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This chapter reviews statistical methods for detecting adaptive molecular evolution by comparing
synonymous and non-synonymous substitution rates in protein-coding DNA sequences. A Markov
process model of codon substitution is introduced first, which forms the basis for all later discussion
in this chapter. We then consider the case of comparing two sequences to estimate the numbers of
synonymous (ds) and non-synonymous (dy) substitutions per site. The maximum likelihood (ML)
method and a number of ad hoc methods are evaluated. The rest of the chapter deals with joint
analyses of multiple sequences on a phylogeny. We review Markov models of codon substitution
that allow the non-synonymous/synonymous rate ratio to vary among branches in a phylogeny or
among amino acid sites in a protein. Those models can be used to construct likelihood ratio tests
to identify evolutionary lineages under episodic Darwinian selection or to infer critical amino acid
in a protein under diversifying selection. I use real data examples to demonstrate the application
of the methods. The chapter finishes with a discussion of the limitations of current methods.

12.1 INTRODUCTION

While Darwin’s theory of evolution by natural selection is accepted by biologists for
morphological traits, the importance of selection in molecular evolution has been much
debated. The neutral theory (Kimura, 1983) maintains that most observed molecular vari-
ation (both diversity within species and divergence between species) is due to random
fixation of mutations with fitness effects so small that random drift rather than natural
selection dominates their fate. Population geneticists have developed a number of tests
of neutrality (see Wayne and Simonsen, 1998, for a review). Those tests often easily
reject the strictly neutral model when applied to real data. However, they are often
unable to distinguish different forms of natural selection, or to demonstrate molecular
adaptation.

Up to now, the most convincing evidence of adaptive molecular evolution appears
to have come from comparison of synonymous (silent) and non-synonymous (amino-
acid-changing) substitution rates in protein-coding genes. We define the synonymous and
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non-synonymous rates (ds and dy) as the numbers of synonymous and non-synonymous
substitutions per site, respectively. The ratio of the two rates, w = dn/ds, then measures
selective pressure at the protein level. If selection has no effect on fitness, non-synonymous
mutations will be fixed at the same rate as synonymous mutations, so that dy = ds and
w = 1. If non-synonymous mutations are deleterious, purifying selection will reduce their
fixation rate, so that dy <ds and w < 1. If non-synonymous mutations are favoured
by Darwinian selection, they will be fixed at a higher rate that synonymous mutations,
resulting in dy > ds and w > 1. A significantly higher non-synonymous rate than the
synonymous rate is thus evidence for adaptive evolution at the molecular level. This
criterion has been used to identify several cases of positive selection, including the human
major histocompatibility complex (Hughes and Nei, 1988), primate stomach lysozyme
(Messier and Stewart, 1997), abalone sperm lysin (Lee et al., 1995), vertebrate visual
pigments (Miyamoto and Miyamoto, 1996), and HIV-1 env genes (Bonhoeffer et al.,
1995; Mindell, 1996; Yamaguchi and Gojobori, 1997). While still rare, those cases provide
important insights into the mechanisms of molecular evolution.

The w ratio has almost always been calculated as an average over all codons (amino
acids) in the gene and over the entire evolutionary time that separates the sequences. The
criterion that such an average w is greater than one is a very stringent one for detecting
positive selection (Sharp, 1997; Crandall et al., 1999). Biological considerations suggest
that many amino acids in a protein are under strong functional constraints (with w close
to zero). Many proteins also appear to be under purifying selection during most of the
evolutionary history. Adaptive evolution most likely occurs at a few time points and
affects only a few amino acids (e.g. Stewart et al., 1987). In such a case, the w ratio
averaged over time and over sites will not be greater than 1 even if Darwinian selection
has operated. For example, Endo et al. (1996) performed a large-scale database search
and identified genes for which dy > ds in at least half of the pairwise comparisons as
potential targets for positive selection. Their analysis identified 17 proteins out of 3595, a
proportion of only 0.47%. The scarcity of well-established cases of molecular adaptation
appears partly due to the lack of power of the detection methods.

A remedy for this problem is to examine the w ratio over a short evolutionary time
period or in a short stretch of the gene such as functionally important domains. For
example, Messier and Stewart (1997) used inferred ancestral genes to calculate the dy
and dg rates for each branch in the phylogeny and identified two lineages that went
through positive selection. Hughes and Nei (1988) found that the w ratio is greater than 1
in a 57-codon region of the major histocompatibility complex that codes for the antigen-
recognition site, although the ratio is less than 1 in other regions of the gene. Recently,
likelihood models have been developed that account for variable w ratios among branches
in the phylogeny (Yang, 1998; Yang and Nielsen, 1998). Such models can be used to
construct likelihood ratio tests of adaptive evolution along specific lineages, and have the
advantage of not relying on inferred ancestral sequences. Models have also been developed
that allow the o ratio to vary among amino acid sites (Nielsen and Yang, 1998; Yang
et al., 2000). Those models do not require knowledge of functionally important domains
and may be used to test for the presence of critical amino acids under positive selection,
and, when they exist, to identify them.

This chapter reviews statistical methods for phylogenetic analysis of protein-coding
DNA sequences, with a focus on comparing synonymous and non-synonymous substi-
tution rates to understand the mechanisms of sequence evolution. First, the probability
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theory of the Markov process of codon substitution is briefly introduced. This theory
forms the basis for maximum likelihood (ML) estimation of the dy and dy rates between
two sequences as well as ML analysis of multiple sequences on a phylogeny. I will
discuss different methods for comparing two sequences to estimate dy and ds. Besides
ML (Goldman and Yang, 1994), there are about a dozen ad hoc methods for this estima-
tion (e.g. Miyata and Yasunaga, 1980; Nei and Gojobori, 1986; Li et al., 1985; Li, 1993;
Ina, 1995; Yang and Nielsen, 2000). These will be evaluated. The discussion will then
turn to models that account for variable w ratios among lineages and among sites, and
use real data examples to explain their use in ML analysis. This chapter uses ML as the
general framework. ML is known to have nice statistical properties, and indeed offers
insights into ad hoc methods as well, which may not be based on an explicit probabilistic
model. I will provide a brief introduction to ML estimation and the likelihood ratio test
in Section 12.3. For a detailed and rigorous treatment, the reader may consult a statistics
textbook such as Edwards (1992), Kalbfleisch (1985), or Stuart et al. (1999).

