tree 3 . . . . . . . . . . . . .

23,739.27
23,746.63
23,741.50

20.811
20.417
20.388

0.417
0.416
0.419

2.330
2.343
2.336

HKY851G
Tree 1 . . . . . . . . . . . . .
Tree 2 . . . . . . . . . . . . .
Tree 3 . . . . . . . . . . . . .

23,647.73
23,659.74
23,649.79

25.382
24.914
24.936

0.423
0.422
0.424

2.506
2.502
2.492

data set of 200 human and chimpanzee sequences as an
example to illustrate the approach taken in this paper,
while only summary results are presented for other data
sets. Starting trees in the parsimony search were gen-
erated by stepwise addition with sequences added at ran-
dom. The maximum number of trees retained was set at
3,000. Each search thus produced 3,000 locally best
trees. Multiple local optima appear to exist in the tree
space (Charleston 1995). In a preliminary analysis,
many parsimony searches and many trees from each
search were evaluated by ML. It was noted that trees
generated in the same parsimony search produced vir-
tually identical ML estimates of parameters and likeli-
hood scores, indicating that those trees just represented
different ways of resolving estimated polytomies. Trees
generated from different parsimony searches gave more
different parameter estimates and likelihood values. In
later analyses, five parsimony searches were performed
for each data set, and only one tree from each search
was used in the likelihood estimation.

Table 1 presents parameter estimates obtained from
three locally best trees in different parsimony searches
for the combined human and chimpanzee data. The log-
likelihood values are quite different among the three
trees, while parameter estimates and the tree lengths
(sum of branch lengths) are very similar. For example,
under the HKY851G model, the log-likelihood values
range from 23,648 to 23,660, while estimates of a
(0.42) and k (25) are identical among the three trees at
this level of accuracy. The tree lengths range from 2.49
to 2.51, with little difference. The results suggest that
although the genealogical tree of the sequences cannot
be estimated with any confidence, the uncertainty in the
tree is unlikely to cause large errors in the parameter
estimates. The three nucleotide substitution models pro-
vide quite different fits to data (table 1). The K801G
model accounts for the transition/transversion rate bias
and involves one more parameter (k) than the JC691G
model. The log-likelihood difference between the two
models is about 450 (table 1), much greater than the
critical value for the likelihood ratio test (½x 5 3.32,2

1%

df 5 1). Thus, the K801G model fits the data much
better than the JC691G model, and the transition rate
is indeed much higher than the transversion rate. Simi-
larly, the HKY851G model is by far the best of the
three substitution models used. Nevertheless, estimates
of a obtained under the three substitution models are
similar, despite drastic differences in their fits to data. It
can be expected that minor violations of the HKY851G
model may not introduce large biases to the parameter
estimates. For example, the TN931G model (Tamura
and Nei 1993) may provide a better fit than HKY85, but
we do not expect much difference in estimates of a un-
der the two models. In the following, we concentrate on
parameter estimates obtained under the HKY851G
model, with the JC691G and K801G models being
used to examine the robustness of the estimates.

Figure 2 shows the surface-contour plot of the log
likelihood as a function of parameters k and a under
the HKY851G model for the combined data set of 200
human and chimpanzee sequences. Tree 3 of table 1 is
used in the calculation. The ML estimates are 5 24.9k̂
and 5 0.42, with the log-likelihood value , 5â
23,649.79. The 95% likelihood (confidence) region for
the two parameters (not shown, but see fig. 2) is sur-
rounded by the contour at 23,652.79, that is, 3.00
(5½x ) units worse than the optimum (see, e.g.,2

2,5%
Kalbfleisch 1985, pp. 113–114). Similarly, the 95% con-
fidence interval for parameter a alone includes all a
values at which the log-likelihood is at least 23,651.71
(½x 5 1.92 units worse than the optimum); this in-2

1,5%
terval is (0.34, 0.53).

