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Abstract. Algorithmic details to obtain maximum < 1, and > 1 indicate neutral evolution, purifying (nega-
likelihood estimates of parameters on a large phylogenyive) selection, and diversifying (positive) selection on
are discussed. On a large tree, an efficient approach is tthe protein, respectively. Early studies estimate synony-
optimize branch lengths one at a time while updatingmous €ls) and nonsynonymousl() substitution rates by
parameters in the substitution model simultaneouslyaveraging over all sites in the protein. As many amino
Codon substitution models that allow for variable non-acids may be largely invariable due to functional con-
synonymous/synonymous rate raties€ dy/ds) among  straints withw close to 0 and adaptive evolution most
sites are used to analyze a data set of human influenzgely affects only a few amino acids, such analysis
virus type A hemagglutinin (HA) genes. The data set hagarely findw ratios >1 or detect positive selection (Cran-
349 sequences. Methods for obtaining approximate estiga|| et al. 1999). Recently, methods have been developed
mates of branch lengths for codon models are exploredhat account for variable selective pressures among sites.
and the estimates are used to test for positive selectiofitch et al. (1997; see also Bush et al. 1999) and Suzuki
and to identify sites under selection. Compared with re4ng Gojobori (1999) inferred sites under positive selec-
sults obtained from the exact method estimating all pasjgn by reconstructing ancestral sequences using parsi-
rameters by maximum likelihood, the approximate meth—mony and counting synonymous and nonsynonymous
ods produced reliable results. The analysis identified %hanges along the tree at each site. Maximum likelihood
number of sites in the viral gene under diversifying Dar-(ML) methods based on explicit models of codon sub-

winian selection and demonstrated the importance of ing  tion assuming variable ratios among sites were

cluding many sequences in the data in detecting pOSitivﬁeveIoped by Nielsen and Yang (1998) and Yang et al.
selection at individual sites. (2000). Those methods have been found to be powerful
in detecting adaptive evolution at a few sites in a back-
ground of purifying selection (e.g., Fitch et al. 1997;
Nielsen and Yang 1998; Bush et al. 1999; Suzuki and
" Gojobori 1999; Bishop et al. 2000; Yang et al. 2000). For
example, in a recent analysis of thefgene in HIV-1,
Zanotto et al. (1999) found that the ML method of
Nielsen and Yang (1998), which accounts for variable
Introduction ratios among sites, detected a number of sites under posi-
tive selection, while both pairwise comparison and slid-
The nonsynonymous/synonymous substitution rate rationg window analysis, which average synonymous and
(o = d\/dg) provides a sensitive measure of selectivenonsynonymous rates over the gene or gene segment,
pressure at the protein level and is particularly useful forfailed.
identifying adaptive protein evolution. Valuesof= 1, The ML method has several advantages. It has a
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sound statistical basis and accounts for uncertainties in a (o)
unknown ancestral sequences. The substitution models
used in ML account for different transition and transver-
sion rates and biased codon usage, important features of
DNA sequence evolution often ignored by other meth-
ods. The likelihood method thus provides a powerful
framework for testing for the presence of sites under
positive selection and for identifying them. However, the
ML method involves intensive computation, especially
for large data sets. As including more sequences in th
data increases the numbers of synonymous and nonsyh- 18
onymous changes at each site along the tree and thumyg. 1. A phylogeny used to explain the likelihood calculation.
improves the power to detect positive selection, it is im-

portant to improve ML algorithms so that the method can

be used to analyze large data sets. vidual sites. The log likelihood is thus a sum over sites in

In this paper, | discuss computational issues and althe sequence.
gorithmic details of ML parameter estimation on a large
phylogeny to stimulate development of efficient ML al- n
gorithms. As much of the computation is spent on esti- (= Elog{fh}, 1)
mation of branch lengths by numerical optimization, | h=1
also explore the possibility of using approximate meth-
ods to estimate branch lengths for codon models and thewheren is the number of sites in the sequence, &net
using them to test for selection and to infer sites undeff(x;) is the probability of observing datq at siteh. Note
selection. The data set of human influenza virus A hem4ihat if two sites have the same data (site pattém)ll be
agglutinin (HA) gene, previously analyzed by Bush et al.the same and will be calculated only once. The likelihood
(1999), is used as a test data set; it has 349 distinatalculation is thus proportional to the number of distinct
sequences. site patterns. Below, | concentrate on calculatiof),débr
one particular sitén.