12.2 MARKOV MODEL OF CODON SUBSTITUTION

In molecular phylogenetics, we use a Markov process to describe the change between
nucleotides, amino acids, or codons over evolutionary time. See Yang (1994), Swofford
et al. (1996), and Lid and Goldman (1998) for use of Markov processes to model nucleo-
tide substitution. In this chapter, our focus is the analysis of protein-coding DNA sequen-
ces, and the unit of evolution is a codon in the gene. We use a Markov process to describe
substitutions between the sense codons. We exclude stop codons as they are usually not
allowed in a protein. With the ‘universal’ genetic code, there are 61 sense codons (and 3
stop codons) and thus 61 states in the Markov process.

The Markov process is characterized by a rate (generator) matrix Q = {g;;}, where g;;
is the substitution rate from sense codon i to sense codon j(i # j). Formally, g;;At is
the probability that the process is in state j after an infinitesimal time At, given that it
is in state { at time ¢. The basic model we use in this chapter is simpler than the model
of Goldman and Yang (1994) but more complex than that of Muse and Gaut (1994). It
accounts for the transition/transversion bias, unequal synonymous and non-synonymous
substitution rates, and biased base/codon frequencies. Mutations are assumed to occur
independently among the three codon positions, and so only one position is allowed to
change instantaneously. Since transitions (changes between T and C and between A and
G) are known to occur more frequently than transversions (all other changes), we multiply
the rate by the transition/transversion rate ratio, «, if the change is a transition. Typical
estimates of this parameter are 1.5-5 for nuclear genes and 5-30 for mitochondrial genes.
To account for the codon usage bias, we let 7r; be the equilibrium frequency of codon j
and multiply substitution rates to codon j by ;. We can either use all 7r; as parameters,
with 60 (= 61 — 1) free parameters used, or calculate 7; from base frequencies at the
three codon positions, with 9 = 3 x (4 — 1) free parameters used.

To account for unequal synonymous and non-synonymous substitution rates, we multiply
the rate by w if the change is non-synonymous; w is thus the non-synonymous/synonymous
rate ratio, also termed the ‘acceptance rate’ by Miyata et al. (1979). In models we consider
here, the relationship w = dy/ds holds. For most genes, estimates of w are much less than
1. It is important to note that parameters k and rr; characterize processes at the DNA level
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(which we call ‘mutations’, following Ina, 1995), while selection at the protein level has
the sole effect of modifying parameter w.
Formally, the substitution rate from codon i to codon j (i # j) is

0, if i and j differ at two or three codon positions,
um;, if i and j differ by a synonymous transversion,
qij = { Mkmy,  if i and j differ by a synonymous transition, (12.1)

uwmn;, if i and j differ by a non-synonymous transversion,
uwkrw;, if i and j differ by a non-synonymous transition.

For example, consider substitution rates to codon CTG (which encodes amino acid Leu).
We have qcre, crg = uncrg since the CTC (Leu) — CTG (Leu) change is a synony-
mous transversion, grrg, cre = pUxncre since the TTG (Leu) - CTG (Leu) change is a
synonymous transition, gerg, ctg = pwnerg since the GTG (Val) - CTG (Leu) change
is a non-synonymous transversion, and gocg, cré = Ukwmerg since the CCG (Pro) —
CTG (Leu) change is a non-synonymous transition. Also grrr,cre = 0 since codons TTT
and CTG differ at two positions.

The diagonal elements of the rate matrix Q = {g;;} are determined by the mathematical
requirement (e.g. Grimmett and Stirzaker, 1992, p. 241) that each row in the matrix sums
to zero:

Zqij =0, for any i. (12.2)

J

Furthermore, molecular sequence data do not allow separate estimation of the rate (u)
and time (¢), and only their product (ut) can be identified. We thus fix the rate y such
that the expected number of nucleotide substitutions per codon is one

=Y mga=>m> qy=1 (12.3)
i i i
This scaling means that time ¢ is measured by distance, the expected number of (nucleo-
tide) substitutions per codon. The transition probability matrix over time ¢ is

P@) = {pij(0)} = %, (12.4)

where p;;(t) is the probability that codon i will become codon j after time z. As long
as the rate matrix Q can be constructed, P(r) can be calculated for any ¢ using matrix
diagonalization or Taylor expansion. Note that over any time interval, there is a non-zero
probability that any codon i will change to any other codon j, even if they are separated
by two or three nucleotide differences; that is, for any ¢ > 0, p;;(¢) > 0 for any codons i
and j.

Lastly, the model specified by equation (12.1) is time-reversible; that is, 7;q;; = 7;q;;
for any i and j. This means that

7; pij(t) = m;p(t), for any ¢, i and j. (12.5)

Note that m; p;;(t) measures the amount of change from codons i to j over time ¢, while
7 pji(t) measures the change in the opposite direction. Equation (12.5), known as the
‘detailed balance’, means that we expect to see equal numbers of changes from i to j and
from j to i. I will mention some implications of reversibility in later sections.
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12.3 ESTIMATION OF SYNONYMOUS AND NON-SYNONYMOUS
SUBSTITUTION RATES BETWEEN TWO SEQUENCES

12.3.1 Ad hoc Methods

We want to estimate the number of synonymous substitutions per synonymous site (ds)
and the number of non-synonymous substitutions per non-synonymous site (dy) between
two protein-coding DNA sequences. In the past two decades, about a dozen ad hoc
methods have been proposed for this estimation. Those methods are intuitive and involve
treatment of the data that cannot be justified rigorously. Important basic concepts were
developed in the early 1980s (Miyata and Yasunaga, 1980; Perler et al., 1980; Gojobori,
1983; Li et al., 1985; see also Ina, 1995, for a recent discussion), which we explain
here with a hypothetical example. The critical question is by how much natural selection
at the protein level has increased or decreased the non-synonymous substitution rate.
Suppose the gene has 300 codons and we observe 5 synonymous and 5 non-synonymous
differences (substitutions) between the two sequences. Can we conclude that synonymous
and non-synonymous substitution rates are equal with w = 1? The answer is ‘No’. An
inspection of the genetic code table suggests that all changes at the second codon position
and most changes at the first position are non-synonymous, and only some changes at the
third position are synonymous. As a result, we do not expect to see equal proportions of
synonymous and non-synonymous mutations even if there is no selection at the protein
level. Indeed, if mutations from any one nucleotide to any other occur at the same rate, we
expect 25.5% of mutations to be synonymous and 74.5% to be non-synonymous (Yang
and Nielsen, 1998). If we use those proportions, it is clear that selection at the protein
level has decreased the fixation rate of non-synonymous mutations by about three times,
since w = (5/5)/(74.5/25.5) = 0.34. There are 900 nucleotide sites in the sequence, so
the numbers of synonymous and non-synonymous sites are S = 900 x 25.5% = 229.5
and N = 900 x 74.5% = 670.5, respectively. We then have ds = 5/229.5 = 0.0218 and
dn = 5/670.5 = 0.0075.

