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Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive
Molecular Evolution
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The selective pressure at the protein level is usually measured by the nonsynonymous/synonymous rate ratio (v 5
dN/dS), with v , 1, v 5 1, and v . 1 indicating purifying (or negative) selection, neutral evolution, and diversifying
(or positive) selection, respectively. The v ratio is commonly calculated as an average over sites. As every functional
protein has some amino acid sites under selective constraints, averaging rates across sites leads to low power to
detect positive selection. Recently developed models of codon substitution allow the v ratio to vary among sites
and appear to be powerful in detecting positive selection in empirical data analysis. In this study, we used computer
simulation to investigate the accuracy and power of the likelihood ratio test (LRT) in detecting positive selection
at amino acid sites. The test compares two nested models: one that allows for sites under positive selection (with
v . 1), and another that does not, with the x2 distribution used for significance testing. We found that use of the
x2 distribution makes the test conservative, especially when the data contain very short and highly similar sequences.
Nevertheless, the LRT is powerful. Although the power can be low with only 5 or 6 sequences in the data, it was
nearly 100% in data sets of 17 sequences. Sequence length, sequence divergence, and the strength of positive
selection also were found to affect the power of the LRT. The exact distribution assumed for the v ratio over sites
was found not to affect the effectiveness of the LRT.

Introduction

Detecting positive Darwinian selection is a critical
aspect of understanding the mechanisms of molecular
evolution. Existing tests proposed in population genetics
(see Wayne and Simonsen [1998] for a review) are pow-
erful enough to reject the strictly neutral model. How-
ever, such tests are often not sufficient to distinguish
different forms of natural selection or to detect adaptive
molecular evolution (Yang and Bielawski 2000). A pow-
erful method for detecting positive selection is through
comparison of synonymous and nonsynonymous substi-
tution rates. Selective pressure at the protein level is
measured by v 5 dN/dS, where dN and dS are nonsy-
nonymous and synonymous substitution rates, respec-
tively. If amino acid changes are advantageous, they will
be fixed at a higher rate than synonymous changes, with
dN . dS. Thus, a significantly higher nonsynonymous
substitution rate (v . 1) is evidence of adaptive molec-
ular evolution. If amino acid changes are deleterious,
purifying selection will reduce their fixation rate, such
that dN , dS and v , 1. Neutral mutations result in v
5 1, as selection on the protein has no effect on fitness.

Until recently, cases of positive selection have been
difficult to demonstrate. A large-scale database search
performed by Endo, Ikeo, and Gojobori (1996) identi-
fied only 17 out of 3,595 genes that might have under-
gone adaptive evolution. Endo, Ikeo, and Gojobori
(1996) considered a gene to be under positive selection
if the average dN was greater than dS in more than half
of the pairwise sequence comparisons. This approach
computes the v ratio as an average over both amino acid
sites and time; although popular, it has little power. For
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example, Crandall et al. (1999) found that the approach
of pairwise comparison failed to detect positive selec-
tion in the protease gene of HIV-1 despite clear evidence
of parallel evolution. Crandall et al. (1999) suggested
that the v ratio averaged over sites was a poor indicator
of positive selection. Indeed, the assumption that all
sites in a sequence are under equal selective pressure is
unrealistic. Typically, adaptive evolution occurs at only
a few sites, as most amino acids in a protein are under
structural and functional constraints with dN, and hence
v, close to 0 (e.g., Li 1997). Thus, calculating v as an
average over all amino acid sites substantially reduces
the power to detect positive selection.

Codon-based models recently developed by Niel-
sen and Yang (1998) and Yang et al. (2000) account for
variation of the v ratio among sites. They are imple-
mented in the maximum-likelihood (ML) framework
and can be used (1) to test for the presence of codon
sites affected by positive selection and (2) to identify
such sites when they exist. The idea is to allow the v
ratio to take values from a number of discrete site clas-
ses or from a continuous distribution. The application
of such models has led to detection of positive selection
in many genes for which it has not previously been sug-
gested. For example, using the ML model of Nielsen
and Yang (1998), Zanotto et al. (1999) detected positive
selection in the nef gene of HIV-1, whereas in earlier
studies of the same gene, the average v ratio over sites
provided no evidence for adaptive evolution (Plikat,
Nieselt-Struwe, and Meyerhans 1997; da Silva and Hu-
ges 1998). Yang et al. (2000) detected diversifying pos-
itive selection in six out of ten genes from nuclear, mi-
tochondrial, and viral genomes, while the v ratio aver-
aged over sites was less than one in all of those genes.
Similarly, in an analysis of the fertility gene DAZ, Agul-
nik et al. (1998) found similar average synonymous and
nonsynonymous rates and similar rates at the three co-
don positions and thus concluded that the DAZ gene
family was not under any selective constraint. However,



1586 Anisimova et al.

using models of variable v ratios, Bielawski and Yang
(2001) found that most amino acids in the DAZ gene
were under strong functional constraints, while a few
sites were under diversifying selection.

