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The maximum-likelihood (ML) solution to a simple phylogenetic estimation problem is obtained
analytically. The problem is estimation of the rooted tree for three species using binary characters with a
symmetrical rate of substitution under the molecular clock. ML estimates of branch lengths and log-
likelihood scores are obtained analytically for each of the three rooted binary trees. Estimation of the tree
topology is equivalent to partitioning the sample space (space of possible data outcomes) into subspaces,
within each of which one of the three binary trees is the ML tree. Distance-based least squares and
parsimony-like methods produce essentially the same estimate of the tree topology, although di¡erences
exist among methods even under this simple model. This seems to be the simplest case, but has many of
the conceptual and statistical complexities involved in phylogeny estimation. The solution to this real
phylogeny estimation problem will be useful for studying the problem of signi¢cance evaluation.
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1. INTRODUCTION

`I am very pleased to see that the problem o¡ers su¤cient
challenge to statisticians’

(Cavalli-Sforza; discussion in Edwards 1970, p. 170)

With the development of more realistic statistical models
and improvement in computing power and computer
programs, the maximum-likelihood (ML) method is
more and more widely used in molecular phylogenetic
analysis. Cavalli-Sforza & Edwards’s (1967) view that
phylogenetic reconstruction should best be viewed as a
statistical estimation problem is now generally accepted.
Given the central role of ML in statistical estimation, this
point of view also stipulates that ML should be the
method of choice for phylogeny estimation (Edwards
1995). It should be noted that Edwards’s general likeli-
hood framework appears to include what is often known
as the Bayes method (Edwards 1970; Rannala & Yang
1996; Mau & Newton 1997; Yang & Rannala 1997).

Phylogeny reconstruction, however, is a peculiar statis-
tical estimation problem (Yang et al. 1995). It provided
s̀u¤cient challenge to statisticians’ (Cavalli-Sforza;
discussion in Edwards 1970), and was described as à
source of novel statistical problems’ (Neyman 1971). Some
aspects of the complexity of the estimation problem were
explored recently (Yang 1994, 1996, 1997; Yang et al. 1995).
The major di¤culty appears to lie in the parameter space
of the problem. In Felsenstein’s (1981) formulation, the
likelihood is calculated separately for each tree and maxi-
mized for branch lengths in that tree. The optimum like-
lihood values for trees are then compared to estimate the
unknown true tree. E¡ectively, di¡erent phylogenies have
di¡erent parameter spaces and di¡erent likelihood func-
tions (Nei 1987). As a result, it is not obvious whether ML
estimate of phylogeny has the asymptotic properties (such
as consistency and asymptotic e¤ciency) of the conven-
tional ML method. Yang (1994) showed that ML phylo-
geny estimation is statistically consistent as long as the
model is regular enough so that the trees are identi¢able

with in¢nite amount of data (Yang 1994). Chang (1996)
and Rogers (1997) showed that even very general models
used in phylogenetic analysis identify trees without
problem. The asymptotic e¤ciency of ML is less certain
(Yang 1997; Bruno & Halpern 1999). Numerous computer
simulations suggest that ML performs better, or not much
worse, than other methods such as parsimony or distance-
matrix methods (see for example Huelsenbeck (1995) for
a review). However, hypothesis testing concerning tree
topologies and evaluation of the signi¢cance of the ML
tree have been much more di¤cult. No workable
parametric method has been suggested to construct a
con¢dence interval for the ML tree or to evaluate its
signi¢cance, and controversies exist concerning the inter-
pretation of the non-parametric bootstrap method
(Felsenstein 1985; Zharkikh & Li 1992; Hillis & Bull
1993; Efron et al. 1996).

A major di¤culty of analysing the ML method of
phylogeny reconstruction is that no analytical results are
known even for simple cases. For example, for the case of
three species with nucleotide sequences evolving under
the JC69 substitution model (Jukes & Cantor 1969) and a
molecular clock, ML estimates (MLEs) of branch lengths
cannot be obtained analytically (Yang 1994). As a result,
the ML tree cannot be determined analytically for a data
outcome (a given data set) without iteration to estimate
branch lengths. The lack of analytical results makes it
di¤cult to study the properties of the method, and one
has to resort to computer simulation, which typically
examines a small portion of the parameter space. It is
noted that the estimation problem mentioned above
becomes tractable if binary characters are considered
instead of nucleotides with four states. This paper
describes the solution to that problem. The problem seems
to be the simplest case one can imagine, and also the ¢rst
for which an analytical solution to ML is obtained. Never-
theless, it has most of the complexities involved in more
general cases (Yang et al. 1995), and the solution will be
useful in studying signi¢cance tests concerning the ML
tree.
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2. MODEL AND PROBLEM

Consider three species 1, 2 and 3. The three (rooted)
bifurcating trees are shown in ¢gure 1: T1 ˆ ((12)3),
T2 ˆ ((23)1) and T3 ˆ ((31)2). The star tree T0 ˆ (123) is
chosen as the estimate in real data if none of the binary
trees is any better. The objective is to estimate the true
tree topology (which is one of T1, T2 or T3), and evaluate
the reliability (statistical signi¢cance) of the estimated
tree. This paper concerns the ¢rst question (i.e. point
estimation) only.