All ad hoc methods roughly follow the above intuitive procedure (for reviews, see Ina,
1996; Yang and Nielsen, 2000). They involve three steps. The first step is to count the
numbers of synonymous (S) and non-synonymous (N) sites in the two sequences; that
is, the number of nucleotide sites in the sequence is classified into the synonymous and
non-synonymous categories, measuring mutational opportunities. This step is complicated
by factors such as transition/transversion rate bias and base/codon frequency bias, both of
which are ignored in our hypothetical example. The second step is to count the numbers
of synonymous and non-synonymous differences between the two sequences; that is, the
observed differences between the two sequences are classified into the synonymous and
non-synonymous categories. This is straightforward if the two compared codons differ
at one codon position only. When they differ at two or three codon positions, there
exist four or six pathways from one codon to the other. The multiple pathways may
involve different numbers of synonymous and non-synonymous differences and should
ideally be weighted appropriately, although most ad hoc methods use equal weighting.
The third step is to apply a correction for multiple substitutions at the same site since an
observed difference may be the result of two or more substitutions. In our hypothetical
example, we ignored the possibility of multiple hits and treated the observed differ-
ences as substitutions. All ad hoc methods have used multiple-hit correction formulas
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based on nucleotide-substitution models, which assume that each nucleotide can change
to one of three other nucleotides. When those formulas are applied to synonymous (or
non-synonymous) sites only, this basic assumption of the Markov model is violated.
Nevertheless, such corrections appear usable when the sequence divergence is low.

The method of Miyata and Yasunaga (1980) and its simplified version (Nei and Gojobori,
1986) are based on the nucleotide-substitution model of Jukes and Cantor (1969), and
ignore the transition/transversion bias or base/codon frequency bias. As transitions are
more likely to be synonymous at the third positions than transversions are, ignoring the
transition/transversion rate bias leads to underestimation of the number of synonymous
sites and overestimation of the number of non-synonymous sites. This effect is well known,
and a number of attempts have been made to account for different transition and transver-
sion rates in counting sites and differences (Li et al., 1985; Li, 1993; Pamilo and Bianchi,
1993; Comeron, 1995; Ina, 1995). The effect of biased base/codon frequencies has not been
appreciated until recently (Moriyama and Powell, 1997). Yang and Nielsen (1998; 2000)
found that extremely biased base/codon frequencies can have devastating effects on esti-
mation of dy and ds, even outweighing the effect of the transition/transversion bias. Yang
and Nielsen (2000) incorporated both the transition/transversion bias and the base/codon
frequency bias in their ad hoc method.

12.3.2 Maximum Likelihood Estimation

Maximum likelihood is a powerful and flexible methodology for estimating parameters
and testing hypotheses. Since the data are observed, we view the probability of observing
the data as a function (the likelihood function) of the unknown parameters. The likeli-
hood or log-likelihood function is our inference tool and contains all information about
the parameters in the model. We estimate the unknown parameters by maximizing the
likelihood function. Furthermore, the log-likelihood value under a model measures the
fit of the model to data, and we compare two models by comparing their log-likelihood
values. This is known as the likelihood ratio test. When two models are nested, twice the
log-likelihood difference between the two models can be compared with the x? distri-
bution with the degree of freedom given by the difference in the number of parameters
between the two models. The x? approximation to the likelihood ratio statistic relies on
large sample sizes (long sequences). How large the sample should be for the x? approx-
imation to be reliable depends on the specific model being tested as well as other factors
such as sequence divergence. In a few cases of likelihood ratio tests applied to phyloge-
netics examined by computer simulation, the x> approximation appears very good with
as few as 100 or 200 nucleotides in the sequence. When the sequences are too short or
when the two models are not nested, the correct distribution of the test statistic can be
derived by Monte Carlo simulation (Goldman, 1993).

Below we describe the ML method for estimating dy and ds of Goldman and Yang
(1994). The data are two aligned protein-coding DNA sequences. As a numerical example,
we will use the human and mouse acetylcholine receptor o genes. The first 15 codons of
the gene are as follows:

Human GAG CCC TGG CCT CTC CTC CTG CTC TTT AGC CTT TGC TCA GCT GGC ...
Mouse GAG CTC TCG ACT GTT CTC CTG CTG CTA GGC CTC TGC TCC GCT GGC ...

We assume that different codons in the sequence are evolving independently according
to the same Markov process. As a result, data at different sites are independently and
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Figure 12.1 The tree for two sequences, with the codons x;, x, for one site shown. Codon-
substitution models considered in this chapter are all time-reversible and do not allow identification
of the root. As a result, (a) parameters #; and ¢, cannot be estimated separately, and (b) only their
sum ¢ = t; + t, is estimable,

identically distributed. Suppose there are n sites (codons) in the gene, and let the data at
site k& be X, = {x1, x2}, where x; and x; are the two codons in the two sequences at that
site (see Figure 12.1(a)). In the above example, the data at site A = 2 are x; = CCC and
xp = CTC. The probability of observing data x at site & is

61
F&R) = i Pioy (01) Py (22)- (12.6)
k=1

The term in the sum is the probability that the ancestor has codon k and the two current
species have codons x; and x; at the site. This probability is equal to the prior probability
that the ancestor has codon k, given by the equilibrium frequency =, multiplied by the
two transition probabilities along the two branches of the tree (Figure 12.1(a)). Since the
ancestral codon k is unknown, we sum over all possibilities for k. Time reversibility of
the Markov process implies that

61 61
FOR =D 7n Pk (0 Py (2) = Ty 3, Prse(81) Py (12) = Ty Py (11 + 22). (12.7)