Probabilityf, is efficiently calculated using the prun-
ing algorithm of Felsenstein (1981). The models dis-
cussed here are time-reversible and cannot identify the
root of the tree. The root can thus be placed at any place
on the unrooted tree to simplify calculation. Consider
o estimation of the branch length(or t) for brancha—bin
Estimation of Branch Lengths Under Fig. 1. We place the roat at nodea but consider it to be
Site-Homogeneous Models ancestral ta andb; that is, node has daughter nodes

andb while nodea has daughter nodesandv (Fig. 1).
On a large phylogeny, great saving can be achieved byVe uset; to denote the length of the branch leading to
optimizing branch lengths one by one. This idea has beenodei, and usex; to denote the character (nucleotide,
used in programs such as MOLPHY (Adachi and Ha-amino acid, or codon) at nodet that site; is observed
segawa 1996), PAUP* (Swofford 1999), and PHYLIP if nodei is a tip of the tree and is unknown if nodés
(Felsenstein 1993). In this section | discuss this algo-an ancestral node.
rithm for estimating branch lengths with other param- Let L;(x) be the probability of observing data at the
eters (that is, those in the substitution model) fixed. Mod-site at the tips of the tree that are descendents of node
els of codon substitution are used as examples, althoughiven that nodé has charactex,. For examplel4(xg) is
the algorithm works for nucleotide- and amino acid—the conditional probability of observing characters in
based analyses as well. species 13-18 at the site, given that nddes character

I will first describe the algorithm for site-homo- X4 (see Fig. 1). This was termed the “conditional likeli-
geneous models, which were developed by Felsensteinood” in Felsenstein (1981). If nodés a tip,L;(x) = 1
(1981) for nucleotides, Kishino et al. (1990) for amino if x; is the observed character and 0 otherwise. If the data
acids, and Goldman and Yang (1994) and Muse and Gauwtontain unidentified nucleotidek,(x;) is set to 1 for each
(1994) for codons. The models assume independence af that is compatible with the ambiguity data (J. Felsen-
data among sites. Let the data at any kiteex,,; for the  stein personal communication). For example, if the data
tree of Fig. 1x, is the set of codons observed in all the at the site is codon TTR, where R refers to purine (A or
18 sequences at site The likelihood, that is, the prob- G), thenL;(x) = 1if x,is TTA or TTG and=0 if X, is
ability of observing the entire sequence data set, is thany other codon. Alignment gaps are either removed or
product of the probabilities of observing data at indi- treated as ambiguity characters; both approaches under-

t,
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estimate sequence divergences. If nbtas two daugh- The availability of the second derivatives allows us to
ter nodeg andk, we have use an efficient modified Newton method, which updates
t according to the following formula (e.g., Gill et al.

1981):
Lix) = [prxa L(xg] [prixk(tmk(xk)] @ )
« thD = 109+ a1, ®)

The product involves as many terms as the number offhe Newton method has step length= 1, but some-
daughter nodes of nodeThus the conditional probabili- times diverges. Thus the following modification is made
tiesL;(x) are calculated for tips and daughter nodes be{(Gill et al. 1981). If the likelihood™*V att**V js worse
fore ancestral nodes, with,(x,) for the root calculated than the old valu¢® att®, we reduce the step length
last. This is the famous “pruning” algorithm (Felsensteinsay, by halving it repetitively, until the new value is not
1981). Sincel,(x,) is the probability, conditional o®,,  worse. This modified Newton algorithm is nondecreas-
of observing data (at the site) in all sequences, the uning.
conditional probability is As L,(x,) andL,(x,) are independent df they do not
need to be recalculated whens updated using Eq. 8,
- and thus calculation of the log likelihood and its deriva-
fn = Eﬂx"LO(X") % XEbexa Prarg(Dbala)lo%)- - (3) tives (¢, ¢', €") is fast. To estimate another branch length,
we move the root to the new branch. For example, to
This is obtained by using Eq. 2—with a,andb replac- ~ estimatet, in Fig. 1, we place the root on branch-g
ing i, j, andk, respectively—and noting tha , (0) = with zero distance to nodg Then conditional probabili-
1if x, = X, and 0 otherwise. To calculate the derivativesties for nodes on the path from the new root to the old
of € with respect to branch length note that the tran- root (that is, noded andb) have to be updated; those for
sition probability from codorx to codony over timetis ~ other nodes are unchanged. Branch lengths are optimized
in this way one by one. A cycle is completed after all
branch lengths are optimized. As estimates of branch
lengths are correlated, several cycles are needed to
achieve convergence of all branch lengths in the tree.

pxy (t) = Ecxyk e)\ktv (4)
k

where \, and ¢, are functions of the substitution rate
matrix, independent of (e.g., Grimmett and Stirzaker eqyimation of Branch Lengths Under Site-Class Models
1992, p. 242; Yang and Kumar 1996). Thus