While the new models have been successfully ap-
plied to real data, the accuracy and power of the like-
lihood ratio test (LRT) have not been examined. Here,
we use computer simulation to investigate the accuracy
and power of the LRT in detecting positive selection. In
cases considered here, the LRT statistic does not follow
the x2 distribution due to the so-called boundary prob-
lem. This problem arises because the null hypothesis is
equivalent to the alternative hypothesis with some pa-
rameters fixed at the boundary of the parameter space.
The sample size (i.e., the sequence length) also affects
the distribution of the LRT statistic; the x2 approxima-
tion is asymptotic and reliable for large samples only
(e.g., Silvey 1970, pp. 1122114). We attempted to char-
acterize the minimum sample size required for the x2

approximation to be acceptable. Furthermore, we ex-
amined how the power of the LRT depends on the se-
quence divergence, the sequence length, the number of
taxa, and the strength of positive selection. Finally, we
tested the sensitivity of the LRT to misspecification of
the v distribution among sites.

Theory and Methods
Codon Substitution Models for Detecting Positive
Selection at Sites

The Markov model of codon substitution proposed
by Goldman and Yang (1994; see also Muse and Gaut
1994) was modified recently to account for heteroge-
neous v ratios among sites (Nielsen and Yang 1998;
Yang et al. 2000). Here, we present an overview of these
models. Let h denote a site in the sequence and N denote
the number of codons in the sequence (h 5 1, 2, . . . ,
N). The relative instantaneous substitution rate from co-
don i to codon j (i ± j) at site h is given by

0, if i and j differ at two or three
nucleotide positions

p , if i and j differ by onej
synonymous transversion

kp , if i and j differ by one(h) jq 5 (1)ij synonymous transition
(h)v p , if i and j differ by onej

nonsynonymous transversion
(h)v kp , if i and j differ by one j

nonsynonymous transition,

where pj is the equilibrium frequency of codon j, k is the
transition/transversion rate ratio, and v(h) is the dN/dS ratio
at site h. The transition probability matrix over time t is
given by P(t) 5 eQt, where Q 5 { } (e.g., Lio and(h)qij

Goldman 1998).
Following the recommendations of Yang et al.

(2000), we consider the following models of v ratio
distribution among sites: M0 (one-ratio), M3 (discrete),
M7 (beta), and M8 (beta&v) (see table 1). M0 (one-
ratio) assumes one v ratio for all sites, so v(h) 5 v for

any h. Model M3 (discrete) classifies sites in the se-
quence into K discrete classes, with both the v ratios
v0, v1, . . . , vK21 and the proportions p0, p1, . . . , pK21
estimated from the data. Three classes (K 5 3) were
used in this paper. Under model M7 (beta), the v ratio
varies according to the beta distribution B(p, q) with
parameters p and q. The beta distribution is bounded
within the interval (0, 1) and thus does not allow for
positively selected sites. Model M8 (beta&v) adds a dis-
crete v class to the beta model to account for sites under
positive selection with v . 1. A proportion p0 of sites
have v drawn at random from the beta distribution B(p,
q), while the rest (with proportion p1 5 1 2 p0) have
the same ratio v. M0 (one-ratio) and M3 (discrete) are
nested models and can be compared using an LRT. Sim-
ilarly, models M7 (beta) and M8 (beta&v) are nested
and can be compared using an LRT.

Accuracy of the LRT

The type I error occurs if the null hypothesis H0 is
rejected when it is true. A test is accurate if the type I
error rate is not greater than the chosen significance lev-
el a. If H0 holds, the LRT statistic 2D, (twice the log
likelihood difference) can be approximated by the x2

distribution with the degree of freedom n equal to the
difference in the number of free parameters in the two
nested models (e.g., Stuart, Ord, and Arnold 1999, p.
241). This, however, is only true for large samples and
under certain regularity conditions. For example, if the
null model H0 is equivalent to an alternative model H1
with some parameters fixed at the boundary of the pa-
rameter space, the regularity conditions are not satisfied
and the x2 approximation is not expected to apply. Such
is the case with the LRTs considered here. For example,
M0 (one-ratio) is a special case of M3 (discrete) by con-
straining two of the five free parameters in M3 (p0 and
p1) to 0. This breaches the regularity conditions, as p0
5 0 and p1 5 0 lie on the boundary of the parameter
space. Moreover, parameters v0 and v1 become unde-
fined when p0 5 p1 5 0. Comparison between M7 and
M8 poses a similar problem. The transformation from
M8 to M7 forces the parameter v to become inestimable
by fixing p1 at 0, which is on the boundary of the pa-
rameter space. Therefore, in neither of our cases is the
LTR statistic expected to follow the x2 distribution.