The last step follows from the Chapman—-Kolmogorov theorem (e.g. Grimmett and
Stirzaker, 1992, pp. 239-246). Thus the statistical behaviour of the data is the same
whether we consider the two sequences to be descendants of a common ancestor
(as in Figure 12.1(a)) or we consider one sequence to be ancestral to the other (as
in Figure 12.1(b)). In other words, the root of the tree cannot be identified, and
only t =1t + ¢, can be estimated, but not #; and #, individually. Parameters in the
model are the sequence divergence ¢, the transition/transversion rate ratio «, the non-
synonymous/synonymous rate ratio w, and the codon frequencies ;. The log-likelihood
function is then given by

£,k w) =Y log{f(xs)}. (12.8)

h=1

If some sites have the same data X, the probability f(x) needs to be calculated only once.
An equivalent way of deriving the likelihood function is to note that the data follow a
multinomial distribution with 612 categories corresponding to the 612 possible site patterns
(configurations).
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Figure 12.2 The log-likelihood surface contour as a function of parameters ¢ and w for the
comparison of the human and mouse acetylcholine receptor o genes. The maximum likelihood
method estimates parameters by maximizing the likelihood function. For these data, the estimates
are t = 0.444, w = 0.059, with optimum log-likelihood £ = —2392.83.

We usually estimate the codon frequencies (r;) by the observed base/codon frequen-
cies. To estimate parameters ¢, ¥, and w, we use a numerical hill-climbing algorithm to
maximize £, since an analytical solution is impossible. Figure 12.2 shows a log-likelihood
surface as a function of ¢ and w for the human and mouse acetylcholine receptor o genes.
The model assumes no transition/transversion bias or codon usage bias (with ¥ = 1 and
mj = 1/61 fixed), and involves two parameters only. This is the model underlying the
method of Miyata and Yasunaga (1980) and Nei and Gojobori (1986).

The dy and ds rates are defined as functions of parameters ¢, k, w, and 7;, and their
ML estimates are simply functions of ML estimates of parameters ¢, k, , and ;. The
following description thus gives both the definitions of dy and ds and also the ML
method for their estimation. The basic idea is the same as explained in our earlier hypo-
thetical example. Here we count sites and substitutions per codon rather than for the
entire sequence. First, note that the sequence divergence ¢ is defined as the number of
nucleotide substitutions per codon. We partition this number into the synonymous and
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non-synonymous categories. We note that

pi= Y maqy (12.9)
i#]

aa,-:ﬂﬂj

and

A=) Ty (12.10)

i#]
aa;Faa;

are the proportions of synonymous and non-synonymous substitutions, respectively, as
05 + p§ = 1 (equation (12.3)). The summation in p§ is taken over all codon pairs i and
Jj (i # j) that code for the same amino acid, while the summation in pf; is taken over
all codon pairs i and j (i # j) that code for different amino acids; aa; is the amino acid
encoded by codon i. The numbers of synonymous and non-synonymous substitutions per
codon are then tpg and tpY, respectively.

Next, we calculate the proportions of synonymous and non-synonymous sites. Let
these be pl and pl. As noted before, these measure the mutational opportunities before
the operation of selection at the protein level, that is, when @ = 1 (Goldman and Yang,
1994; Ina, 1995). They are calculated similarly to equations (12.9) and (12.10), using
the (mutational) transition/transversion rate ratio ¥ and codon frequencies (=;), except
that w = 1 is fixed. We assume there are three nucleotide sites in a codon (see Yang and
Nielsen, 1998, for a discussion of the effect of mutations to stop codons). The numbers
of synonymous and non-synonymous sites per codon are then 3pf and 3p}, respectively.
The numbers of synonymous and non-synonymous substitutions per site are then dg =
tp§/(3pé) and dy = tpf:,/(?»pl{,), respectively. Note that w = dy/ds = (p,i}/p§)/(p,{1/p§),
where the numerator is the ratio of the numbers of (observed) substitutions while the
denominator is the ratio of the (expected) numbers of mutations when w = 1.

While the basic concepts discussed in the hypothetical example underlie both the ML
and the ad hoc methods for estimating dy and ds (and their ratio ), significant differences
exist between the two classes of methods. In the ML method, the probability theory (that is,
calculation of the transition probabilities by equation (12.4)) accomplishes several difficult
tasks in one step: estimating mutational parameters such as «, correcting for multiple
hits, and weighting evolutionary pathways between codons. The Chapman—Kolmogorov
theorem mentioned above states that p;;(t) = >, pu(s)px;(t — s) for any 0 < 5 <1, that
is, the probability that codon i changes to codon j over time ¢ is a sum over all possible
codons (k) at any intermediate time point 5. This theorem ensures that estimation of

sequence divergence ¢ from the likelihood function (equations (12.7) and (12.8)) accounts
for all possible pathways of change between two codons, weighting them appropriately
according to their relative probabilities of occurrence. When we partition the number of
substitutions (¢) into synonymous and non-synonymous categories, we only need to do
it at the level of instantaneous rates (equations (12.9) and (12.10)), where there are no
multiple changes.

In the ad hoc methods, each of the three steps offers a challenge. For example, some
methods ignore the transition/transversion bias. Others take it into account but it has been
difficult to estimate « reliably. Ina (1995) used the third codon positions and Yang and
Nielsen (2000) used so-called fourfold degenerate sites and non-degenerate sites to esti-
mate &, assuming that substitutions at those sites are either not affected or affected equally
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by selection at the protein level. Both methods use nucleotide-based correction formulas
to estimate «, which seem problematic. Use of a limited class of sites also leads to large
sampling errors in the estimates. The steps of counting differences, weighting pathways,
and correcting for multiple hits are extremely complicated, when we want to incorporate
major features of DNA sequence evolution such as the transition/transversion bias and
the base/codon frequency bias (Yang and Nielsen, 2000). Notably, the synonymous and
non-synonymous status of a site changes over time and also with the nucleotides at other
positions of the codon (Muse, 1996). As a result, nucleotide-substitution models used in
ad hoc methods are not capable of dealing with the complexity of the codon-substitution
process.

12.3.3 A Numerical Example and Evaluation of Methods

To see the differences among methods for estimating dy and ds, we compare the human
and mouse acetylcholine receptor o genes, using ML as well as several ad hoc methods
(Table 12.1). The data set is the first (alphabetically) of the 49 genes analysed by Ohta
(1995). The sequence has 456 codons (1368 nucleotides) after the start and stop codons
are removed. With the ML method, we examine the effects of model assumptions. Some
models ignore the transition/transversion rate ratio (with « = 1 fixed) while others account
for it (with « estimated). Some ignore the codon frequency bias (Fequal) while others
account for it to some extent (F1 x 4, F3 x 4, and F61) (see the note to Table 12.1 for
definitions of these models).