Site-class models refer to models that assume a statistical

pxy( ) . distribution (several site classes) to account for the het-
Py (1) = = 2 yk}\ke)\k erogeneity of the substitution process among sites. Ex-
amples include the codon-based models that account for
WOE GLV(U E Y 26Nkt (5) different selective pressures indicated by theratio
v ot? (Nielsen and Yang 1998; Yang et al. 2000) and the

gamma model of variable rates among nucleotide or

amino acid sites (Yang 1994). Under such models, the
Sincel(x,) andL,(x,) in Eq. 3 are free of, we have probability of observing data at a sitg, is an average

over the site classes. For example, the codon model M3

o, (discrete, Yang et al. 2000) assumes a general discrete
== =D > P DLa(Xa)Lp(Xp), distribution forw, so that the sequence hiisclasses of
Xa Xb sites, in proportion®y, Py, - - -, Pk, @nd with w ratios
wg, ®4 - . ., Wk_4. The conditional probability of dats,
£ Zzﬂa B (LX) Lo(Xo)- (6) given that the site is from clads f{xh|u>k), is calculated
Yo b in the same way as under the site-homogeneous model

(Goldman and Yang 1994). The transition probability
Py () will also depend on the site class, and so we write

Finally, we have from Eq. 1 it aspy(t;wy). As we do not know which class the site is
from, the unconditional probability is an average over the
.ot f'  distribution
C=g= 2
fi = 00 = 2Pyl €)
9 f-f7 = (f')? 7) K

2 (Nielsen and Yang 1998; Yang et al. 2000).
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To estimate branch lengt (or t) in Fig. 1, we have,
from Eq. 3,

fn= ;EEpkﬂa pxaxb(t;wk)l—a(xa;mk)l—b(xb;(l)k)- (10

Xa Xp

Similarly, the derivatives are

of,
fr = a_th = Ezzpkﬂ'a p;axb (t;‘”k)La(Xaiwk)Lb(Xb;wk),
k

Xa Xp
4 ath 1/
f = 2 = EEZpkﬂ-a pxaxb (t;wk)La(Xa;(")k)Lb(xb;wk)-
ot K Xa Xp
(11)

The conditional probabilitied(x) are now calculated
for each site class (that is, for eadh). Apart from

calculations off, f', and f”, the algorithm described

above for site-homogeneous models applies.

Scaling to Avoid Underflows

On a larger phylogeny, the conditional probabilities
L;(%) or Li(x; w,) can easily become too small to repre-
sent in the computer. Such underflows can be avoided by
dividing theL;(x)’s for differentx; by a very small scale
factor and by adding its logarithm to lofgf (Eqg. 1) at
the end of the calculation of the log likelihood. For ex-
ample, to perform scaling at nodewe find the maxi-
mum ofL;(x;) for different characters;. Let this bel,,
which may be a very small number. Then we divide each
L;(%) by L, and the calculation proceeds as usual. At the
end of the likelihood calculation, we add Idg{} to
log{f,} (Eg. 1). Scaling is performed for the chosen
nodes for each sitiein the sequence. It appears sufficient
to perform scaling for every 50 or 100 descendent nodes
visited during the pruning algorithm. Under site-class
models, scaling is performed separately for Hesite
classes.

The algorithms of updating branch lengths one at a
time requires the logarithms of scaling factors, Ibg},

It may be noted that the site-homogeneous algorithn{0 be stored in memory. The space requireg is d. x
is used for models that assume different substitution pa; Y. P 9 s

. o . . 8 bytes for site-homogeneous models, whdgas the
rameters for prior partitions of sites in the sequence. .
) k number of nodes chosen for scaling (abslB0, say),

Examples include models of Yang (1996b), which as- . . .

) " . andK times as much for site-class models. This memory
sume different rates and transition/transversion rate ra;, A
. " . ~demand is trivial.
tios for the three codon positions. As we know a priori
which codon position each site is from, those models are
computationally different from the site-class models. It Estimation of Substitution Parameters
should also be noted that the algorithms for estimating ] o
lecular clock (rate constancy among lineages) is not asSition/transversion rate ratioand thedy/ds rate ratiow,
sumed. can be estimated using any of the standard nonlinear
programming algorithms, updating all parameters simul-
taneously. The commonly used conjugate gradient and
quasi-Newton methods make use of first derivatives,
which can be approximated using the difference method.
The algorithm discussed above works efficiently if the The BFGS algorithm (Gill et al. 1981) is used in PAML
conditional probabilitie.;(x;) are stored in the computer (yang 1997). Methods that do not use derivatives such as
memory. For the site-homogeneous models, Powell’s method (e.g., Brent 1973) are also usable. For
large phylogenies, the following algorithm appears fea-
sible, and it cycles through two phases. In phase I, sub-
stitution parameters are updated simultaneously with an
bytes of space are needed, whpiis the number of site algorithm like BFGS while branch lengths are fixed. In
patternsg is the number of character states (4 for nucleo-phase Il, branch lengths are updated one by one, while
tides, 20 for amino acids, and 61 for codons under thesubstitution parameters are fixed. The procedure has to
universal genetic code)l is the number of nodes, and 8 be repeated to achieve global convergence of all param-
is the size of a double number (8 bytes on most systemsgters. It is noted that optimization of substitution param-

Memory Requirement

pxcxdx8 (12)

A bifurcating tree withs species had = 2s - 2 nodes.

eters (phase |) takes more time than estimating branch

As discussed above, if the data do not contain ambiguityengths (phase Il). Thus in early stages of the algorithm,

characters or alignment gaps(x;) for tips will be either
0 or 1 and are not stored in memory, in which cdse
s- 2.