The data are three DNA sequences for the three species,
each of n nucleotides long. We will consider binary charac-
ters, so that only pyrimidines (Y) and purines (R) are
distinguished. The evolutionary rate is assumed to be the
same over time; that is, the molecular clock holds. A
stationary and homogeneous Markov process is assumed
to describe nucleotide substitution, and the substitution
rates are assumed to be equal in both directions. We
measure time by the expected number of nucleotide
substitutions, and so the instantaneous rate matrix is

R ˆ ¡1 1
1 ¡1

. (1)

The transition probability matrix over time t is given as

P(t) ˆ fpij(t)g ˆ eRt ˆ
1 ¡ q(t) q(t)

q(t) 1 ¡ q(t)

ˆ
1
2 (1 ‡ e¡2t) 1

2 (1 ¡ e¡2t)
1
2 (1 ¡ e¡2t) 1

2 (1 ‡ e¡2t)

" #

, (2)

where pij(t) is the probability that nucleotide i changes
into j over time t. Note that

q(t) ˆ (1 ¡ e¡2t)/2, (3)

is the probability that two nucleotides separated by time t
are di¡erent.

Data at di¡erent sites are assumed to be independently
and identically distributed. There are 23 ˆ 8 possible data
con¢gurations (site patterns) at a site. Some of them
(such as YYR and RRY) have equal probabilities of
occurrence under any tree, and are collapsed. Four site
patterns are then possible and can be represented as xxx,
xxy, yxx and xyx, where x and y are any two di¡erent
nucleotides (table 1). The data are the observed numbers

of sites with those site patterns: n0, n1, n2 and n3. The total
number of sites (the sample size) is n ˆ (n0 + n1 + n2 + n3).
For the purpose of parameter estimation alone, the
observed site pattern frequencies fi ˆ ni/n can be used.

For example, when the segment of the mitochondrial
DNA of human (species 1), chimpanzee (species 2) and
gorilla (species 3) published by Brown et al. (1982) are
converted into sequences of pyrimidines and purines, the
data become n0 ˆ762, n1 ˆ54, n2 ˆ 41, n3 ˆ38, with
n ˆ 895 (table 1). This numerical example will be used in
later discussions.

3. PARSIMONY AND LEAST-SQUARES METHODS

(a) Parsimony
The unordered parsimony method used in molecular

sequence analysis does not distinguish rooted trees.
However, as argued by Sober (1988), if tree T1 is the true
tree, pattern xxy should be more likely than patterns yxx
and xyx, since the former is generated by a change over a
long time-period (from node 0 to 3 in tree 1 of ¢gure 1)
while either of the latter patterns is generated by a
change in a short time-period (from node 0 to 1 or 2). A
parsimony-style method thus compares n1, n2 and n3 and
chooses the tree Ti corresponding to the largest ni. In our
data set, n14n2 and n14n3, so that tree T1 is the estimate
of the true phylogeny.

(b) Least squares
The least-squares (LS) method calculates pairwise

distances and treats them as observed data. Branch
lengths in each tree are then estimated by LS, that is, by
minimizing the sum of squared di¡erences between the
observed and expected pairwise distances

Q ˆ (d12 ¡ d̂12)
2 ‡ (d23 ¡ d̂23)

2 ‡ (d31 ¡ d̂31)
2. (4)

The expected distance d̂ij between two species i and j is
the sum of branch lengths in the tree along the path
connecting the two species. Since q(t) in equation (3) is
the expected proportion of di¡erent sites between two
sequences separated by distance t, the sequence distance
can be estimated by

t̂ ˆ ¡1/2 logf1 ¡ 2qg, (5)

where q is the proportion of di¡erent sites between the two
sequences. For the formula to be applicable for all three
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Figure 1. The star tree T0 ˆ (123) and the three bifurcating trees for three species: T1 ˆ ((12)3), T2 ˆ ((23)1), and T3 ˆ ((31)2).
The branch length is de¢ned as the expected number of substitutions (changes) per site along the branch.



pairwise comparisons, it is required that f1 + f251/2,
f2 + f351/2 and f3 + f151/2. The distances are then given
as

d12 ˆ ¡1/2 logf1¡2( f2‡f3)gˆ¡1/2 logf2( f0‡f1)¡1g
d23 ˆ ¡1/2 logf2( f0 ‡ f2)¡1g
d31 ˆ ¡1=2 logf2( f0 ‡ f3)¡1g

)

.