We assessed the accuracy of the test by simulating
replicate data sets under the null hypothesis and analyzing
them using both the null and the alternative hypotheses.
The distribution of the test statistic 2D, among replicates
was then compared with the distribution, with n 5 42xn

for the M0-M3 comparison and n 5 2 for the M7-M8
comparison (table 1). The settings of the simulation ex-
periments are summarized in table 2. Trees used to sim-
ulate the data are shown in figure 1. We do not assume
the molecular clock (rate constancy over time), and all
trees are unrooted. While the dN/dS rate ratio v is the
same among branches, the total rate, measured by the
expected number of nucleotide substitutions per codon,
varies among branches. We used codon frequencies em-
pirically estimated from 17 vertebrate b-globin genes and
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Table 1
Models of Variable v Ratios Among Sites Used to Investigate the Accuracy and Power
of the Likelihood Ratio Test

Model Description Free Parameters
No. of Free
Parameters

M0 (one-ratio) . . . . . .
M3 (discrete) . . . . . . .
M7 (beta). . . . . . . . . .
M8 (beta&v) . . . . . . .

One v ratio for all sites
K 5 3 site classes
v ; B(p, q)
Proportion p0 of sites ; B (p, q), p1 of

sites from discrete v class

v
v0, v1, v2, p0, p1

p, q
p, q, p0, v

1
5
2
4

Table 2
Type I Error Rate: Numbers of Cases out of 100 for Which the Null Hypothesis Was
Rejected at the a 5 1% (5%) Significance Levels

EXPERI-
MENT SIMULATION ANALYSIS

SIMULATION PARAMETERS

T k v S

TYPE I ERROR

AT a 5 1% (5%)

N 5 100 N 5 500

A. . . . . . . .

B. . . . . . . .

C. . . . . . . .

D. . . . . . . .

M0

M0

M0

M7

M0 & M3

M0 & M3

M0 & M3

M7 & M8

6

17

5

6

2

2

5

2

0.40

0.40

0.25

p 5 0.41
q 5 1.10

0.11
1.1

11

2.11
8.44

16.88

0.91
9.1

18.2

0.11
1.1

11

0 (0)
0 (0)
0 (0)

0 (0)
0 (0)
0 (1)

0 (0)
0 (0)
0 (1)

NA
NA
NA

0 (0)
0 (0)
0 (0)

0 (1)
0 (1)
0 (0)

0 (0)
0 (1)
2 (3)

0 (0)
1 (5)
1 (4)

NOTE.—Codon frequencies from the vertebrate b-globin gene were used in all experiments except experiment C, in
which those from the HIV-1 pol gene were used. In experiment D, simulation was not conducted for N 5 100.

from 23 HIV-1 pol genes (see table 2). The vertebrate b-
globin gene is biased against adenine at third codon po-
sitions, whereas the HIV-1 pol gene is G-C rich at third
positions. Simulation parameters were taken to represent
the range of estimates from real data (Yang et al. 2000).
We simulated sequences of N 5 100 and 500 codons
using trees of T 5 5, 6, or 17 taxa. Sequence divergence
was measured by the tree length S, the expected number
of nucleotide substitutions per codon along the tree, and
three values (‘‘low,’’ ‘‘medium,’’ and ‘‘high’’) were used
for each tree (table 2).

Power of the LRT

The type II error of a test occurs if the test fails to
reject H0 when it is false. The power of a test is defined
as 1 2 type II error rate and is equal to the probability
of rejecting H0 given that H0 is wrong and that the al-
ternative hypothesis H1 is correct. To examine the power
of the LRT, we simulated replicate data sets under H1
and analyzed them using both H0 and H1 to see whether
H0 was rejected by the LRT. We considered two mea-
sures. First, we counted the replicates for which positive
selection was indicated by the parameter estimates in
the alternative model, and we denote the proportion of
such replicates by P1. Formally, P1 5 Pr(there exists an