Most of these models are nested, and the x? approximation can be used to perform
likelihood ratio tests. For example, we can compare models A and B in Table 12.1 to
test whether there is transition/transversion rate bias. Model A is the null hypothesis
and assumes that transition and transversion rates are equal (x = 1). Model B does not

Table 12.1 Estimation of dy and ds between the human and mouse acetylcholine receptor o
genes.

Model K S dn ds dn/ds(w) £

Ad hoc methods
Nei and Gojobori (1986) 321.2 0.030 0.523 0.058
Li (1993) N/A N/A 0.029 0.419 0.069
Ina (1995) 6.1 408.4 0.033 0.405 0.081
Yang and Nielsen (2000) 2.1 311.2 0.029 0.643 0.045

ML methods
(A) Fequal, k =1 348.5 0.029 0.496 0.059 —2392.83
(B) Fequal, « estimated 2.8 396.7 0.031 0.421 0.073 —-2379.60
(C)F1 x4, k =1 fixed 361.0 0.029 0.513 0.057 —2390.35
(D) F1 x 4, « estimated 2.9 406.5 0.031 0.436 0.071 ~2376.12
(E) F3 x 4, k =1 fixed 281.4 0.029 0.650 0.044 -2317.72
(F) F3 x 4, « estimated 3.0 328.1 0.030 0.545 0.055 —2303.33
(G) F61, k =1 fixed 261.5 0.028 0.736 0.038 —2251.92
(H) F61, « estimated 3.0 319.5 0.030 0.613 0.048 —2239.33

Note: Fequal: equal codon frequencies (= 1/61) are assumed. F1 x 4: four nucleotide frequencies are used to
calculate codon frequencies (3 free parameters). F3 x 4: nucleotide frequencies at three codon positions are
used to calculate codon frequencies (9 free parameters). F61: all codon frequencies are used as free parameters
(60 free parameters). £ is the log-likelihood value. Data are from Ohta (1995) and Yang and Nielsen (1998).
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impose this constraint and has one more free parameter («) than model A. The likeli-
hood ratio statistic, 2A€ = 2 x (—2379.60 — (—2392.83)) = 2 x 13.23 = 26.46, should
be compared with the x? distribution with df = 1, giving a P-value of 0.27 x 10~5. So
there is significant difference between the transition and transversion rates.

For these data, both the transition/transversion bias and the codon frequency bias are
clearly important. ML results under the most complex model (F61 with « estimated),
which accounts for both factors, are expected to be the most reliable and will be used
to evaluate other methods/models. The F3 x 4 model is commonly used as it produces
similar results to, and has far fewer parameters than, the F61 model. We note that ad hoc
methods give similar results to ML under similar models; for example, Ina’s method give
similar estimates to ML accounting for the transition/transversion bias and ignoring the
base/codon frequency bias (Table 12.1, method B).

It is well known that ignoring the transition/transversion rate bias leads to underestima-
tion of the number of synonymous sites (S), overestimation of ds, and underestimation of
the w ratio. This effect is obvious in Table 12.1 when ML estimates with « estimated are
compared with ML estimates when « is fixed at 1, or when the method of Nei and Gojobori
(1986) is compared with those of Li (1993) or Ina (1995). The effect of codon frequency
bias is more complicated. In theory, biased base/codon frequencies can either increase or
decrease the number of synonymous sites S (Yang and Nielsen, 2000). However, a scan
over 80 mammalian nuclear genes, which include the 49 genes analysed by Ohta (1995),
suggests that biased codon frequencies all lead to reduced numbers of synonymous sites.
This is the pattern we see in Table 12.1, as estimates of S under the F3 x 4 and F61
models are much smaller than under the Fequal model. The gene is GC-rich at the third
codon position, with base frequencies of 16% for T, 43% for C, 14% for A, and 27% for
G. As a result, most mutations at the third codon position are transversions between C
and G, and there are more non-synonymous mutations (sites) than expected under equal
base/codon frequencies. In this data set, the effect of biased base frequencies is opposite
to and outweighs the effect of the transition/transversion bias. As a result, the method of
Nei and Gojobori (1986) overestimates rather than underestimates S and w, contrary to
general belief. The method of Ina (1995) accounts for the transition/transversion bias but
ignores the codon frequency bias, and performs more poorly than the method of Nei and
Gojobori (1986). The method of Yang and Nielsen (2000) accounts for both biases, and
seems to produce estimates close to ML estimates under realistic models.

In general, different methods can produce either very similar or very different estimates
of w. With very weak transition/transversion bias and little codon usage bias, different
methods tend to produce similar results. For other data sets, estimates from different
methods can vary by a factor of 3-5 (Yang and Nielsen, 2000). Such large differences
can occur even with highly similar sequences, as extreme transition/transversion bias or
codon usage bias can drastically affect the counting of sites. One feature of the estimation
is that when a method overestimates ds, it tends to underestimate dy at the same time,
resulting in large errors in the w ratio. This is because the total number of sites (or
differences) is fixed, and if the method underestimates the number of synonymous sites
(or differences) it will overestimate the number of non-synonymous sites as well, and
vice versa.

Simulation studies performed to compare different methods produced results that are
consistent with real data analysis. For example, Ina (1995) compared several ad hoc
methods and concluded that none of them performed well when base frequencies are
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extreme. Yang and Nielsen (2000) examined the effects of the transition/transversion rate
bias and base/codon frequency bias, and found that estimation of the w ratio is very
sensitive to both biases. A worrying result is that the method of Nei and Gojobori (1986)
can both underestimate and overestimate the w ratio, often with large biases. In general,
ad hoc methods may be used for exploratory data analysis, and the ML method accounting
for both the transition bias and the codon usage bias should be preferred. It will be most
sensible to use ML to analyse all sequences on a phylogeny simultaneously, if that is
computationally feasible.