(6)

For the star tree T0 (¢gure 1), the sum of squares
Q 0(t) ˆ (d1272t)2 + (d2372t)2 + (d3172t)2 is minimized at
t̂ ˆ (d12 ‡ d23 ‡ d31)/6. For tree T1, the sum of squares
is

Q 1(t0,t1) ˆ (d12 ¡ 2t1)
2 ‡ (d23 ¡ 2t0 ¡ 2t1)

2

‡ (d31 ¡ 2t0 ¡ 2t1)
2. (7)

If d125(d23 + d31)/2, Q1 is minimized at

t̂0 ˆ (d23 ‡ d31 ¡ 2d12)/4
t̂1 ˆ d12/2

)

, (8)

with Q1 ˆ (d237d31)
2. If d125(d23 + d31)/2, tree T1 converges

to the star tree T0. Branch lengths and sum of squares can
be calculated similarly for trees T2 and T3. It is easy to
show that T1 minimizes Q if d12 is the smallest of the three
distances (Saitou 1988). Note that the condition d12
5 min(d23, d31) is equivalent to the condition f14max( f2,
f3). Thus LS and parsimony produce the same tree if the
distance formula is applicable for all pairwise comparisons.

For our numerical example, d12 ˆ 0.097118, d23
ˆ 0.115076, d31 ˆ0.119313. The estimate under the star
tree T0 is t̂ ˆ 0.055251, with Q 0 ˆ 0.009436. The estimates
under tree T1 are t̂0 ˆ 0.010038, t̂1 ˆ0.048559, with
Q 1 ˆ0.000018. Both T2 and T3 converge to the star tree
T0. Tree T1 is the LS estimate of the true phylogeny.

4. MAXIMUM LIKELIHOOD

(a) Estimation of branch lengths
ML estimation of phylogeny involves optimization of

branch lengths for each tree topology to calculate the
optimum log likelihood for that tree and comparison of
the (optimum) log-likelihood values among tree topolo-
gies (Felsenstein 1981). In the following, we obtain the
MLEs of branch lengths and the log-likelihood value
under each tree of ¢gure 1. Let p0, p1, p2, p3 be the
probabilities of observing the four site patterns xxx, xxy,
xyx and yxx, respectively. The probability of a data

outcome (n0, n1, n2, n3) is given by the multinomial
distribution

P(n0,n1,n2,n3) ˆ n!

n0!n1!n2!n3!
pn0

0 pn1
1 pn2

2 pn3
3 . (9)

The log likelihood is then

` ˆ
X3

iˆ0

ni logfpig, (10)

with the constant term logn!7log{n0!n1!n2!n3!} sup-
pressed. For point estimation, it is convenient to work
with the per-site log likelihood (Yang 1994):

`/n ˆ
X3

iˆ0

fi logfpig. (11)

(i) The star treeT0
The star tree has only one branch length t (¢gure 1). The

branch length can also be measured by a ˆ (17e¡2t)/2, the
probability that a nucleotide at a site in the ancestor is
di¡erent from the nucleotide at that site in any current
sequence. The site pattern probabilities are

P0(t)ˆa3‡(1¡a)3 ˆ1¡3a‡3a2 ˆ 1
4 ‡ 3

4 e¡4t

P1(t)ˆa2(1¡a)‡(1¡a)2aˆa¡a2 ˆ 1
4 ¡ 1

4 e¡4t

P2(t) ˆ p3(t) ˆ p1(t)

)

. (12)

The log-likelihood function is

`0/n ˆ f0 logf1 ¡ 3a ‡ 3a2g‡ (1 ¡ f0) logfa ¡ a2). (13)

The MLE of a or t can be obtained by setting p0 ˆ f0 if a
root exists. The results are summarized in table 2. Note
that the MLE of t di¡ers from the LS estimate.

It may be noted that for estimation of branch length t
or a in T0, f0 (or 17 f0 ˆ f1 + f2 + f3) is the su¤cient
statistic ; that is, all information concerning t or a is
contained in f0. The MLE of a and the optimum like-
lihood is shown in ¢gure 2. The log likelihood ranges
from 7logf4gˆ 71.386 for random or more-divergent
data ( f041/4) to 0 for completely identical data ( f0 ˆ1).
This range holds for all four trees of ¢gure 1.