The same approach was taken to analyze other data
sets, and similar patterns were found concerning the sta-
bility of parameter estimates over parsimony trees and
the fit of the three substitution models. Table 2 lists es-
timates obtained under the three substitution models
from one tree topology only (usually the one with the
highest likelihood among trees evaluated). The 200 se-
quences in the combined data set were separated into a
data set of 100 humans and several data sets containing
different chimpanzee subspecies/populations. To exam-
ine the effect of sequence sampling on the estimation,
we also analyzed complete dat sets available for humans
and for each chimpanzee subspecies. For example, the
98 P.t. sequences included in our combined human and
chimpanzee data set and all 222 P.t. sequences available
were analyzed as two data sets. Estimates range from
0.20 for the partial P.t.v. data set of 40 sequences to
0.45 for the complete data set of 839 humans and 224
chimpanzees (table 2 and fig. 1). For most data sets, the
order of the a estimates under the three models is JC69â
. HKY85 . K80. This order is different from that ofâ â
previous analyses of between-species data, where sim-
pler models (as well as parsimony) most often gave larg-
er estimates of a, such that the order was JC69 . K80â â
. HKY85 (see, e.g., Yang, Goldman, and Friday 1994).â
Estimates of the transition/transversion rate ratio from
large data sets are about 25. However, for small data
sets with little sequence divergence (such as those of
P.t.v.), estimates as large as 240 were obtained. Those
large estimates appear to be overestimates, as the ML
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FIG. 2.—The log-likelihood surface-contour as a function of the transition/transversion rate ratio (k) and the gamma parameter (a) for the
combined data set of 200 human and chimpanzee sequences. For given values of k and a, the log-likelihood is calculated by optimizing branch
lengths in a parsimony tree (tree 3 in table 1) under the HKY851G model. The maximum-likelihood estimates are 5 24.9 and 5 0.42,k̂ â
with the log-likelihood value , 5 23,649.79. The 95% and 99% likelihood contours (not shown due to limitations of the graphics software)
are at log-likelihood values of 23,652.79 and 23,654.40, respectively.

method tends to overestimate k at low divergences (un-
published simulation results).

All estimates of a are much smaller than 1, con-
sistent with earlier results indicating that substitution
rates in HVI are highly variable (e.g., Kocher and Wil-
son 1991; Wakeley 1993). Rate constancy is rejected for
all data sets by the likelihood ratio test comparing the
constant-rate and gamma-rates models. For example, for
the data set of 839 human sequences, the log-likelihood
value under the gamma model is ,1 5 29,309.42, while
the model with one rate for all sites (a 5 `) gives ,0
5 28,476.90. Comparison of 2D, 5 2(,1 2 ,0) 5
1,665.04 with x2 5 6.63 at 1% with df 5 1 suggests
that substitution rates are significantly different among
sites. The same conclusion is reached with other data
sets, including the P.t.t. data set with only 18 sequences
(with 2D, 5 26.8).

While the genealogical tree and the substitution
model do not appear to affect the estimation of the a
parameter much, the estimates are more sensitive to the
choice of sequences in the data. The a values estimated
under the HKY851G model from different sequence
samples are reported in figure 1 (see also table 2). The
difference between the two estimates (0.20 for 40 se-
quences and 0.29 for 55 sequences) for the P.t.t. popu-
lation appears to be largely due to the inclusion of sites
with missing data in the larger data set. Estimates for
other subspecies/populations appear more stable. The
log-likelihood contours are shown in figure 3 for the
data set of 839 human sequences and for that of 224

chimpanzee sequences. The 839 human sequences gave
an estimate of 0.39, with a 95% confidence interval (CI)
of (0.33, 0.46). The 224 chimpanzee sequences gave an
estimate of 0.39, with a 95% CI of (0.31, 0.50). The
estimate obtained from the complete data set of 1,063
human and chimpanzee sequences is 0.45, with a 95%
CI of (0.39, 0.52).