Under the site-class models, the conditional probabili-

ties Li(x; w,) have to be stored for each site cldsso

substitution parameters are optimized only crudely. This
algorithm is used to analyze the large data set of this
paper.

Another algorithm, used in early versions of PAML
(Yang 1997), is to update all parameters including

thatK times as much space is needed to store the corbranch lengths simultaneously using the BFGS algo-
ditional probabilities for internal nodes of the tree. Note rithm, with first derivatives calculated using the differ-

that L;(x) for tips do not depend on the site cldss

ence approximation. The relative performance of the two
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algorithms can be very different and depends on mantitution model is conventionally defined as the expected
factors. If most parameters to be estimated are branchumber of nucleotide substitutions per (nucleotide) site.
lengths as in a large phylogeny, or if branch lengths onlyThus the branch length in the codon model is approxi-
are estimated, the algorithm of updating one branchmated by the sum of branch lengths at the three codon
length at a time is more efficient. Examples include thepositions. Here | use a nucleotide model of Yang (1996b)
HKY85 substitution model withk fixed or the gamma that accounts for different substitution rates, base fre-
model of rates for sites (Yang 1997) with the shape paquencies, and transition/transversion rate ratios at the
rameter fixed. If the data set is small (say, with fewerthree codon positions (BASEML, Mgene= 4 in
than 10 or 20 sequences) and substitution parameteRAML). This model is very close to the codon model of
need to be estimated, the algorithm of simultaneous up&oldman and Yang (1994). The method is referred to as
dating may be more efficient. When branch lengths andapproximate method II.

substitution parameters are highly correlated, as in mod-

els of variable substitution rates among sites (Yang

1996a), the algorithm of updating one branch length at Analysis of Human Influenza Virus Type A
time can be very inefficient. Hemagglutinin Gene

Approximate Branch Lengths Under Models of Sequence Data and Analysis
Codon Substitution

The human influenza virus type A hemagglutinin (HA)
The feasibility of using approximate branch lengths ingene from 357 variants (Bush et al. 1999) was analyzed.
codon-based likelihood analysis of adaptive evolution isEight pairs of sequences are identical, and only the 349
tested. The branch length used in codon substitutiolistinct sequences were used, each of 329 codons (987
models is defined as the expected number of nucleotidgucleotides). This data set is referred to later as the large
substitutions per codon (Goldman and Yang 1994). Thiglata set. A subset of the data containing 28 sequences
can be approximated in a number of ways. For example(Yang et al. 2000), referred to later as the small data set,
several methods exist to estimate the numbers of syrwas analyzed as well. The HA gene encodes the major
onymous (i) and nonsynonymously) substitutions per ~surface antigen, a target of neutralizing antibodies pro-

site. The number of nucleotide substitutions per codon igluced during infection or vaccination (Fitch et al. 1997).
thus Previous studies suggest that the codon-based analysis is

rather insensitive to the tree topology assumed (e.g.,
t = 3% (Sds+ Ndy)/(S+N), (13) Yang et al. 2000). The present study thus does not ex-
amine the effect of tree topology. The tree topology for
whereSandN are the numbers of synonymous and non-the small data set was obtained by ML (Yang et al.
synonymous sites in the sequence, respectively (Gold2000), while that for the large data set was obtained by
man and Yang 1994; Yang and Nielsen 1998). Note thaheighbor joining using the NG distances (Nei and Gojo-
S(S + N) is the proportion of synonymous sites and canbori 1986; Saitou and Nei 1987).
be calculated easily for any substitution model (Goldman The two data sets are analyzed under several models
and Yang 1994; Ina 1995). Branch lengths can then bef variable w ratios among sites, according to the rec-
estimated by the least-squares method. In this paper,dmmendations of Yang et al. (2000). The site-homo-
test the option of using the method of Nei and Gojoborigeneous model MO (one-ratio) assumes endor all
(1986, NG) to estimatdg andd,;, and then using neigh- sites. Model 1 (neutral) assumes a class of conserved
bor-joining (Saitou and Nei 1987) or least squares tosites withw = 0 and another class of neutral sites with
estimate branch lengths. This option is referred to lateram = 1. Model 2 (selection) adds a third class of sites
approximate method I. It is not expected to match thewith o estimated. M3 (discrete) assumes a general dis-
codon models closely, as the latter account for biasedrete distribution, while the gamma model (M5) assumes
transition and transversion rates and biased codon usage,simple gamma distribution @ over sites. Two other
which are ignored by NG. Methods for estimatitigand ~ models used are M7 (beta), which assumes a beta distri-
dy that account for those features (Goldman and Yandution ofw, limited in the range (0, 1), and M8 (betag,
1994; Yang and Nielsen 2000) may produce resultsvhich adds an extra site class with estimated. The
closer to estimates from the codon models. exact ML calculation and two approximate methods are
Another option tested in this paper is to use a nucleoused. The approximate methods calculate branch lengths
tide-based likelihood analysis to estimate branch lengthgither from pairwise estimates df andd,, using the NG
for codon-substitution models. Although the same datanethod (Nei and Gojobori 1986), or from a nucleotide-
are used, the nucleotide-based analysis requires mudfased analysis using the model of Yang (1996b). Apart
less computation, as the matrices are o glzx 4rather  from the way the branch lengths are obtained, there is no
than of 61 x 61. The branch length in a nucleotide sub-difference between the exact and approximate methods.
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Table 1. Parameter estimates by approximate method | for the small data set