(ii) The binary treeT1 ˆ ((12)3)
The branch lengths are t0 and t1 (¢gure 1). Let a be the

probability that the nucleotides at a site are di¡erent at
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Table 1. Site patterns and their probabilities of occurrence under di¡erent trees

(The observed numbers and frequencies of site patterns are from a segment of the mitochondrial DNA of human, chimpanzee
and gorilla (Brown et al. 1982).)

observed probability pi under tree

category (i) pattern numbers (ni) frequencies ( fi) T1((12)3) T2((23)1) T3((31)2)

0 xxx n0 ˆ 762 f0 ˆ 0.851397 p0(t0, t1) p0(t0, t1) p0(t0, t1)
1 xxy n1 ˆ 54 f1 ˆ 0.060335 p1(t0, t1) p2(t0, t1) p2(t0, t1)
2 yxx n2 ˆ 41 f2 ˆ 0.045810 p2(t0, t1) p1(t0, t1) p2(t0, t1)
3 xyx n3 ˆ 38 f3 ˆ 0.042581 p2(t0, t1) p2(t0, t1) p1(t0, t1)
sum ö n ˆ 895 1 1 1 1



nodes 0 and 1 in tree T1, and b be the probability that a
site is di¡erent at nodes 0 and 3 (¢gure 1).

a ˆ (1 ¡ e¡2t1 )/2
b ˆ (1 ¡ e¡2(2t0‡t1))/2

)

, (14)

with 04a4 b41/2.
By using the pulley principle of Felsenstein (1981), the

root of the tree can be placed at node 0 in the likelihood
calculation. The probabilities of observing the four site
patterns under tree T1 are then given as follows

p0(t0, t1)ˆa2b‡(1¡a)2(1¡b)ˆ1¡2a¡b‡a2‡2ab
ˆ 1

4 ‡ 1
4 e¡4t1 ‡ 1

2 e¡4(t0‡t1)

p1(t0, t1) ˆ a2(1¡b) ‡ (1¡ a)2b ˆ a2¡2ab ‡b
ˆ 1

4 ‡ 1
4 e¡4t1 ¡ 1

2 e¡4(t0‡t1)

p2(t0, t1) ˆ a(1 ¡ a)(1¡b) ‡ a(1¡a)b ˆ a ¡a2

ˆ 1
4 ¡ 1

4 e¡4t1

p3(t0, t1) ˆ p2

.

(15)

Note that p05max(p1, p2, p3) and p15p2 ˆ p3. The likeli-
hood function, given in equation (11), is

`1/n ˆ f0 logf1 ¡ 2a ¡ b ‡ a2 ‡ 2abg‡ f1 logfa2 ¡ 2ab ‡ bg
‡ ( f2 ‡ f3) logfa ¡ a2g. (16)

MLEs of parameters a and b (or t0 and t1) can be found
by setting p0 ˆ f0 and p1 ˆf1 if a root exists, that is, if
f05f1 and f14(17f0)/3. When that condition is not satis-
¢ed, one or both parameters will be at the boundary of
the parameter space. The solution is given in table 3.

For estimation of t0 and t1 in T1, f0 and f1 are su¤cient
statistics. The sample space speci¢ed by f0 and f1 is a
triangle, since f050, f150 and f0 + f141 (¢gure 3). The
space is partitioned into four regions A, B, C and D
(¢gure 3; table 3). In region A, the MLEs are inside the
parameter space (05t̂0, t̂151), and tree T1 has a higher
likelihood than tree T0. Note that the MLE of t1 is the
same as the LS estimate but the MLE of t0 is di¡erent
from the LS estimate. In region B, ML gives t̂0 ˆ 0 and
tree T1 converges to T0. In region C, the data are more
divergent than random sequences, and t̂1 ˆ 1 and t̂0 is
unde¢ned, with tree T1 converging to T0. Region D corre-
sponds to data in which sequences 1 and 2 are very
similar and both are very di¡erent from sequence 3; in
this region, t̂151 and t̂0 ˆ 1, and tree T1 has a higher
likelihood score than T0. Note also that the condition
f14( f2 + f3)/2 is necessary but not su¤cient for T1 to be
better than T0. In region C2, that condition is satis¢ed but
T1 converges to T0. Similarly, the condition f14max( f2,
f3) is necessary but not su¤cient for tree T1 to be the ML
tree, as that condition may be satis¢ed in region C2,
where none of three binary trees is better than the star
tree T0. In such data, the sequences are more divergent
than random sequences.