. 1 z H1 is true), where is the ML estimate of anyv̂ v̂
of the parameters vi (i 5 0, 1, 2) under M3 (discrete)
or of the single v parameter in model M8 (beta&v) (see

table 1). The second measure is more stringent and re-
quires that positive selection is indicated by the param-
eter estimates in the alternative model and that the LRT
is significant. We denote the proportion of such repli-
cates by P1s and refer to it as the power of the LRT. As
P1s depends on the significance level a, we also use the
notation P1s,a. In other words, P1s,a 5 Pr(there exists

. 1 and 2D, . z H1 is true). Note that P1 $ P1s.2v̂ xn,a
We also investigated the sensitivity of LRTs to mis-

specification of the distribution of the v ratio among
sites. We simulated data sets under M3 (discrete) and
analyzed them using M7 (beta) and M8 (beta&v). Sim-
ilarly, we simulated data sets under M8 (beta&v) and
analyzed them using M0 (one-ratio) and M3 (discrete).
Parameter settings used are listed in table 3. As before,
we used a number of parameter combinations to repre-
sent a variety of real data situations.

All sequence data sets were generated using the
evolver program. Log likelihood values were calculated
with the codeml program. Both programs are from the
PAML package (Yang 2000).

Results
Accuracy

Results obtained from simulations examining the
accuracy of the LRTs are presented in table 2. In ex-
periments A–C, data were simulated under M0 (one-
ratio) and analyzed using M0 (one-ratio) and M3 (dis-
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FIG. 1.—Tree topologies used in the simulations. A, Artificial six-
taxon tree. B, Five-taxon subtree from a tree constructed for 23 HIV-
1 pol gene sequences (Yang et al. 2000). C, A b-globin tree for 17
vertebrate species from Yang et al. (2000).

Table 3
Power of the Likelihood Ratio Test (LRT): Numbers of Replicates out of 100 in Which Positive Selection Was
Indicated by Parameter Estimates (P1) or Detected by the LRT at the 1% (P1s,0.01) and 5% (P1s,0.05, in parentheses)
Significance Levels

EXPERI-
MENT

SIMULA-
TION ANALYSIS

SIMULATION PARAMETERS

T k v Distribution S

P1

N 5
100

N 5
500

P1s,0.01(0.05)

N 5 100 N 5 500

1 . . . . . . . . M3 M0 & M3 6 2 v0 5 0.018, p0 5 0.386;
v1 5 0.304, p1 5 0.535;
v2 5 1.691, p2 5 0.079

0.11
1.1

11
55

33
73
52
28

48
95
80
11

0 (1)
54 (66)
52 (52)
28 (28)

4 (8)
95 (95)
80 (80)
11 (11)

2 . . . . . . . . M3 M0 & M3 17 2 Same as in experiment 1 0.38
2.11
8.44

16.88

61
93
99
99

80
100
100

99

10 (17)
91 (92)
99 (99)
99 (99)

66 (72)
100 (100)
100 (100)

99 (99)
105.5 31 58 31 (31) 58 (58)

3 . . . . . . . . M3 M0 & M3 6 2 Same as in experiment 1,
except v2 5 4.739

0.11
1.1

11

39
85
48

82
100

43

3 (4)
81 (83)
48 (48)

43 (59)
100 (100)

43 (43)

4 . . . . . . . . M3 M0 & M3 5 5 v0 5 0.049, p0 5 0.838;
v1 5 0.849, p1 5 0.142;
v2 5 4.739, p2 5 0.020

0.91
9.1

18.2

72
78
70

97
97
83

28 (43)
78 (78)
70 (70)

93 (95)
97 (97)
83 (83)

5 . . . . . . . . M8 M7 & M8 6 2 p 5 0.572, q 5 2.172;
p0 5 0.943;
v 5 2.081, p1 5 0.057

0.11
1.1

11

60
78
55

58
96
60

0 (0)
10 (21)

2 (10)

0 (2)
65 (77)
28 (36)

6 . . . . . . . . M3 M7 & M8 6 2 Same as in experiment 1 0.11 60 56 0 (0) 1 (3)
1.1

11
79
61

94
41

4 (13)
0 (1)

48 (69)
1 (4)

7 . . . . . . . . M8 M0 & M3 6 2 Same as in experiment 5 0.11
1.1

11

37
78
51

53
96
35

1 (2)
69 (72)
51 (51)

5 (11)
96 (96)
35 (35)

NOTE.—Codon frequencies from the vertebrate b-globin gene were used in all experiments except experiment 4, where those from the HIV-1 pol gene were
used. Simulation parameters representing positive selection are indicated in bold.