It is noteworthy that larger estimates of a were con-
sistently obtained for larger samples and for data cov-
ering earlier divergences in the tree (fig. 1). To explore
this pattern further, we constructed 50 random subsam-
ples of a fixed size from the 839 human sequences and
examined how the average a estimate changes with the
sample size. We considered sample sizes of 100, 200,
300, and 400 sequences. The average a estimate from
50 samples of sequences increased from 0.34 for 100
sequences to 0.39 for all 839 sequences, and the initial
estimate (0.28) from our selected data set of 100 human
sequences turned out to be unusually small. Two pos-
sible reasons may account for this effect of sequence
sampling in humans and for the different estimates
among chimpanzee and human populations. The first is
possible differences in the rate distributions among sites
in the different populations/subspecies, which may be
due to shifts in the rate distributions along certain an-
cestral lineages caused by slight functional changes of
the D-loop. If two populations with the same level of
rate heterogeneity had a shift in rate distribution (im-
plying that some fast sites in one population are slow
sites in the other), combining data from the two popu-
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Table 2
Estimates of k and a from Different Data Sets

DATA SET n
MP

SCORE

JC691G

â S

K801G

k̂ â S

HKY851G

k̂ â S

Homo and Pan . . . . . . . . . . . . . . . . . . . 200
1,063

611
1,848

0.46
0.41

2.09
8.77

20.8
20.9

0.42
0.40

2.33
9.10

25.4
24.7

0.42
0.45

2.51
7.70

Homo . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
200
839

263
408

1,338

0.27
0.31
0.34

0.90
1.48
6.46

23.3
20.8
21.3

0.25
0.31
0.34

1.00
1.51
6.65

25.7
23.3
24.0

0.28
0.34
0.39

0.88
1.35
5.21

Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
224

334
455

0.43
0.42

1.10
1.58

19.7
23.7

0.38
0.39

1.22
1.71

25.2
30.7

0.38
0.39

1.33
1.86

Pan troglodytes . . . . . . . . . . . . . . . . . . . 98
222

257
405

0.34
0.37

0.83
1.40

39.3
28.2

0.31
0.35

0.90
1.48

49.6
36.6

0.32
0.35

0.94
1.57

Pan troglodytes troglodytes and
Pan troglodytes schweinfurthii . . . . .

58
167

157
290

0.32
0.30

0.52
1.07

46.6
26.0

0.31
0.29

0.54
1.11

58.3
36.0

0.32
0.28

0.58
1.20

Pan troglodytes verus . . . . . . . . . . . . . . 40
55

83
98

0.21
0.30

0.27
0.30

201.7
109.4

0.17
0.26

0.30
0.33

241.2
133.5

0.20
0.29

0.32
0.35

P. troglodytes schweinfurthii . . . . . . . . 40
149

76
208

0.19
0.23

0.25
0.80

160.2
26.8

0.18
0.23

0.26
0.85

188.5
34.5

0.23
0.23

0.26
0.85

P. troglodytes troglodytes . . . . . . . . . . 18 77 0.35 0.27 27.3 0.29 0.28 34.8 0.27 0.32

NOTE.—n is the number of sequences in the data set. S is the tree length calculated as the sum of branch lengths and measured by the average number of
substitutions per site. The MP score is the best parsimony score found for the data set.

lations will lead to apparently less rate variation among
sites and larger estimates of the a parameter. It is not
clear whether and to what extent this explanation may
account for the inferred rate differences between humans
and chimpanzees. However, we cannot expect this in-
terpretation to apply to samples of human sequences of
different sizes. The second possible reason is an esti-
mation bias, that is, a systematic underestimation of a
for short tree lengths.

Simulation Results

Computer simulations were performed to examine
possible sources of biases in ML estimates of the tran-
sition/transversion rate ratio (k) and the gamma shape
parameter (a) under different parameter combinations.
The means and standard deviations of parameter esti-
mates over simulated replicates are presented in table 3.
The amount of sequence divergence, as measured by the
tree length, appears to be very important for the accu-
racy of estimation. For example, the standard deviations
of both a and k are much smaller for the high mutation
rate than for the low mutation rate (table 3). The chim-
panzee data sets produced more accurate estimates than
did the corresponding human data sets, as the former are
more divergent than the latter.

Surprisingly enough, a positive bias is observed in
estimates of a in the simulated human data using eight
rate classes. For the intermediate mutation rate, the av-
erage a estimates are 0.288 and 0.427 when the true
values are 0.26 and 0.40, respectively. For the low mu-
tation rates (cases 28 and 32 in table 3), ML optimiza-
tion by numerical iteration was sometimes problematic,
and some replicates led to unreasonably large parameter
estimates for a or k (e.g., `). Nevertheless, it is clear
that a becomes increasingly overestimated with shorter
tree length. This estimation bias is in the opposite di-
rection to the pattern observed for real data (table 2).