Probabilities of site patterns under trees T2 and T3 can
be calculated similarly to equation (15) by considering
the symmetry of the problem. These are summarized in
table 1, where the p0, p1, p2 and p3 functions are de¢ned in
equation (15), with branch lengths t0 and t1 de¢ned on the
speci¢c tree topology under consideration (see ¢gure 1).
MLEs of branch lengths and optimum-likelihood values
for trees T2 and T3 can be obtained from table 3 by
considering the symmetry of the problem. The su¤cient
statistics for estimation of branch lengths in tree T2 are f0
and f2 and the f07f2 space can be partitioned for T2 simi-
larly to ¢gure 3. For tree T3, the f07f3 space can be simi-
larly partitioned. For the model considered in this paper,
at most two binary trees can both have higher likelihood
values than the star tree T0.

For the example data set, the estimate of branch length
is â ˆ 0.052266 or t̂ ˆ 0.055205, with `0 ˆ 70.5835 for the
star tree T0 (table 2). For tree T1, the estimates are
â ˆ 0.046276 and b̂ ˆ 0.064129 or t̂0 ˆ 0.010036 and
t̂1 ˆ 0.048559, with `1 ˆ 70.5818. Both T2 and T3
converge to the star tree T0. Tree T1 is the ML tree.

(b) Estimation of tree topology and partition of
sample space

The sample space for phylogeny estimation is speci¢ed by
the three variables f1, f2 and f3, (since f0 ˆ 1 ¡ f1 ¡ f2 ¡ f3).
As f1 5 0, f2 5 0, f3 5 0 and f1 ‡ f2 ‡ f3 4 1, the sample
space is the tetrahedron OABC in ¢gure 4. Each data set
corresponds to a point in this space. Each point in this space

}
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Table 2. MLE and optimum log likelihood under tree T0

data MLE of a (or t) optimum log-likelihood `0/n

if f041/4 â ˆ 1
2 ¡ 1

2

����������������������
(4f0 ¡ 1)/3

p
f0 logf f0g+ (17f0) logf(17f0)/3g

or t̂ ˆ 71/4 logf(4f071)/3g
if f041/4 â ˆ 1

2 or t̂ ˆ 1 7logf4gˆ 71.386

0

- 0.2

- 0.4

- 0.6

- 0.8

- 1

- 1.2

- 1.4
1 0.8 0.6

f 0

0.4 0.2 0
0

0.1

0.2

0.3
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â

0.4
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0

0

Figure 2. MLE of branch length a and per-site log-likelihood
value for the star tree T0 as a function of f0 (see table 2).



also corresponds to a possible data set, apart from the discre-
teness of the real data due to the ¢nite number of sites (n).
Results of table 3 can be used to work out the ML tree (as
well as the branch lengths and optimum-likelihood value)
for any given data outcome ( f1, f2, f3). The results are
summarized intable 4.

Estimation of the phylogeny is equivalent to parti-
tioning or colouring the sample space of ¢gure 4. For
each point in the sample space, the ML tree is identi¢ed
in table 4. Suppose we use four colours for the four trees
T0, T1, T2 and T3, and colour each point in the sample

space with the colour for the ML tree. Then the
tetrahedron OABC will be partitioned into four
contiguous coloured subspaces. If the data fall within the
subspace for tree Ti, Ti will be the ML tree, i ˆ 0, 1, 2, 3.
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Table 3. MLEs and optimum log likelihood under tree T1

data MLEs optimum log likelihood 1̀/n

A: T14T0 â ˆ 1
2 ¡ 1

2

�����������������������������
2( f0 ‡ f1) ¡ 1

p
f0 logff0g+f1 logff1g+(17f07f1) logf(17f07f1)/2g

f04f1 and f14(17f0)/3 b̂ ˆ 1
2 ¡ 1

2 ( f0 ¡ f1)/
�����������������������������
2( f0 ‡ f1) ¡ 1

p
)

or
t̂0 ˆ 71

4 logff07f1g+ 1
4 logf2( f0 +f1)71g

t̂1 ˆ 71
4 logf2( f0 + f1)71g

)

B: T1 ˆ T0 â ˆ b̂ ˆ 1
2 ¡ 1

2

�����������������������
(4f0 ¡ 1)/ 3

p
f0 logff0g+ (17f0) logf(17f0)/3g

f041/4 and f14(17f0)/3 or

B1: f0 + f14 1
2 t̂0 ˆ 0, t̂1 ˆ 71

4 logf2( f0 + f1)71g
B2: f0 + f1 41

2

C: T1 ˆ T0 â ˆ b̂ ˆ 1
2 7logf4gˆ 71.386

f041/4 and f0 + f14
1
2 or

C1: f14(17f0)/3 t̂0 ˆ unde¢ned, t̂1 ˆ 1
C2: f14(17f0)/3

D: T14T0 â ˆ 1
2 ¡ 1

2

�����������������������������
2( f0 ‡ f1) ¡ 1

p
,b̂ ˆ 1

2 ( f0 + f1) logf(f0 + f1)/2g
f04f1 and f0 + f14

1
2 or + (17f07f1) logf(17f07f1)/2g

t̂0 ˆ 1, t̂1 ˆ ¡ 1
4logf2( f0 + f1)71g

0

0.2

0.4

f1

f0

0.6

0.8

1

0.2

C1
B1 B2

C2

A

D

0.4 0.6 0.8 1

Figure 3. Partition of the sample (data) space for estimation
of branch lengths in tree T1. The data are represented by f0