Positively
Model code ¢ Estimates of parameters dy/ds selected sites
MO: one-ratio -3140.38 o = 0.392 0.392
M1: neutral —-3097.60 po = 0.657 p, = 0.343) 0.343 Not allowed
M2: selection -3091.64 po = 0.653,p, = 0.337 p, = 0.010),w, = 6.187 0.400 135 226
M3: discrete -3090.90 po = 0.760,p, = 0.234 p, = 0.006),w, = 0.058,0w, = 1.373,0, = 7.923 0.416 Many
M7: beta -3097.64 p = 0.014,q = 0.027 0.319 Not allowed
M8: beta&w -3091.63 po = 0.986,p = 0.013,q = 0.024 0.386 135 226

(p, = 0.014),0 = 5.268

The number of parameters in thedistribution is 1, 1, 3, 5, 2, 4 for the five models, respectively. Estimates of the transition/transversion rate ratio
k are around 4.6. Positively selected sites include those Wi#h95%, with those witiP > 99% in bold type

For the large data set, exact ML calculation involvespected as the two approximate methods tested here do
heavy computation. The memory required ranges frormot account for variable nonsynonymous rates among
105MB (megabytes) for the site-homogeneous modesites.

(MO, one ratio, Goldman and Yang 1994) to 627MB for

model M8 (betadn), which usesk = 11 site classes. Estimation of Substitution Parameters and Likelihood
The approximate methods, which fix branch lengths, reRatio Test of Positive Selection

quire 105MB for all models. If a'.“”.b'gu'ty charg_gters ML estimates of parameters in thedistribution for the
were removed, the space for conditional probabilities 8 mall data set obtained by the two approximate methods

thde tl?l’i (53MB) cta? be saved f?r all ?;Odelé and meX:'are listed in Tables 1 and 2, respectively. They are very
ods. The computation was periormed on Lompaq Alqiay to estimates obtained by the exact ML method
phaStations. The calculation takes about 20 min for the}(\(5

. : not shown, but see Table 7 of Yang et al. 2000). Ap-
site-homogeneous model (MO, one ratio) and 1-3 day roximate method Il, in particular, gave estimates essen-

for the complex site-class models such as M8 (beth& ;v igentical to the exact methods, with the log likeli-

I consider the following aspects when comparing thehood values <0.2 units worse for all models. Parameter

exact and e_lpprQX|mate met-hO(.js: estimation O_f branCI%stimates for the large data sets are listed in Table 3 for
lengths, estimation of substitution parameters in ¢he the exact method and in Tables 4 and 5 for the two

distribution, likelihood ratio test for the presence of S'tgsapproximate methods, respectively. Overall, the approxi-

€mate methods produced estimates very similar to those
of the exact method.

Table 6 lists the likelihood ratio statistics for two
tests. The first compares the one-ratio model (M0) with
the discrete model (M3). This is a test of the hypothesis
that thew ratio is identical among sites. The second test

classes for identifying sites under selection.

Estimation of Branch Lengths

To examine how close the approximate estimates o ) ,
branch lengthsyj are to the exact ML estimates)(a compares M7 (beta) against M8 (bewf and directly

linear regression is performed. As branch lengths undef€Sts for the presence of sites waitp 1. First, | note that
different models of variabless among sites are very the te.st'statlstlcs by the approximate and exact methods
similar (Yang et al. 2000), the exact estimates undef'® S|m|Iar_ fo_r_both the small and large data sets. Both
model M3 (discrete) are used. If the approximation igtests are 5|gn|f|f:ant at the 1% level for the two data sets.
perfect, the regression will be= x with r2 = 1. For the AS Poth M3 (discrete) and M8 (betad have classes
small data set, the regressions gre- 0.924 + 0.0013 W|th_ w > 1, the_models prowde S|gn|f|cant_ evidence for
(r2 = 0.913) for method I, ang = 0.96( + 0.0001 positive selection, consistent with previous analyses