Apart from the bias at low divergences, the esti-
mation procedure appears to be quite reliable. In partic-

ular, no large differences were noticed between esti-
mates obtained from the human and chimpanzee se-
quences. Whether the sequences are analyzed jointly or
separately, sensible estimates are obtainable as long as
the data contain enough sequence variation. Neither is
the estimation affected by the assumed generation time
for humans (10 or 20 years). The results suggest that if
the same mutation model (rate distribution among sites)
applies to different parts of the tree, one should be able
to recover the parameter of the rate distribution using
data from different parts of the tree. We also examined
possible effects of population growth on the estimation
of the gamma parameter by simulating human sequence
data assuming a sudden population expansion 10,000 or
50,000 years ago. The results (not shown) confirm our
expectation that demographic processes affect the shape
of the genealogical tree but not estimation of parameters
concerning the mutation rate distribution.

Substitution Rates at Sites

Substitution rates at individual sites were estimated
under the HKY851G model using the posterior mean
of the rates given the data (Yang and Wang 1995). ML
estimates of branch lengths and model parameters (k
and a) were used in the calculation. Rates were esti-
mated for different data sets to examine potential dif-
ferences in the rate distributions among populations. The
correlation coefficients between the estimated and the
unknown true rates are about 0.70–0.73 for large data
sets (with over 100 sequences) and are as low as 0.50
for small data sets.

Relative rates at fast sites identified from the com-
plete data sets of 839 humans and 224 chimpanzees are
presented in table 4. For comparison, fast sites identified
by Wakeley (1993), Hasegawa et al. (1993), and Meyer,
Weiss, and von Haeseler (1999) for the human HVI are
also listed. Our results obtained from the 839 human
sequences suggest the presence of 20 superfast sites with
rates at least four times the average rate and 4 additional
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FIG. 3.—The log-likelihood contours as functions of parameters
k and a for the data set of 839 human sequences (A) and for the data
set of 224 chimpanzee sequences (B). For each data set, a parsimony
tree (not shown) is used to optimize the branch lengths for given values
of k and a. The optimum log-likelihood values are 28,476.90 and
22,904.51 for A and B, respectively. The 95% confidence (signifi-
cance) regions are defined by contour lines (not shown) 3.00
(5½x ) log-likelihood units worse than the optimum, that is, by2

2,5%

contour lines at 28,479.90 and 22,907.51 for A and B, respectively.

fast sites with rates more than three times the average
rate (table 4). Of the 20 superfast sites, 8 were identified
as fast by all three previous studies (sites 16172, 16189,
16223, 16278, 16294, 16311, and 16302), 5 were iden-
tified as fast by at least two previous studies (sites
16093, 16129, 16209, 16291, and 16304), and 3 were
identified as fast by Meyer, Weiss, and von Haeseler
(1999) only (sites 16051, 16183, and 16309). Four su-
perfast sites were not identified previously (sites 16182,
16192, 16265, and 16270). A few sites previously sug-
gested to be moderately fast by at least two studies do
not even show rates of twice the average in our study
(sites 16126, 16148, 16187, 16274, 16292, 16298, and
16319).

The discrepancies between these lists of fast sites
can be due to several factors. The first is stochastic er-
rors, which appear to be substantial, since the correlation
between estimated and true rates is not very high even
with our data set of 839 sequences. Second, different
methods have been used to identify fast sites. Wakeley

(1993) and Hasegawa et al. (1993) counted minimum
numbers of mutations at sites using parsimony, while
Meyer, Weiss, and von Haeseler (1999) used another
intuitive variability measure. The Bayes approach used
in this paper (Yang and Wang 1995) is statistically op-
timal. Third, different sequences were used in these
analyses, affecting both estimation of the a parameter
(table 2) and identification of fast sites. Finally, different
regions of HVI were considered. Wakeley considered
only 250 nt and discarded the first 100 nt of HVI, while
in our study and in the studies of Hasegawa et al. (1993)
and Meyer, Weiss, and von Haeseler (1999), about 350
nt are considered for HVI. Among those factors, sam-
pling of sequences and sites appears to be most influ-
ential.