and f1, with f2 + f3 ˆ 17( f0 + f1). MLEs of branch lengths and
likelihood values are given in table 3. A, f04f1, f14(17f0)/3;
B, f041/4, f14(17f0)/3; C, f041/4, f0 + f41/2; D, f04f1,
f0 + f141/2.

F ( ,0, )1
2

1
2

1
2

1
2

1
2

1
2

D (

B (0,1,0)

A (1,0,0)

C (0,0,1)

,0, )

E (

f2

f3

f1R

PO

S

T

0, , )

Figure 4. Partition of the sample space for tree topology
estimation. The sample space is the tetrahedron OABC,
speci¢ed by the three axes f1, f2 and f3. The origin is at
O(0, 0, 0), with point P(1/4, 1/4, 1/4) inside the tetrahedron.
The sample space is partitioned into four regions (subspaces),
corresponding to the four trees T0, T1, T2 and T3. If the data
fall within the region for Ti, Ti will be the ML tree. The
subspace for T0 is the line segment OP plus the tetrahedron
PDEF. The subspace for T1 is a contiguous block OPFAD,
consisting of three tetrahedrons OPAD, OPAF and PDAF. The
subspaces for T2 and T3 are OPDBE and OPECF, respectively.
The probability spaces are superimposed onto the sample
space; line segment OP for T0, triangle OPR for T1, triangle
OPS for T2, and triangle OPT for T3. They are indicated by
di¡erent colours. The coordinates of points R, S and T are
R(1/2, 0, 0), S(0, 1/2, 0) and T(0, 0, 1/2).



The subspace for T0 consists of the line segment OP and
the tetrahedron PDEF. The subspace for T1 is the block
OPFAD, and consists of three tetrahedrons OPAD, OPAF
and PDAF. The subspaces for T2 and T3 are the blocks
OPDBE and OPECF, respectively (¢gure 4).

(c) Parameter space of the tree topology estimation
problem

The parameter (probability) space for a tree topology
is the space of all possible values of parameters (branch
lengths) in that tree. This can be superimposed onto the
f17f27f3 space, with the observed site pattern frequen-
cies ( fi s) given by the expected site pattern probabilities
(pi s) under the tree. The parameter space for the star tree
T0 is the line segment OP in ¢gure 4, since
0 4 p1 ˆ p2 ˆ p3 4 1/4. As tree T0 has only one branch
length, its parameter space is one-dimensional. The para-
meter space for the binary tree T1 is the triangle OPR in
¢gure 4, speci¢ed by 0 4 p2 ˆ p35p15p0 ˆ 1 ¡ p1 ¡ p2

¡p3. Any set of values for t0 and t1 in T1 in ¢gure 1 will
generate site pattern probabilities (p0^p3) corresponding
to a point in the triangle OPR in ¢gure 4. The parameter
spaces for T2 and T3 are the triangles OPS and OPT,
respectively. The parameter space for each tree (e.g.
triangle OPR for T1) is fully contained within the parti-
tioned sample space for that tree (e.g. the block OPFAD)
(¢gure 4), as the ML method is consistent. As pointed out
by H. Shimodaira (personal communication), ML esti-
mation of branch lengths in each tree is equivalent to
projecting the observed data ( f1, f2, f3) onto the prob-
ability plane of that tree. It is not clear whether the
dimension of the entire parameter space for phylogeny
estimation is a meaningful concept.