(r2 = 0.9995) for method II. For the large data set, the(Fitch et al. 1997; Bush et al. 1999; Yang et al. 2000).
regressions arg = 0.8675 + 0.0005 (2 = 0.9029) for Second, | note that the test statistics for the large data set

method |, andy = 0.9720 + 0.0001 (2 = 0.9849) &€ much greater than those for the small data set. This
for method II. The approximations appear very good. mdlffergnce IS clgarly beqause alarge number of'sgquences
particular, approximate method II, which calculates ¢ONtain more information abous ratios at individual
branch lengths from a nucleotide-based analysis (Yan?'tef5 and thus have greater power to detect positive se-
1996h), gave very similar branch lengths to the exact ML'€CtioN.

calculation. It is also noted that the approximate branc
lengths are underestimates and are much closer to t
exact estimates under the site-homogeneous model (MAfter branch lengths and substitution parameters are ob-
one-ratio) than to those under M3. This pattern is ex-tained, the Bayes theorem can be used to calculate the

Hgference of Sites Under Selection



Table 2. Parameter estimates by approximate method Il for the small data set
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Model code ¢ Estimates of parameters dy/ds
MO: one-ratio -3125.63 o = 0.391 0.391
M1: neutral -3083.62 po = 0.662 p, = 0.338) 0.338
M2: selection -3078.29 po = 0.657,p, = 0.333 p, = 0.010) 0.391
w, = 5.693
M3: discrete -3077.85 po = 0.746,p, = 0.247 p, = 0.007),wy = 0.049,0, = 1.280,w, = 6.766 0.400
M5: gamma -3079.40 a = 0.234,3 = 0.519 0.399
M7: beta -3083.65 p = 0.014,q = 0.028 0.317
M8: beta&w -3078.28 pp, = 0.987,p = 0.011,g = 0.021 0.377

(p, = 0.013),0 = 5.069

See notes for Table 1. Lists of positively selected sites are the same as in Table 1

Table 3. ML estimates of parameters for the large data set

Model 4 Parameters dy/ds Positively selected sites
MO: one-ratio -11,468.87 w = 0.456 = None
M1: neutral -11,281.60 po = 0.439 p, = 0.561) 0.561 Not allowed
M2: selection -11,123.59 po = 0.426,0, = 0 133 137 138 145 156
p, = 0.516,w, = 1 157159 186 193 194
p, = 0.058,m, = 4.709 219 226246
M3: discrete -11,009.63 po = 0.762,0, = 0.122 0.459 Many
p, = 0.205,w, = 1.096
p, = 0.033,0, = 4.251
M7: beta -11,129.58 p = 0.249,q = 0.553 0.310 Not allowed
m8: beta&w -11,016.94 po = 0.941,p = 0.377, = 1.012 0.441 13337 138 145 156
(p, = 0.059),0 = 3.142 157159 186 193 194
219 226
See notes for Table 1. Estimateswofre around 3.6
Table 4. Parameter estimates by approximate method | for the large data set
Model € Parameters dy/ds Positively selected sites
MO: one-ratio -11,592.67 o = 0.457 =w None
M1: neutral -11,402.49 po = 0.451 p, = 0.549) 0.549 Not allowed
M2: selection -11,243.04 po = 0.435,05 = 0 0.760 133 137 138 145 156
p, = 0512w, = 1 157159 186 193 194
p, = 0.053,w, = 4.740 219 226246
M3: discrete -11,129.45 po = 0.776,0, = 0.121 0.423 Many
p, = 0.197,0, = 1.095
p, = 0.026,0w, = 4.287
M5: gamma -11,156.06 o = 0.284,8 = 0.534 0.479 80 121 133 135 137
138 145 156 157 159
163172186 190 193
194 196197 219 226
246 248275276 310
M7: beta -11,252.81 p = 0.228,q = 0.570 0.285 Not allowed
M8: beta&w -11,136.92 po = 0.951,p = 0.370,q = 1.020 0.407 13337 138 145 156

(p, = 0.049)w = 3.174

157159 186 193 194
219 226

See notes for Tables 1 and 3

posterior probabilities of site classes for each siteidentified by all models at the 95% level. There is no
(Nielsen and Yang 1998; Yang et al. 2000). Sites withdifference among the exact and approximate methods

high probabilities for classes with > 1 are likely to be

regarding this list. Sites inferred to be under positive

under positive selection. Sites under selection inferredelection in the large data set are listed in Tables 3-5.
this way are listed in Tables 1 and 2 for the two approxi-Again there is essentially no difference among the meth-
mate methods for the small data set. Only two sites ar@ds. The posterior means offor sites in the sequence
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Table 5. Parameter estimates by approximate method Il for the large data set

Model ¢ Parameters dy/ds Positively selected sites

MO: one-ratio -11,470.76 o = 0.457 =w None

M1: neutral -11,283.33 po = 0.427 p, = 0.573) 0.573 Not allowed

M2: selection -11,125.32 po = 0.422,0, = 0 0.284 133 137 138 145 156
p, = 0517w, = 1 157159 186 193 194
p, = 0.061,0, = 4.708 219 226246