crete), with used to test significance. If were the2 2x x4 4
correct null distribution, H0 would be rejected (type I
error) in 5% of the replicates at the a 5 0.05 signifi-
cance level and in 1% of the replicates at a 5 0.01.
However, the regularity conditions for the x2 approxi-
mation are not satisfied. Results of table 2 (experiments
A–C) suggest that the null hypothesis was rejected less
often than allowed by the significance level. In most
cases, the estimated type I error rate was 0 for a 5 0.05
(table 2). Even at a 5 0.1, the estimated probability of
rejecting the null hypothesis never exceeded 6% and
was often much lower than the expected 10% (results
not shown). Thus, use of to compare M0 and M32x4

makes the LRT conservative.
The shapes of the 2D, distribution were similar for

all parameter combinations in experiments A–C, in
which the LRT compared M0 (one-rate) against M3
(discrete). One example is shown in figure 2A for the
combination N 5 500 and S 5 1.1 in experiment A. The
simulated distribution has a skewed L-shape, while 2x4

has a peak in the middle with a long tail to the right.
The two distributions are very different. At very low
sequence divergence (S 5 0.11 in experiment A), there
was a substantially higher peak near 2D, 5 0, such that
M0 was rejected even less often and the LRT was even
more conservative. Short sequences had an effect sim-
ilar to that of low divergence, and the LRT was more
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FIG. 2.—Comparison of the x2 distribution with the distribution
of the likelihood ratio test (LRT) statistic 2D, in 500 simulated rep-
licates. A, The LRT compares M0 (one-ratio) and M3 (discrete) for N
5 500 and S 5 1.1 (table 2, experiment A). B, The LRT compares
M7 (beta) and M8 (beta&v) for N 5 500 and S 5 1.1 (table 2, ex-
periment D).

FIG. 3.—Accuracy of the asymptotic theory for the likelihood ratio
test of H0: v 5 1 against H1: v ± 1. One v ratio (model M0) is assumed
for all sites in both H0 and H1. Five hundred data sets were simulated
using parameters taken from experiment A of table 2, except that v 5
1. The six-taxon tree of figure 1A and the codon frequencies from the
vertebrate b-globin gene were used. The tree length is S 5 1.1 substi-
tutions per codon along the tree. The sequence length is N 5 50 codons.
A, Comparison of with the simulated distribution of 2D,. The two2x1

distributions are not significantly different from each other. B, The dis-
tribution of maximum-likelihood estimates of v under H1.conservative in data sets of 100 codons than in data sets

of 500 codons (results not shown). The number of taxa
did not appear to affect the shape of the distribution.

We simulated data sets under M7 (beta) in order to
check whether the approximation was reliable for2x2
comparing M7 (beta) and M8 (beta&v). ML estimation
under M7 and M8 is time-consuming; hence, only three
parameter combinations were used (experiment D in ta-
ble 2). For S 5 0.11, M7 was never rejected at a 5
0.05, whereas for S 5 1.1 and S 5 11, M7 was rejected
approximately as often as expected from the significance
level a when a 5 0.01, 0.05, and 0.1. Figure 2B com-
pares the distribution of the 2D, statistic with for the2x2
combination N 5 500 and S 5 1.1. The match is not
good, and the simulated distribution is left-skewed.
Therefore, use of the makes the LRT conservative.2x2
Furthermore, the LRT was even more conservative for
data sets of highly similar sequences (S 5 0.11), as in
the comparison of M0 (one-ratio) and M3 (discrete).

The reliability of the x2 approximation could have
been affected by both the boundary problem and a small
sample size. To distinguish between these two factors, we
conducted a simple experiment free from the boundary
problem. One v ratio was assumed for all sites (M0), and
the hypothesis H0: v 5 1 was tested against the alter-
native H1: v ± 1. The LRT statistic 2D, was compared
with . The tree in figure 1A was used, and the param-2x1
eters (with the exception of v) were the same as in ex-

periment A (table 2). The distribution of 2D, fitted the
expected distribution for all values of S and N. Figure2x1
3A shows one case where the tree length S 5 1.1 and the
sequence length was only N 5 50 codons. It is remark-
able that the x2 distribution appears reliable for such short
sequences. An equally good fit was observed for N 5
100. Data sets of 50 codons with S 5 0.11 were not
analyzed, as such data carry little information and cause
convergence problems. These results are compatible with
those of Zhang (1999), who found in nucleotide-based
simulations that the x2 approximation is reliable in fairly
small data sets. Besides the x2 approximation to the LRT
statistic, asymptotic theory also predicts that ML esti-
mates of parameters are normally distributed (e.g., Stuart,
Ord, and Arnold 1999, pp. 57–59). For N 5 50, the dis-
tribution of was left-skewed (fig. 3B), and in 47% ofv̂
the replicates, was greater than 1. The mean of thev̂
distribution was 1.09, indicating that the ML estimate in-
volves a positive bias in small samples (Yang and Nielsen
2000). This pattern was found to be typical for small
samples. With an increase of N, the distribution looked
much more concentrated and symmetrical. Compared
with the x2 approximation to the LRT statistic, the normal
approximation to ML parameter estimates appeared to re-
quire larger samples to be reliable.
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To examine the performance of the LRT on a neu-
tral gene, we also applied the LRT comparing M0 and
M3 to data sets simulated under M0 (one-rate) with v
5 1. The parameter settings were the same as in figure
3 except that the sequence length was N 5 500. In 72%
of the replicates, estimates of at least one of the v ratios
under M3 were greater than 1, indicating positive selec-
tion. However, in most of them, the LRT was insignif-
icant, and the type I error rate was only 0.004 at a 5
0.05. Thus, the LRT was reliable.