Even greater differences in estimated substitution
rates for sites exist between humans and chimpanzees
(table 4). While the correlation between estimated rates
from two human data sets, one of 100 sequences and
another of 839 sequences (see fig. 1 and table 2), is as
high as 0.84, the correlation of estimated rates between
the human data set of 839 sequences and the chimpan-
zee data set of 224 sequences is only 0.52, and other
chimpanzee data sets have rates even more different
from those of the humans (correlation coefficients of
0.29, 0.36, and 0.45 between data of 839 humans and
those of P.t.s., P.t.t., and P.t.v., respectively). Among
the 20 superfast sites identified in humans, only 12 are
found to be at least twice as fast as the average for
chimpanzees. Conversely, among the 16 superfast sites
identified in the global chimpanzee data set, only 5 are
identified as at least twice as fast as the average for
humans. Relative substitution rates for sites estimated
for the data of 839 human sequences and 224 chimpan-
zee sequences are plotted in figure 4. Estimates of the
a parameter are identical in the two data sets (0.39), but
there seem to be differences in the rate distribution
among sites between the two species. Large differences
in rate estimates between the two data sets are not re-
stricted to particular regions of HVI and are scattered
over the whole segment.

Discussion
Estimates of the Gamma Parameter for Humans and
Chimpanzees

In a study of rate heterogeneity in HVI, Wakeley
(1993) obtained an a estimate of 0.47 for HVI from 135
human sequences (Vigilant et al. 1991). This estimate is
larger than our estimate of 0.39 from 839 human se-
quences obtained under the HKY851G model. Al-
though the parsimony method used by Wakeley (1993)
may involve biases (Yang and Kumar 1996), his simu-
lations suggested that the method is reliable when ap-
plied to a large number of sequences. We thus investi-
gated the difference by analyzing the data of Vigilant et
al. (1991) using the likelihood method. We note that
Wakeley (1993) used only 250 bp from HVI (nucleo-
tides 16130–16379), while 347 bp (nucleotides 16024–
16362) are used in this study. We found that when the
complete sequence of 347 bp from the data of Vigilant
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Table 3
Estimates of k and a in Computer Simulations

CASE

NO. OF

POPU-
LATIONS MUTATION RATEa

TREE

LENGTHb

TRUE a 5 0.26

k̂ SE â SE

TRUE a 5 0.40

k̂ SE â SE

Chimpanzees and humans (200 sequences), 10 years per generation for chimpanzees and humans
1 . .
2 . .
3 . .
4 . .
5 . .
6 . .
7 . .
8 . .

6
6
6
6
6
6
6
6

Fast
Intermediate 1
Intermediate 2
Slow
Fast
Intermediate 1
Intermediate 2
Slow

22.841
4.568
2.736
0.913

22.836
4.571
2.731
0.915

20.152
20.617
20.987
20.870
20.497
20.318
20.906
21.673

0.192
0.292
0.411
0.568
0.200
0.367
0.420
0.644

`
`
`
`

0.259
0.266
0.268
0.272

—
—
—
—

0.001
0.003
0.003
0.005

20.642
20.188
20.889
20.449

0.214
0.343
0.408
0.532

0.398
0.397
0.398
0.419

0.002
0.004
0.005
0.009

Chimpanzees and humans (200 sequences), 20 years per generation for humans
9 . .

10 . .
11 . .

6
6
6

Fast
Intermediate 1
Intermediate 2

20.189
4.038
2.419

20.283
20.635
20.708

0.155
0.326
0.342

`
`
`

—
—
—

12 . .
13 . .
14 . .
15 . .
16 . .

6
6
6
6
6

Slow
Fast
Intermediate 1
Intermediate 2
Slow

0.808
20.191

4.039
2.420
0.807

21.324
20.277
21.069
20.624
20.544

0.636
0.188
0.391
0.387
0.606

`
0.256
0.260
0.263
0.274

—
0.001
0.002
0.003
0.005

20.559
20.218
20.677
20.913

0.189
0.325
0.384
0.534

0.395
0.400
0.395
0.432

0.002
0.004
0.005
0.011

Chimpanzees (100 sequences), 10 years per generation
17 . .
18 . .
19 . .
20 . .
21 . .
22 . .
23 . .
24 . .