M3: discrete -11,011.77 pPo = 0.762,w, = 0.121 0.452 Many

p, = 0.205,0, = 1.090
p, = 0.032,0, = 4.241
M5: gamma -11,033.65 a = 0.2958 = 0.532 0.502 80121 133 135 137
138 145 156 157 159
163 172186 190 193
194 196 219 226 246
248 275276310

M7: beta -11,132.03 p = 0.239, = 0.563 0.298 Not allowed
M8: betalw -11,018.91 po = 0.943,p = 0.375,g = 01.012 0.434 13337 138 145 156
p, = 0.057,w = 3.143 157159 186 193 194
219 226

See notes for Tables 1 and 3

Table 6. Likelihood ratio statisticsA¢) for tests of positive selection (a) Small data set (b) Large data set
8 o 5
M3 vs. M1 M8 vs. M7 .
Method @.f. = 5) @.f. = 2) : o
Small data set Ts] 3
Exact (from Yang et al. 2000) 47.88 5.43 E 4
Approximate | (Table 1) 49.48 6.01 C%S_ 2]
Approximate Il (Table 2) 47.78 5.37 <
Large data set 2] 1
Exact (Table 3) 459.24 112.64 1f
Approximate | (Table 4) 463.22 115.89 L s s B B R 0 T T T T
Approximate 1l (Table 5) 458.99 113.12 e t2zs 45678 0 1 2 3 45
Exact Exact

Fig. 2. Posterior means ob at sites calculated using approximate

; ; ; methods | 0) and Il (O), plotted against those calculated using the
are calculated under M3 and plotted in Fig. 2. Again We_ - ot ML method. The discrete model (M3) is used.

perform a linear regression of the approximate estimates
(y) against the exact oneg)( For the small data set, the
regressions ang = 1.070k - 0.0231 (? = 0.9951) and

y = 0.984% + 0.0042 (? = 0.9998) for approximate
methods | and I, respectively. For the large data set, the
arey = 1.006X - 0.0018 (> = 0.9999) andy =

at the 99% level by the likelihood analysis of this paper
Tables 3-5). In a later analysis of an extended data set
ncluding 357 sequences (the data set used in this paper),
> ) Bush et al. (1999) identified seven more sites under posi-
0.998% + 0.0006 ( = 0.9999). The cqrrelaﬂons be- tive selection, of which two (133, 135) are in the lists of
tween t_he approximate and _exact estimateswoare this paper while five (124, 142, 158, 190, 197) are not.
much higher than the correlations between approximate |« '+ 1+ sites listed in Tables 3-5 (137, 157, 159, 219)
and exact estimates of branch lengths, indicating thal .o 1ot in the list of Bush et al. (199'9)_ P,art o,f the
inference _Of sites u.nder positive selection is, SomeWh""&ifferences may be due to the different treatment of the
robust' to Inaccuracies in branch Iength estimates. Thﬁata, in particular, concerning counting of changes along
posterior distribution and the posterior mean wffor tip branches on the tree. Overall the methods produce

each site in the large data set calculated using the exagiyjar jists of sites under selection, although the signifi-

method are shown in Fig. 3. ) cance values may be different.
Although constructed very differently, models M3

(discrete) and M8 (beta®) produced the same list of

sites under positive selection for the large data set. We . )

compare this list with previous analyses. Fitch et al.Discussion

(1997) identified six sites under selection: 138, 145, 156,

186, 193, and 226 from an analysis of 254 sequencedt is noted that the memory requirement of the exact ML
Those sites are all inferred to be under positive selectiorcalculation increases roughly linearly with the number of
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sequences in the data set (see Eq. 12). The amount &¢lsenstein J (1981) Evolutionary trees from DNA sequences: a maxi-
computation increases faster than linearly, but not by too ™um likelihood approach. J Mol Evol 17:368-376 .
much if the tree topology is fixed. With the improvement Felsenstein J (1993) Phylip: Phylogenetic inference program, version 3.

. University of Washington, Seattle
of computer power and algorithms, the exact methodFit Y 9

be f ible for | dat ts of hundreds of ch WM, Bush RM, Bender CA, et al. (1997) Long term trends in the
may soon be leasible for large data Sets ot hundreds ot ¢, ,ygon of H(3) HA1 human influenza type A. Proc Natl Acad Sci

codon sequences. Nucleotide-based analysis requires ysa 94:7712-7718
much less memory and computation, and currently dataiil PE, Murray W, Wright MH (1981) Practical optimization. London:
sets of over a thousand sequences can be analyzed. Academic Press

For data sets too large to handle by exact ML calcu-Goldman N, Yang Z (1994) A codon-based model of nucleotide sub-
lation, approximate methods for branch Iength estimation stitution for protein-coding DNA sequences. Mol Biol Evol 11:
provides a useful alternative. Previous studies have em- 725-736