(d) Distribution of data and probability of recovering
the correct tree

Suppose that the true tree is T1, and that the true
branch lengths give site pattern probabilities p1, p2 and
p3 ˆ p2 (from equation (15)). The point (p1, p2, p3) is in the
triangle OAR in ¢gure 4. Then most data samples will be
concentrated around that point. The probability density,
that is the probability of observing any data outcome ( f1,
f2, f3), is given by the multinomial probability (equation
(9)). To plot the density onto the sample space of ¢gure 4
would require a four-dimensional plot, but two pro¢les

are shown in ¢gure 5 for a ˆ 0.2, b ˆ 0.25 (corresponding
to t0 ˆ 0.0456 and t1 ˆ0.2554) with n ˆ 200 sites in the
sequence. Figure 5a plots the density as a function of f0
and f1, superimposed on the partitioned sample space for
tree T1 (see ¢gure 3). The amount of probability density
in region A gives the probability that tree T1 is better than
T0 (that is, t̂40 in tree T1). Figure 5b plots the same
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Table 4. ML estimation of tree topology

data ML tree

if T0

f15max( f2, f3) and f2 + f351/2 or
f25max( f3, f1) and f3 + f151/2 or
f35max( f1, f2) and f1 + f251/2 or
f1 ˆ f2 ˆ f3

otherwise if
f14f2 and f14f3 T1

f24f3 and f24f1 T2

f34f1 and f34f2 T3

f1 ˆ f24f3 T1 ˆ T2

f2 ˆ f34f1 T2 ˆ T3

f3 ˆ f14f2 T3 ˆ T1

1(b)

0.8

0.6

0.4

f2

f0

0.2

0 0.2

A

B

C

D

0.4 0.6 0.8 1

1(a)

0.8

0.6

0.4

f1

f0

0.2

0 0.2

A

B

C

D

0.4 0.6 0.8 1

Figure 5. Probability density contours when the true tree is
tree T1 with branch lengths a ˆ 0.2 and b ˆ 0.25, and sample
size (sequence length) n ˆ 200 sites. The probabilities of the
four site patterns are p0 ˆ 0.49, p1 ˆ 0.19, p2 ˆ p3 ˆ 0.16 (see
equation (15)). The probability of observing any data
outcome (n1, n2, n3) or ( f1, f2, f3) is given by the multinomial
distribution (equation (9)). Two pro¢les of the probability
density are shown. (a) The density contours plotted as a func-
tion of f0 and f1, superimposed on the partitioned sample
space for tree 1 (see ¢gure 3). The density is centred around
the point f0 ˆ 0.49, f1 ˆ 0.19. For most data samples, tree T1

will have a higher likelihood than tree T0. (b) The density
contours plotted as a function of f0 and f2, superimposed on
the partitioned sample space for tree 2. The density is concen-
trated around the point f0 ˆ 0.49, f2 ˆ 0.16. For a large
proportion of data samples, tree T2 will converge to tree T0.



density as a function of f0 and f2, superimposed on the
partitioned sample space for tree T2 (see ¢gure 3), and
the amount of density in region A gives the probability
that t̂040 in tree T2. The density is concentrated in a
small area of the sample space. For shorter sequences, the
distribution will be more spread out.

Figure 5 does not provide direct estimates of the
proportions of data samples falling into each of the four
subspaces in ¢gure 4. For n ˆ 200, these proportions are
P0 ˆ 0.2%, P1 ˆ63.9% and P2 ˆ P3 ˆ17.9%, according to
computer simulation. In particular, the proportion of
data sets (i.e. the amount of probability density), P1, that
fall within the T1 subspace in ¢gure 4 is also the prob-
ability that the true tree is recovered by ML. This is
shown in ¢gure 6 for di¡erent sample sizes n. Following
Zharkikh & Li (1992), that probability can be approxi-
mated by

P1 ˆ (p1 ¡ p2)
�������������������������������
n ¡‰1/(p1 ¡ p2)Š

p
¡

���������
p2/

p
�������������������������
p1 ‡(1¡1/ )

p
p2

, (17)

where ( ) is the cumulative distribution function of the
standard normal distribution. The approximation slightly
overestimates the probability, but the accuracy is high for
large n. When n ˆ 200, the approximation gives 0.641
while the simulation result is 0.639. From equation (17),
the sample size required to achieve a speci¢ed probability
P of recovering the correct tree can be approximated as

nP ˆ
���������
p2/

p
‡ zP

�����������������������������������
p1 ‡ ‰1¡ (1/ )Š p2

p

p1 ¡ p2

" #2

‡ 1
p1 ¡ p2

, (18)

where zP is the one-tail standard normal variate corre-
sponding to probability P (Zharkikh & Li 1992).

5. DISCUSSION

(a) Generality of the problem
The main feature that is shared by the simple problem

considered in this paper and phylogeny estimation in
general is that di¡erent tree topologies lie in di¡erent
parameter (probability) spaces and have di¡erent likeli-
hood functions (¢gure 4). Furthermore, the parameter
spaces for all possible trees are embedded in a general
multinomial distribution. However, large trees have many
interior nodes, and the statistical support for individual
nodes is of interest as well as support for the entire
phylogeny. With more species, there also exist the
intricate relationships among possible tree topologies.