4
4
4
4
4
4
4
4

Fast
Intermediate 1
Intermediate 2
Slow
Fast
Intermediate 1
Intermediate 2
Slow

11.707
2.333
1.393
0.467

11.639
2.338
1.394
0.467

20.167
20.311
20.587
21.985
20.513
20.683
21.259
23.141

0.230
0.330
0.380
0.700
0.244
0.412
0.473
0.837

`
`
`
`

0.256
0.269
0.270
0.292

—
—
—
—

0.002
0.003
0.005
0.009

20.647
20.670
20.510
21.687

0.283
0.365
0.478
0.802

0.394
0.406
0.416
0.447

0.003
0.005
0.008
0.026

Humans (100 sequences), 20 years per generation
25 . .
26 . .
27 . .

2
2
2

Fast
Intermediate 1
Intermediate 2

1.769
0.355
0.215

19.994
21.822
26.188

0.329
0.793
2.048

`
`
`

—
—
—

28 . .
29 . .
30 . .
31 . .
32 . .

2
2
2
2
2

Slowc

Fast
Intermediate 1
Intermediate 2
Slowd

0.070
1.784
0.354
0.219
0.071

22.518
21.772
22.735
25.672
23.461

1.589
0.450
0.868
1.662
1.795

`
0.268
0.288
0.341
0.442

—
0.002
0.007
0.023
0.062

20.370
22.609
24.757
21.023

0.309
0.994
1.583
1.596

0.402
0.427
0.841
0.705

0.004
0.012
0.239
0.129

a Rates are 5 3 1027, 1.25 3 1026, 2.5 3 1026, and 1.25 3 1025 substitutions per site per generation for slow, intermediate 2, intermediate 1, and fast rates,
respectively.

b Average number of substitutions per site along the tree.
c Only 87 estimates out of 100 led to plausible values for k (i.e., k , 1,000).
d Only 80 and 64 estimates out of 100 led to plausible values for simulated cases with a 5 0.26 and with a 5 0.40, respectively.

et al. (1991) is used, the likelihood estimates of a are
0.32, 0.32, and 0.34 under the JC691G, K801G, and
HKY851G models, respectively. These estimates are
similar to those we obtained from different samples of
human sequences of comparable sizes (table 2). When
only the 250 nt used by Wakeley (1993) are used, how-
ever, the likelihood estimates of a are 0.44, 0.43, and
0.46 under the JC691G, K801G, and HKY851G mod-
els, respectively. These estimates are similar to Wake-
ley’s (0.47). Therefore, the differences between param-
eter estimates seem to be mainly due to the use of dif-
ferent sites (segments in the D-loop) in the data. The
estimated tree length (the sum of branch lengths along
the tree, measured as the average number of substitu-
tions per site) is 0.77 when all 347 sites are used, and
it is 0.86 for the partial sequence of 250 sites. The 100
sites at the 59 end of HVI are less variable than the rest
of the segment, and including them led to more variable

rates among sites for the entire segment and, thus, small-
er estimates of the a parameter.

More recently, Meyer, Weiss, and von Haeseler
(1999) analyzed a large database of HVI and HVII se-
quences. These authors averaged estimates of the a pa-
rameter over 150 subsamples, each of 80 sequences, and
obtained an estimate of 0.26 for the a parameter for
HVI. This estimate is much smaller than our estimate
(0.39) for the complete data set of 839 human sequences
but is close to our estimates from samples of similar
sizes. Meyer, Weiss, and von Haeseler (1999) included
20 sites at the 39 end of the HVI (nucleotides 16362–
16383) which appear to evolve slowly. To examine
whether the different estimates are due to the different
sites included in the data sets, we gathered a set of 848
sequences covering the same region (nucleotides
16024–16383) studied by Meyer, Weiss, and von Hae-
seler (1999). This data set leads to an a estimate of 0.39
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Table 4
Relative Substitution Rates at Fast Sites from Different Studies

HOMO PAN HOMO PAN

SITE (839) (224) W H M SITE (839) (224) W H M

16051. . . .
16074. . . .
16092*. . .
16093*. . .
16111. . . .