124 LIKELIHOOD CALCULATION ON A PHYLOGENY

Likelihood calculation for multiple sequences on a phylogeny may be viewed as an
extension of the calculation for two sequences. The calculation is also similar to that
under a nucleotide-substitution model (Felsenstein, 1981), although we now consider a
codon rather than a nucleotide as the unit of evolution. We assume in this section that
the same rate matrix Q (equation (12.1)) applies to all lineages and all amino acid sites.
The data are multiple aligned sequences from different species. We assume independent
substitutions among sites (codons), so that data at different codon sites are independently
and identically distributed. The likelihood is given by the multinomial distribution with
61 categories (site patterns) for species. Let n be the number of sites (codons) in the
sequence and the data atsite hbe x, (h = 1,2, ..., n); x;, is a vector of observed codons
in different sequences at site . An example tree of four species is shown in Figure 12.3.
As in the case of two sequences, the root cannot be identified, and is arbitrarily fixed at
the node ancestral to sequences 1 and 2. The data x, can be generated by any codons j
and k for the two ancestral nodes in the tree, and thus the probability of observing the
data is a sum over all such possibilities:

FR) =Y 7P sy (01) Py (22) P i (t0) Py (13) iy (14)]. (12.11)

j ok

The quantity in the square bracket is the contribution to f(x;) from ancestral codons j
and k, and is equal to the prior probability that the codon at the root is j, which is given
by the equilibrium frequency ;, multiplied by the five transition probabilities along the
five branches of the phylogeny (Figure 12.3). For a tree of 5 species with § — 2 ancestral
nodes, the data at each site will be a sum over 61°2 possible combinations of ancestral
codons. In computer programs, we use the pruning algorithm of Felsenstein (1981) to
achieve efficient computation.

Xy 3
J k
)
1 1 Figure 12.3 A tree of four sequences with codons at one site for
nodes in the tree. Branch lengths #y, ¢4, .. ., t4 are parameters in the
x . g p
2 4 model.
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The log-likelihood is a sum over all sites in the sequence:

£=")log{f(xx)}. (12.12)

h=1

Compared with the case of two sequences, we now have the same parameters in the substi-
tution model (k, w, and the z;), but many more branch length parameters (e.g. t, t1, ..., 4
in Figure 12.3 instead of the single ¢ in Figure 12.1(b)). Again, numerical optimization
algorithms have to be used to obtain ML estimates of parameters by maximizing the
likelihood function.

As mentioned above, the quantity in the square bracket in equation (12.11) is the contri-
bution to the probability of the data f(x,) by ancestral codons j and k. This contribution
varies greatly depending on the values of j and k, and the codons j and k that make
the greatest contribution are the most probable codons for the two ancestral nodes at the
site. This gives the empirical Bayes approach (also known as the likelihood approach) to
reconstructing ancestral character states (Yang et al., 1995; Koshi and Goldstein, 1996).
Compared with the parsimonious reconstruction (Fitch, 1971; Hartigan, 1973), the Bayes
approach uses branch lengths and relative substitution rates between character states.
Ad hoc methods that use reconstructed ancestral sequences to detect adaptive molecular
evolution will be discussed later in comparison with the ML method.

12.5 DETECTING ADAPTIVE EVOLUTION ALONG LINEAGES

12.5.1 Likelihood Calculation Under Models of Variable o Ratios Among Lineages

The major motivation for implementing models of variable w ratios among lineages is
that adaptive evolution probably happens in an episodic fashion. In a short time interval,
non-synonymous mutations, driven by natural selection, may get fixed at a higher rate
than synonymous mutations; as a result, the  ratio for such an evolutionary linecage may
be greater than 1. It is easy to modify the model of the previous section to allow for
variable w ratios among branches in a phylogeny. The likelihood calculation under such
a model proceeds in a similar way, except that the transition probabilities for different
branches need to be calculated from different rate matrices (Q) generated using different
ws. Suppose we want to fit a model in which the branch for species 1 of Figure 12.4 has
a different w ratio (w;), while all other branches have the same ‘background’ ratio wy.
To indicate the dependence of p upon w, let p;;(t; w) denote the transition probability

Figure 12.4 A tree of four sequences to explain a model of vari-
able w ratios among lineages. The w ratio for the branch leading
to species 1 (w,) is different from the ratio (wp) for all other
branches.
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calculated using the ratio w. Under this model, the probability of observing data x; is

FOR) =D 7 Pjny (11, 01)P oy (25 @0) P i (£0; 0) Piry (£33 00) Pixy (143 00)  (12.13)
j k

(compare with equation (12.11)). For the branch for species 1, w; is used to construct the
rate matrix Q and to calculate the transition probabilities, while for all other branches,
wp is used. Thus the model involves relatively minor modifications to the likelihood
calculation under the model of one w ratio for all branches in the tree, discussed above.

Yang (1998) implemented models that allow for different levels of heterogeneity in the
o ratio among lineages. The simplest model (the ‘one-ratio’ model) assumes the same w
ratio for all branches in the phylogeny. The most general model (the ‘free-ratio’ model)
assumes an independent w ratio for each branch in the phylogeny. Intermediate models
such as two- or three-ratios models assume two or three different @ ratios for lineages
in the tree. Those models can be compared using the likelihood ratio test to examine
interesting hypotheses. For example, the likelihood values under the one-ratio and free-
ratio models can be compared to test whether the  ratios are different among lineages.
Also we can allow the lineages of interest to have a different w ratio from the background
w ratio for all other lineages in the phylogeny (as in Figure 12.4). Such a two-ratio model
can be compared with the one-ratio model to examine whether the lineages of interest
have a different w ratio from other lineages. Furthermore, when the estimated w ratio
for the lineages of interest (say, w; in Figure 12.4) is greater than 1, models with and
without the constraint that w; = 1 can be compared to test whether the ratio is different
from (i.e. greater than) 1. This test directly examines the possibility of positive selection
along specific lineages.

It should be pointed out that variation in the @ ratio among lineages is a violation
of the strictly neutral model, but is itself not sufficient evidence for adaptive evolution.
First, relaxed selective constraints along certain lineages can generate variable o ratios.
Second, if non-synonymous mutations are slightly deleterious but not lethal, their fixation
probabilities will depend on factors such as the population size of the species. In large
populations, deleterious mutations will have a smaller chance of getting fixed than in
small populations. Under such a model of slightly deleterious mutations (Ohta, 1973),
species with large population sizes are expected to have smaller w ratios than species with
small population sizes. At any rate, an o ratio significantly greater than 1 is unequivocal
evidence of Darwinian selection.