Estimation of the tree topology is equivalent to parti-
tioning or colouring the sample space, and di¡erent tree
reconstruction methods may be considered di¡erent
partitioning or colouring schemes. For more general
cases, it is not entirely clear whether each tree topology
has a contiguous partition of the sample space. If the
partitioned subspace for the correct tree contains a larger
proportion of the probability density, the reconstruction
method will have a higher probability of recovering the
correct tree. The problem discussed in this paper is highly
symmetrical, and when the data sample falls outside the
subspace for the true tree, it has equal chance of falling
into the two subspaces for the two wrong trees. With more
species or more complex substitution models, the parti-
tioning may be asymmetrical, or the probability density
may be highly skewed towards one particular wrong tree
(for examples, see Yang 1997; Bruno & Halpern 1999).

(b) The case of four character states
When four nucleotides are considered under the JC69

model instead of binary characters considered above,
there exist ¢ve site patterns: xxx, xxy, yxx, xyx and xyz,
where x, y and z are any three di¡erent nucleotides
(Saitou 1988; Yang 1994). Let the frequencies of those site
patterns in the data be f0, f1, f2, f3, f4. The probabilities for
those site patterns ( p0^p4) under each tree topology were
obtained by Saitou (1988) and Yang (1994). It does not
seem possible to obtain MLEs of branch lengths analyti-
cally, even for the single branch length in the star tree T0
(Yang 1994). However, the same conclusion holds that if
one of the binary trees (T1, T2, T3) is the ML tree, it is
the one corresponding to the largest of ( f1, f2, f3). It is not
clear under what conditions a binary tree has a higher
likelihood than the star tree.

A proof is given here for the statement that T1 has a
higher likelihood thanT2 if tree T2 has a higher likelihood
than T0 and if f14f2. The following proof uses the case of
binary characters, with the likelihood calculated using
equation (11) and the pi s given in equation (15) and table 1
for di¡erent trees. The proof applies to the case of four
nucleotides, as indicated below, in which case the prob-
abilities are given inYang (1994, equation 4). Let t(i)

0 and t(i)
1

denote the two branch lengths in the binary treeTi (i ˆ1, 2,
3). Let `*

i
be the optimum log likelihood obtained at the

MLEs of branch lengths, t̂(i)
0 and t̂(i)

1 , in treeTi. Let the like-
lihood value for T1 at t(1)

0 ˆ t̂(2)
0 and t(1)

1 ˆ t̂(2)
1 be ` ]

1. It
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Figure 6. Probability of recovering the correct tree T1 as a
function of the sequence length (n) when the branch lengths in
T1 are a ˆ 0.2 and b ˆ 0.25. Data sets are generated by
sampling from the multinomial distribution (equation (9))
and the ML tree is determined using table 4 or ¢gure 4. Each
point is obtained from 2 106 simulations. The curve shows
the approximation by equation (17). The probability density
for n ˆ 200 is described in ¢gure 5.



follows that `]
14`*

2 ; that is, the likelihood of T1 is higher
than the likelihood of T2 when both are calculated at the
MLEs of branch lengths from T2. This is the case because
equation (15) suggests that p14p2 holds for those branch
lengths, which implies that f1log(p1/p2)4f2 log(p1/p2) or
f1log p1 + f2 log p24f1log p2 + f2 log p1, so that ` ]

1 ¡ ` *
2

ˆ f1log p1 + f2log p27( f1log p2 + f2 log p1)40. Note that
when `1 and `2 are calculated using the same branch
lengths, only site patterns xxy and yxx contribute di¡er-
ently to the two likelihoods, while other patterns (xxx and
xyx in the case of binary characters (see table 1) and xxx,
xyx and xyz in the case of four nucleotides (Yang 1994))
make the same contributions. Since the optimum branch
lengths for T2 may not be optimal for T1, we have
`*

1 5 `]
14`*

2 .
Solution to the case of binary characters is already

given in table 4 and ¢gure 4. For nucleotides with four
states, the boundary conditions are not determined yet. If
T2 converges to T0 (`*

2 ˆ `*
0) and if f14f2, T1 may either

converge to T0 or have a higher likelihood than T0. The
proof above means that if a binary tree is the ML tree, it
must be the one corresponding to the largest of f1, f2 and
f3. However, it is not known under what conditions T0 is
the ML tree. With nucleotide data, numerical calcula-
tions (not shown) suggest that it is possible for all three
binary trees to have higher likelihood scores than the star
tree, whether or not they are equally good. The sample
space is four-dimensional and the probability space for
each binary tree is two-dimensional. Partition of the
sample space seems even more interesting than the case of
binary characters.
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