Power Analysis

Results obtained from simulations examining the
power of the LRT are summarized in table 3. In exper-
iment 1, we simulated data under M3 (discrete) using a
six-taxon tree and analyzed them using M0 (one-ratio)
and M3 (discrete). Both P1 (probability of parameter
estimates indicating positive selection) and P1s (power
of the LRT) were consistently higher when N 5 500
than when N 5 100. This effect of the sequence length
was expected. The level of sequence divergence had a
significant effect on the power of the test. At low se-
quence divergence (S 5 0.11), ML parameter estimates
under M3 suggested positive selection (P1) in 33 data
sets for N 5 100 and in 48 data sets for N 5 500 (table
3). However, in only a few of these cases was the evi-
dence statistically significant (P1s). For example, at a 5
0.05, the LRT was significant in only one case for N 5
100 and in only eight cases for N 5 500 (table 3). Note
that S 5 0.11 means that the sequences are highly sim-
ilar, with 2.4% of total divergence along the tree at a
nonsynonymous site (dN 5 0.024) and 7.8% of diver-
gence at a synonymous site (dS 5 0.078). The transfor-
mation from tree length S to dN and dS can be made
using the relationships S 5 3dSpS 1 3dN(1 2 pS), and
dN/dS 5 (e.g., Yang and Nielsen 2000). Here, the av-v̄
erage v ratio 5 0.018 3 0.386 1 0.304 3 0.535 1v̄
1.691 3 0.079 5 0.303 (see table 3), and the proportion
of synonymous sites is pS 5 23.84% for the vertebrate
b-globin gene (Yang et al. 2000). Increasing sequence
divergence to the intermediate level (S 5 1.1) yielded a
substantial increase in both P1 and P1s. For example,
with N 5 500, parameter estimates in P1 5 95% of
replicates suggested positive selection, and in all of
them, the LRT was significant at the 1% level (P1s,0.05
5 P1s,0.01 5 95%) (table 3). The power decreased when
S was increased to 11 (e.g., for N 5 500, P1 5 80%
and P1s,0.05 5 80%). At S 5 55 nucleotide substitutions
per codon, both P1 and P1s decreased dramatically (e.g.,
for N 5 500, P1 5 11% and P1s,0.05 5 11%). Note that
S 5 55 represents unrealistically high sequence diver-
gence, with dN 5 11.8 substitutions per nonsynonymous
site and dS 5 39.1 substitutions per synonymous site
along the tree. In summary, the power increased with
increasing S, peaked at a medium level of S, and fell
when sequences became highly divergent.

In experiment 2, we examined the effect of increas-
ing the number of taxa to 17 (table 3). Here, P1s was
very high for most values of S and N. For example, even
for the short sequences (N 5 100) of rather low diver-

gence (S 5 2.11), ML estimates suggested positive se-
lection in 93 data sets, with most of these cases being
statistically significant (P1s,0.01 5 91%). The LRT reached
full power (P1s 5 100%) for long sequences and realistic
S in the range 2.11–8.44. As in experiment 1, the power
increased with the initial increase of S, peaked at a me-
dium level of S, and thereafter decreased with a further
increase of S. For example, increasing S to an unrealis-
tically high value (S 5 105.5) for the short sequences (N
5 100) resulted in P1 5 31% and P1s,0.05 5 31%.

Experiment 3 examined the influence of the
strength of positive selection; v2 was increased from
1.69 in experiment 1 to 4.74 (table 3). As expected,
there was a rise in the power of the LRT as compared
with experiment 1. For every combination of S and N,
the power in experiment 3 was higher than the corre-
sponding result in experiment 1. Once again the power
was low for either very similar or highly divergent se-
quences and was highest at intermediate levels of se-
quence divergence (around S 5 1.1). As before, increas-
ing sequence length from 100 to 500 yielded an increase
in the power.