12.5.2 Adaptive Evolution in the Primate Lysozyme

In the following, we use the example of the lysozyme ¢ genes of primates (Figure 12.5)
to demonstrate the use of codon substitution models of variable w ratios among lineages
(Yang, 1998). Lysozyme is found mainly in secretions such as tears and saliva as well as
in white blood cells, where its function is to fight invading bacteria. Leaf-eating colobine
monkeys have a complex foregut where bacteria ferment plant material, followed by a
true stomach that expresses high levels of lysozyme, where its new function is to digest
these bacteria (Stewart et al., 1987; Messier and Stewart, 1997). It has been suggested
that the acquisition of a new function may have led to high selective pressure on the
enzyme, resulting in high non-synonymous substitution rates. In an analysis of lysozyme
¢ genes from 24 primate species, Messier and Stewart (1997) identified two lineages with
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Figure 12.5 Phylogeny of seven primate species, for a subset of the lysozyme data set of Messier
and Stewart (1997), used to demonstrate models of variable w ratios among branches. After Yang
(1998).

elevated w ratios, indicating episodes of adaptive evolution in the lysozyme. One lineage,
expected from previous analysis (Stewart et al., 1987), is ancestral to colobine monkeys,
and another, unsuspected, lineage is ancestral to the hominoids. The two lineages are
represented by branches # and ¢ in Figure 12.5, for a subset of the data of Messier and
Stewart (1997).

As branches h and c are the lineages of interest, we test assumptions concerning
three w ratio parameters: w, for branch A, w, for branch ¢, and wqg for all other (back-
ground) branches. Table 12.2 lists log-likelihood values and ML parameter estimates under
different models. The simplest model (A) assumes one w ratio, while the most general
model assumes three ratios (E, I, and J). The three possible two-ratio models (B—-D and
F-H) are used as well. In models F-J, the w ratio for the branch(es) of interest is fixed
at 1.

Table 12.2 Log-likelihood values and parameter estimates under different models for the lysozyme

c genes.
Model )4 £ s @y O @
A. l-ratio: wy = wy = @, 22 —906.02 4.5 0.81 =ay = &y
B. 2-ratios: wy = wy, @, 23 —904.64 4.6 0.69 =y 3.51
C. 2-ratios: wy = o, Wy 23 —903.08 4.6 0.68 00 =y
D. 2-ratios: wg, wp = W, 23 —901.63 4.6 0.54 7.26 =y
E. 3-ratios: wy, wp, @, 24 -901.10 4.6 0.54 o] 3.65
F. 2-ratios: wy = wp, w, = 1 22 —005.48 4.4 0.69 = @y 1
G. 2-ratios: wy = @, @y = 1 22 —-905.38 44 0.68 1 =ay
H. 2-ratios: wp, wy = w, =1 22 —904.36 43 0.54 1 1
I. 3-ratios: wq, wp, @, = 1 23 —-902.02 4.5 0.54 fore} 1
J. 3-ratios: wg, wy = 1, 0, 23 —-903.48 4.4 0.54 1 3.56

Note: p is the number of parameters. All models include the following 21 common parameters: 11 branch
lengths in the tree (Figure 12.5), 9 parameters for base frequencies at codon positions used to calculate codon
frequencies, and the transition/transversion rate ratio «. Source: Yang (1998).
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The estimate of the w ratio under the one-ratio model (wp = w, = w,) is 0.81, indicating
that, on average, purifying selection dominates the evolution of the lysozyme. Estimates
of w, for branch ¢ range from 3.4 to 3.6 when w, is allowed free to vary (models B, E,
and J). Estimates of wj are always infinite when w;, is assumed to be a free parameter
(models C, E, and I), indicating the absence of synonymous substitutions along branch A.
The estimate of the background ratio wyq is 0.54 when wy, and w, are not constrained to
be equal to wy (models D, E, I, and J).

The results of likelihood ratio tests are shown in Table 12.3. Tests A—E examine
whether the w ratio for the branch(es) of interest is different from (that is, greater than)
the background ratio, while tests A'~E’ examine whether the ratio is greater than 1. For
example, test E compares models B and E of Table 12.2 and examines the null hypoth-
esis that wy = wp, with w,. free to vary in both models; wj is significantly higher than
wp in this comparison. Such tests suggest that wj is significantly greater than the back-
ground ratio wo (P < 1%; Table 12.3, D and E) and also significantly greater than one
(P < 5%; Table 12.3, D’ and E'). Similar tests suggest that w, is significantly greater than
wp (P < 5%; Table 12.3, C), but not significantly greater than 1 (P ranges from 17% to
20%; Table 12.3, B’ and C'). More detailed analyses of the data set can be found in Yang
(1998).

12.5.3 Comparison with Methods Based on Reconstructed Ancestral Sequences

Evolutionary biology has had a long tradition of reconstructing characters in extinct ances-
tral species and using them as observed data in all sorts of statistical as well as ad hoc
analyses. The MacClade program (Maddison and Maddison, 1982) provides both a conve-
nient tool for ancestral reconstruction using different variants of the parsimony algorithm
and also an excellent review of the many uses and misuses of ancestral reconstruction.
For molecular data, statistical methods (Yang et al.,, 1995; Koshi and Goldstein, 1996)
can be used to obtain more reliable ancestral reconstructions, taking into account branch
lengths and relative substitution rates between characters (nucleotides, amino acids, or

Table 12.3 Likelihood ratio statistics (2A¢) for testing hypotheses
concerning lysozyme evolution.

Hypothesis Assumption Models 2A¢
tested made compared

A (wn =w) =ayp Wy = W, A&D 8.78*
B. w. = ay Wy = Wy A&B 2.76
C.w. = wy wy free C&E 3.96*
D. w, = ayp w: = wy A&C 5.88*
E. w, = wy w, free B&E 7.08**
A (op=w)<1 W = W, D&H 5.46*
B.ow <1 Wy = Wy B&F 1.68
C.o. <1 wy, free E&l 1.84
D.wy,<1 W, = Wy C&G 4.60*
E.op<1 w, free E&]J 4.76*

*Significant at the 5% level (x2(1) = 3.84).
**Significant at the 1% level (xz(l) = 6.63).
Source: Yang (1998).



ADAPTIVE MOLECULAR EVOLUTION 343

codons) (see the discussion below equation (12.12)). Overall, reconstructed molecular
sequences appear much more reliable than reconstructed morphological characters (Yang
et al.; 1995; Cunningham et al., 1998).