4

4
2

2

4
8

4

2
2

16242 . . . . .
16243 . . . . .
16249 . . . . .
16256* . . . .
16259 . . . . .

2 2
4

5

6

5

6
5 2

16126. . . .
16129. . . .
16136. . . .
16143. . . .
16145. . . .

4 3

3
5

5

6
15

5

4
4

16260 . . . . .
16261 . . . . .
16265 . . . . .
16266 . . . . .
16269 . . . . .

2

4

2

2 6

2

16148. . . .
16156. . . .
16157. . . .
16163. . . .
16166. . . .

2
2

4
2
2

5 2

3
2

16270 . . . . .
16273 . . . . .
16274 . . . . .
16275 . . . . .
16278 . . . . .

4

4

3

2
2

6

5

5

8

2

4
16167. . . .
16168. . . .
16172. . . .
16175. . . .
16179. . . .

4

4
3
3
2
3

9 8 3

16284 . . . . .
16289 . . . . .
16290 . . . . .
16291 . . . . .
16292 . . . . .

2
4

4
3
3 6

8
7
6
6 2

16181. . . .
16182. . . .
16183. . . .
16184. . . .

4
4

4

4
5

2

16293 . . . . .
16294 . . . . .
16295 . . . . .
16297 . . . . .

4
4

4
3
4

6
11

8
9

3
4

16186. . . .
16187. . . .
16188. . . .
16189. . . .
16191. . . .

4
3
3

5
7
5

13

7

15

3

4

16298 . . . . .
16299 . . . . .
16300 . . . . .
16303 . . . . .
16304 . . . . . 4

3
2

2

5

8

6

6
16192. . . .
16193. . . .
16194. . . .
16207. . . .
16209. . . .

4

4

3

4
3 6 8

16305 . . . . .
16309 . . . . .
16311 . . . . .
16319 . . . . .
16320 . . . . .

4
4

3

4
4

17
6
5

14
5

3
4
2
2

16213. . . .
16216. . . .
16217. . . .
16218. . . .
16220. . . . 2

5

5

16323 . . . . .
16325 . . . . .
16327 . . . . .
16330 . . . . .
16335 . . . . .

2

4

3

8

16221. . . .
16223. . . .
16230. . . .
16233. . . .
16234. . . .

2
4

2
3

2

3

19

7

9

7

4
3

16343 . . . . .
16352 . . . . .
16355 . . . . .
16357 . . . . .
16360 . . . . .

3

3

3

3
4
3

7 6

2

2

16235. . . .
16241. . . .

2
4

16362 . . . . . 4 4 19 13 4

NOTE.—The entries are estimated relative rates for the data set of 839 humans and that of 224 chimpanzes; for example, a 3 means that the estimated rate for
that site is three times the average rate. Only sites at which at least one data set suggests a relative rate of at least 3 are listed, while for the listed sites, relative
rates greater than 2 are also indicated. Fast sites reported by Wakeley (1993), Hasegawa et al. (1993), and Meyer, Weiss, and von Haeseler (1999) are shown in the
columns headed ‘‘W,’’ ‘‘H,’’ and ‘‘M,’’ respectively. Entries in the M column are estimated relative rates, whereas those in the W and H columns are the minimum
numbers of substitutions inferred by parsimony on the tree used; these are not comparable with each other or with our estimates of relative rates. Three sites (16092,
16093, and 16256) indicated by asterisks are found to be polymorphic in human pedigree studies (Howell, Kubacha, and Mackey 1996; Parsons et al. 1997).

under the HKY851G model, identical to the estimate
obtained from our 839 sequences with 20 fewer sites.
Thus, the difference between our estimate and that of
Meyer, Weiss, and von Haeseler is not due to the dif-
ferent sites included in the data sets. Instead, the small
estimate of Meyer, Weiss, and von Haeseler appears to
be due to those authors’ use of a small number of se-
quences in their subsamples. It thus appears important
to use a large number of sequences to obtain reliable
estimates of the a parameter in within-species compar-
isons. We also note that drastically different estimates

were obtained in previous studies from data sets cov-
ering different sites in the D-loop. For example, Tamura
and Nei (1993) obtained an estimate of 0.11 for the en-
tire control region (HVI and HVII and the middle con-
served region), while Yang and Kumar (1996) obtained
an estimate of 0.27 using only 25 selected divergent
sequences from the same data but with the middle con-
served region removed.