. . . rimmett GR, Stirzaker DR (1992) Probability and random processes.
ployed approximate branch lengths obtained using least Oxford: Clarendon Press

s_quares or parsw_nony methods for phylogeny re_conStruqha Y (1995) New methods for estimating the numbers of synonymous
tion (e.g., Adachi and Hasegawa 1996). Errors in branch  and nonsynonymous substitutions. J Mol Evol 40:190-226

length estimates may have more impact on comparisoRishino H, Miyata T, Hasegawa M (1990) Maximum likelihood infer-

of models than on comparison of tree topologies. Nev- ence of protein phylogeny and the origin of chloroplasts. J Mol
ertheless, at least for the influenza data sets tested here, Evol 31:151-160

use of approximate branch Iengths produced quite reliMuse SV, Gaut BS (1994) A likelihood approach for comparing syn-

. onymous and nonsynonymous nucleotide substitution rates, with
able results when compared with the exact ML method. application to the chloroplast genome. Mol Biol Evol 11:715-724

Alarge amo“”tpf dat.a may mcrga;e the power of the tesfl:lei M, Gojobori T (1986) Simple methods for estimating the numbers
so much that minor differences in likelihood are unlikely  of synonymous and nonsynonymous nucleotide substitutions. Mol

to change the conclusions. This is the case for the large Biol Evol 3:418-426

data set (Table 6). The influenza virus gene sequencesielsen R, Yang Z (1998) Likelihood models for detecting positively

are quite similar. For more divergent sequences, it may selected amino acid sites and applications to the HIV-1 envelope
be worthwhile to devise better algorithms for branch ~9ene. Genetics 148:929-936

Iength estimation. for example by taking into accoumSaltou N, Nei M (1987) The neighbor-joining method: a new method

variable nonsvnonvmous rates amond sites for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425
y y 9 ’ Suzuki Y, Gojobori T (1999) A method for detecting positive selection

at single amino acid sites. Mol Biol Evol 16:1315-1328

Ackqoyvledgments. | am grateful to Waltgr Fit_ch and Robin Bush for g\ o¢ord DL (1999) PAUP*: phylogenetic analysis by parsimony* and
providing the sequence data analyzed in this paper. | thank Joe Fel-  qwer methods, version 4. Sanderland, MA: Sinauer Associates

senstein, Masami Hasegawa, ar_1d two anonymous referees for CcmVang Z (1994) Maximum likelihood phylogenetic estimation from
ments, and Joe Fletcher for running models M7 and M8 of Table 3 on . ) . )
DNA sequences with variable rates over sites: approximate meth-

a Compag Alphaserver ES40. This study was supported by grants .
31/G10434 and 31/MMI09806 from the Biotechnology and Biological ods. J Mol Evol 39'30_6_314 o o
Yang Z (1996a) Among-site rate variation and its impact on phyloge-

Sciences Research Council (UK). netic analyses. TREE 11:367-372

Yang Z (1996b) Maximum-likelihood models for combined analyses of
multiple sequence data. J Mol Evol 42:587-596

Yang Z (1997) PAML: a program package for phylogenetic analysis by
maximum likelihood. Comput Appl Biosci 13:555-556

Adachi J, Hasegawa M (1996) MOLPHY version 2.3: programs for_Yang Z, Kumar S (1996) Approximate methods for estimating the

molecular phylogenetics based on maximum likelihood. Comp Sci pattern of nucleotide substitution and the variation of substitution
Monog 28:1-150. Institute of Statistical Mathematics, Tokyo rates among sites. Mol Biol Evol 13:650-659

Bishop JG, Dean AM, Mitchell-Olds T (2000) Rapid evolution in plant . )
chitinases: molecular targets of selection in plant-pathogen coevo](ang Z, Nielsen R (1998) Synonymous and nonsynonymous rate varia-
’ u 9 P P 9 tion in nuclear genes of mammals. J Mol Evol 46:409-418

lution. Proc Natl Acad Sci USA 97:5322-5327 ) o
Brent RP (1973) Algorithms for minimization without derivatives, Yang Z. Nielsen R (2000) Estimating synonymous and nonsynony-
Englewood Cliffs, New Jersey: Prentice-Hall mous substitution rates under realistic evolutionary models. Mol
Bush RM, Fitch WM, Bender CA, et al. (1999) Positive selection on  Biol Evol 17:32-43
the H3 hemagglutinin gene of human influenza virus A. Mol Biol Yang Z, Nielsen R, Goldman N, et al. (2000) Codon-substitution mod-
Evol 16:1457-1465 els for heterogeneous selection pressure at amino acid sites. Genet-
Crandall KA, Kelsey CR, Imamichi H, et al. (1999) Parallel evolution ics 155:431-449
of drug resistance in HIV: failure of nonsynonymous/synonymous Zanotto PM, Kallas EG, Souza RF, et al. (1999) Genealogical evidence
substitution rate ratio to detect selection. Mol Biol Evol 16:372— for positive selection in thaefgene of HIV-1. Genetics 153:1077—
382 1089

References