Experiment 4 examined the power of the LRT us-
ing the tree topology, simulation parameters, and codon
frequencies derived from the HIV-1 pol gene (Yang et
al. 2000) (table 3). As before, the power of the LRT was
higher for longer sequences. Moreover, the power in-
creased with the increase of S, peaked, and then de-
creased with a further increase in S. However, the level
of sequence divergence at which the power began to fall
differed from previous experiments. To enable a quali-
tative comparison, we used the average number of nu-
cleotide changes per codon per branch as a relative mea-
sure of sequence divergence. This is S/(2T 2 3), where
2T 2 3 is the number of branches of an unrooted tree
of T taxa. Unlike experiment 1, in which the highest
power was observed at the medium level of sequence
divergence (S 5 1.1 and T 5 6, or S/(2T 2 3) 5 0.12),
here the highest power was obtained for relatively di-
vergent data sets (S 5 9.1 and T 5 5, or S/(2T 2 3) 5
1.3). Hence, the optimal sequence divergence depends
on the properties of the data and appears to be within
the medium-to-high range.

In experiment 5, we simulated data under M8
(beta&v) and analyzed them with M7 (beta) and M8
(beta&v) (table 3). Although derived from M8 oftenv̂
suggested positive selection, the power of the LRT was
substantially lower than in experiment 1. For example,
when N 5 500 and S 5 1.1, the power was P1s,0.05 5
95% in experiment 1 but only 77% in experiment 5.
This difference is due to the fact that M0 is less realistic
than M7 and easier to reject (see below).

In experiment 6, we examined whether the LRT was
sensitive to the true distribution of v by simulating data
under M3 (discrete) and analyzing them with M7 (beta)
and M8 (beta&v) (table 3). The results were compared
with those of experiment 1, where the data were analyzed
with M0 and M3. The null model M0 was rejected much
more frequently than the null model M7. For example,
for the combination N 5 500 and S 5 1.1, the power
was P1s,0.01 5 100% in experiment 1 and 48% in exper-
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iment 6. Comparison between M7 and M8 is clearly a
more stringent test of positive selection than comparison
between M0 and M3. In contrast to P1s, P1 was often
higher in experiment 6 than in experiment 1 except for
the combination N 5 500 and S 5 11 (table 3). In sum,
parameter estimates under M8 tend to suggest positive
selection more often than M3, but the LRT based on M8
is significant less often than the LRT based on M3.

In experiment 7, we simulated data under M8
(beta&v) and analyzed them using M0 (one-ratio) and
M3 (discrete) (table 3). The results were compared with
those of experiment 5, in which the data were analyzed
using models M7 (beta) and M8 (beta&v). We observed
the same pattern as in the comparison between experi-
ments 1 and 6. First, the null model M0 (one-ratio) was
rejected more frequently than the null model M7 such
that the power P1s was always higher for the LRT com-
paring M0 and M3 than for the LRT comparing M7 and
M8. For example, for N 5 500 and S 5 1.1, the power
was P1s,0.01 5 100% in experiment 7 and 65% in exper-
iment 5 (table 3). Second, the proportion of replicates in
which positive selection was indicated by parameter es-
timates (P1) was generally higher under M8 than under
M3 (table 3).

Discussion
Accuracy of the x2 Approximation

If the type I error rate of a test is greater than a, the
test is liberal and unreliable. If the type I error rate is less
than a, the test is conservative and might lack power. It
would be best to use the correct distribution of the LRT
statistic 2D, under the null hypothesis, or its close ap-
proximation, as then the type I error rate would match
the significance level a. However, finding such a distri-
bution for the two LRTs considered in this paper is prob-
lematic, mainly because of the boundary problem.

A number of special cases of LRTs under nonstan-
dard conditions are discussed in Self and Liang (1987),
which remains the latest reference on this issue. If only
one parameter is on the boundary of the parameter
space, the LRT statistic is approximately distributed as
a mixture ½ 1 ½ if no other parameter is tested2 2x x0 1
(case 5 of Self and Liang 1987). Here, is the distri-2x0
bution that takes the value 0 with probability 1. An ex-
ample is the comparison of the one-rate and gamma-
rates models of among-sites rate variation. In this case,
the null model (one-rate) is equivalent to fixing the
shape parameter a of the gamma distribution at infinity
(Yang 1996). Recent simulations (Goldman and Whelan
2000; Ota et al. 2000) showed that the LRT statistic fits
the above mixture distribution very well even when the
sample size is not very large. However, increasing the
number of boundary parameters complicates the case
and, in some situations, might cause the LRT statistic
not to be expressible as a mixture of x2 distributions
(e.g., case 8 of Self and Liang 1987). Moreover, the
existence of a consistent ML estimator is one of the
main assumptions for the LRT statistic to asymptotically
converge to the x2 or its mixture distributions (Self and
Liang 1987). In the LRTs considered in this paper, some

parameters are not estimable, so none of the known dis-
tributions or their mixtures are expected to apply.