At any rate, a value of 0.4 for the gamma parameter
appears appropriate for both humans and chimpanzees
for the first 360 or 380 nucleotide sites in human HVI.
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FIG. 4.—Substitution rates along the D-loop HVI sequence for humans (839 sequences) and chimpanzees (224 sequences). The HKY851G
model is applied to a parsimony tree to estimate branch lengths and model parameters from each data set, which are used to obtain empirical
Bayes estimates of substitution rates for sites (Yang and Wang 1995). The rates are relative rates with a mean of 1.

The estimates do not seem to be affected much by the
estimation procedure or the nucleotide substitution mod-
el if enough sequences are included in the analysis. Nev-
ertheless, caution may be needed regarding the nucleo-
tide sites included in the data when this estimate is ap-
plied. Among the factors considered in this paper, choice
of nucleotide sites and sampling of sequences seem to
have the greatest effects on the estimates. Including se-
quences containing missing nucleotides is found to af-
fect the estimates too (results not shown), but we tried
to avoid this problem when compiling the human se-
quences used in this study. The genealogical trees do
not seem to have a major effect on the estimation as
long as the data involve sufficient sequence divergence.

Possible Shifts in Substitution Rate Distribution Since
the Divergence of Humans and Chimpanzees

The different estimates of the a parameter obtained
when chimpanzees and humans are analyzed separately
(0.39) and when they are analyzed together (0.45) may
indicate a shift in the rate distribution since the diver-
gence of humans and chimpanzees. The differences be-
tween the estimated rates for humans and chimpanzees
shown in table 4 and figure 4 are consistent with this
hypothesis. However, we note that our analyses are ad
hoc, since the estimated rates have only moderately high
correlation with the unknown true rates. The approach

of examining estimates of a over data sets is also an
intuitive one, as the assumption of a single rate distri-
bution for all branches of the tree is unrealistic if rate
shifts have occurred. Our analyses do not provide direct
evidence for this hypothesis, although the results are
compatible with it.

It is possible to construct a likelihood model that
allows for different rate distributions for different parts
of the genealogical tree. For example, two gamma dis-
tributions with different shape parameters may be used
for branches of the tree before and after the presumed
rate shift. The likelihood calculation would proceed sim-
ilarly to the discrete gamma model of Yang (1994), but
an average has to be taken over the two distributions to
calculate the probability of observing data at a site.
While a discrete-gamma model with k rate classes re-
quires about k times the computation of the single-rate
model (Yang 1994), the rate-shift model with two gam-
ma distributions each of k rate classes would require k2

times the computation of the single-rate model. The rate-
shift model could then be compared with the model of
one rate distribution for the entire tree to construct a
likelihood ratio test of rate shift.
Discrete Versus Continuous Gamma Distribution of
Mutation Rates

We simulated and analyzed DNA sequence data us-
ing a discrete gamma model with eight rate classes (ta-
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ble 3). However, the real distribution of the mutation
rates may differ substantially from our discrete model
or may be more continuous. To explore the effect of an
underlying continuous gamma distribution, we simulat-
ed data using 100 rate categories and analyzed them
using 8 categories. A negative bias in the estimate of a
is observed, apparently because a smaller a is needed
for the discrete gamma to match the extent of variability
in the continuous gamma. However, the negative bias is
much more pronounced at low than at high divergences.
For case 7 of table 3 (with a tree length of 2.42 substi-
tutions per site), the average estimates of a (using eight
rate categories) are 0.242 and 0.369 when the true values
are 0.26 and 0.40, respectively. However, for case 31 of
table 3 (with a tree length of 0.22), the average estimates
are 0.213 and 0.342 for true values of 0.26 and 0.40,
respectively. This negative bias in small samples is con-
sistent with the observed patterns of table 2 (see also
fig. 1). The mutation rate in the real data may be close
to the small mutation rate used in the simulations. If the
underlying distribution of mutation rates is continuous,
the negative bias at low mutation rates could account
for most, if not all, of the dependence of the a estimates
on the sequence sample size.
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