Consequently, we used to compare M0 (one-2x4
ratio) and M3 (discrete), and we used to compare M72x2
(beta) and M8 (beta&v), as suggested by Yang et al.
(2000). This approach makes the LRT conservative and
leads to loss of power. This might be particularly im-
portant for data sets of highly similar sequences, as fail-
ure to detect positive selection might be due to the lack
of power of the LRT. Note that when we examined the
accuracy of the LRT (table 2), we considered the statis-
tic 2D, only, but when we examined the power of the
test P1s (table 3), we further required that parameter
estimates in the alternative model (M3 or M8) suggested
positive selection. Thus, the LRTs used in detecting pos-
itive selection as examined in table 3 are even more
conservative than the results of table 2 suggest.

Besides the boundary problem, the x2 approxima-
tion can also be affected by insufficient sample sizes.
However, our simulation with no boundary problem, as
well as previous studies (e.g., Whelan and Goldman
1999; Zhang 1999), suggests that even with relatively
short sequences (e.g., with 50 codons), the distribution
of 2D, fits the x2 quite well. Hence, analysis of short
sequences appears feasible, although it might be difficult
to get significant results. We should note that when the
x2 approximation is unreliable, Monte Carlo simulation
can be used to obtain the correct null distribution (Gold-
man 1993).

Power of LRT

Our simulations show several patterns of the power
function, all of which are intuitively justified. Longer
sequences exhibit an increased probability of detecting
adaptive evolution, while for short sequences the power
can be almost 0%. Very similar sequences carry little
information, causing low power of the LRT. The power
increases with sequence divergence until it reaches its
maximal value, after which further increases of se-
quence divergence lead to reduced power. With multiple
substitutions at the same site, the most recent changes
might overwrite previous substitutions, causing loss of
information. Thus, very divergent sequences do not con-
tain much information.

The most efficient way of obtaining high power
appears to be to use many sequences. Adding more se-
quences causes a spectacular rise in power, even when
the sequence divergence is low. Increasing the strength
of positive selection also leads to improved power. In-
creasing the proportion of positively selected sites
should have a similar effect, although no simulations
were performed to examine it.

Differences Between the Two LRTs

We obtained significant results much more often
with the LRT that compares M0 (one-ratio) and M3 (dis-
crete) than with the LRT that compares M7 (beta) and
M8 (beta&v). We note that M7 is a very flexible null
model and accounts for both neutral and deleterious mu-
tations with 0 , v , 1. As a result, the M7-M8 com-
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parison is a very stringent test of positive selection. The
M0-M3 comparison, however, is more a test of variable
selective pressure among sites (indicated by the v ratio)
than a test of positive selection. Since the selective pres-
sure seems to be variable among sites in every func-
tional protein, M0 is a very unrealistic model. For ex-
ample, in all 10 data sets analyzed by Yang et al. (2000),
M0 was easily rejected when compared with M3, al-
though in four of them positive selection was not de-
tected. Thus, if by chance parameter estimates under M3
indicate positive selection, we might falsely claim pos-
itive selection using the LRT comparing M0 and M3.
We performed one such simulation experiment where
the assumption of M0 was violated. We simulated 500
replicate data sets, each with N 5 500 codons, using
parameter settings of experiment A in table 2 except that
we used the neutral model (M1) for the v distribution.
M1 (neutral) assumes two site classes with the v ratios
v0 5 0 and v1 5 1. We set the proportions for the two
site classes at p0 5 0.5 and p1 5 0.5. The simulated
data were then analyzed using M0 and M3. In 75% of
replicates, at least one of the three v parameters in M3
was estimated to be greater than 1, and the LRT was
also significant, leading to false detection of positive
selection. The LRT comparing M7 and M8 applied to
the same data sets were found to be robust to violation
of assumptions and falsely detected positive selection in
only 5% of the replicates at a 5 0.05. Furthermore, if
the data were analyzed using M1 (neutral) and M3 (dis-
crete), the false-positive rate was 0.02 at a 5 0.05. Fol-
lowing Yang et al. (2000), we thus recommend that mul-
tiple models and tests be used in real data analysis and
that caution be exercised when only the M0-M3 com-
parison suggests positive selection.
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