Messier and Stewart (1997) reconstructed ancestral sequences and used them to perform
pairwise comparisons to calculate the dy and dg rates along branches in the tree. Their
analysis pinpoints two particular lineages in the primate phylogeny that may have gone
through adaptive evolution. Crandall and Hillis (1997) took the same approach in an
analysis of relaxed selective constraints in the rhodopsin genes of eyeless crayfishes
living deep under the ground.

A major difference between the ML method discussed in this section and the approach
of ancestral reconstruction is obviously that ML uses all possible ancestral characters
(such as codons j and k for the two ancestral nodes in the tree of Figures 12.3 and
12.4), while the approach of ancestral reconstruction uses only the most likely codons
and ignores the others. Ancestral sequences reconstructed by both parsimony and like-
lihood involve random errors and systematic biases. One kind of bias is obvious if we
use reconstructed ancestral sequences to estimate branch lengths, as both parsimony and
likelihood tend to minimize the amount of evolution to select the most likely ances-
tral characters. Biases involved in estimation of dy and ds using reconstructed ancestral
sequences are not well characterized. As far as I know, none of the methods that use
reconstructed ancestral characters have attempted to correct for biases in ancestral recon-
struction. Furthermore, pairwise comparisons along branches of the phylogeny may not
be as reliable as a simultaneous comparison of all sequences by ML.

It appears advisable that ancestral reconstruction be used for exploratory data analysis
and that ML be preferred in general. When the likelihood ratio test suggests adaptive
evolution along certain lineages, ancestral reconstruction may be very useful to pinpoint
the responsible amino acid sites. Indeed, a most interesting use of ancestral reconstruc-
tion is to provide ancestral proteins to be synthesized in the laboratory to examine
their biochemical and physiological properties. Such studies of ‘palacobiochemistry’ were
envisaged by Pauling and Zuckerkandl (1963) — for reviews, see Golding and Dean (1998)
and Chang and Donoghue (2000).

12.6 INFERRING AMINO ACID SITES UNDER DIVERSIFYING
SELECTION

12.6.1 Likelihood Calculation Under Models of Variable « Ratios Among Sites

Up to now, we have assumed that all amino acid sites in a protein are under the same
selective pressure, with the same underlying non-synonymous/synonymous rate ratio ().
While the synonymous rate may be homogeneous among sites, non-synonymous rates
are well known to be highly variable. Most proteins have highly conserved amino acid
positions at which the underlying w ratio is close to zero. The requirement that the w ratio,
averaged over all sites in the protein, is greater than 1 is thus a very stringent criterion
for detecting adaptive evolution. It would be much more realistic if we allowed the w
ratio to vary among sites.

We can envisage two cases, which require different statistical modelling. In case 1, we
may know the different structural and functional domains of the protein, and can use such
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information to classify amino acid sites in the protein into several classes. The different
site classes are assumed have different w ratios, which are parameters to be estimated by
ML. Suppose we have K site classes, with the corresponding w ratios w, ws, ..., wk.
The likelihood calculation under this model is rather similar to that under the model of
one w ratio for all sites (equations (12.11) and (12.12)), except that the right w ratio will
be used to calculate the transition probabilities for data at each site. For example, if site
h is from site class k (k = 1,2, ..., K) with ratio wy, then f(x;) of equation (12.11) will
be calculated using wy. The likelihood is again given by equation (12.12).

In case 2, we know or assume that there are several heterogeneous site classes with
different @ ratios, but we do not know which class each amino acid site belongs to.
Our discussion below focuses on this case. The standard practice is to use a statistical
distribution to account for the variation of the  ratio among sites (Nielsen and Yang,
1998). We assume that the synonymous rate is homogeneous among sites, and only the
non-synonymous rates are variable. Branch length ¢ is defined as the expected number
of nucleotide substitutions per codon, averaged over sites. Suppose amino acid sites fall
into X classes, with proportions p;, ps, ..., px and w ratios wy, w3, ..., wg. The number
of categories K is fixed beforehand, and the ps and ws are either treated as parameters
or as functions of parameters in the w distribution. To calculate the likelihood, we want
to calculate the probability of observing data at each site, say data x; at site h. The
conditional probability of the data given w,, f(X;lwy), can be calculated as described
earlier (equation (12.11)). Since we do not know which class site /# belongs to, we sum
over all site classes (that is, over the distribution of w):

K
F&R) =2 prf Rnlax). (12.14)

k=1

This is the same practice as summing over the unknown ancestral codons in equation
(12.6). The log-likelihood is a sum over all n sites in the sequence:

=" log{f (xu)). (12.15)

h=1

Parameters in the model include branch lengths in the tree, k, 7;, and parameters in the
distribution of w among sites. As before, we estimate the codon frequency parameters by
the observed frequencies, and estimate the other parameters by numerical optimization of
the likelihood.

After ML estimates of model parameters are obtained, we can use the empirical Bayes
approach to infer the most likely site class (and thus the w ratio) for any site. The marginal
probability of the data f(x) (equation (12.14)) is a sum of contributions from each site
class k, and the site class that makes the greatest contribution is the most likely class for
the site. That is, the posterior probability that a site with data x;, is from site class k (with
rate ratio wy) is
_ S Xalow)  puf (Rnlex)

f(@xlx) = = :
T T e > pif @ilo))

When the w estimates for some site classes are greater than 1, this approach can be used
to identify sites from such classes, which are potential targets of diversifying selection.
The posterior probability provides a measure of accuracy.

(12.16)
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Nielsen and Yang (1998) implemented a few simple models that allow for variable
ratios among sites. The ‘neutral’ model assumes two classes of sites: the conserved sites
at which non-synonymous mutations cannot survive, so that w; = 0; and the completely
neutral sites at which w; = 1. This model involves only one free parameter (p;) in
the w distribution, since p; =1 — p;. A ‘selection’ model adds a third class of sites
with the underlying o ratio estimated from the data. This model involves three free
parameters in the w distribution: pi, p2, and w;. These models appear too simple to
capture the complexity of the substitution process of various proteins. Yang et al. (2000)
implemented several new models, including a general discrete model, which treats all
the p; and w;, i = 1, ..., K, as parameters subject to the only constraint that the p; sum
to 1. Those authors also implemented several continuous mixture distributions, using
discrete approximations to facilitate the computation (Yang et al., 2000). I will use a few
such models in the numerical example in the next subsection, with details given there.
Extensive analysis of ten data sets by Yang et al. (2000) suggests that quite a few of the
models implemented can be used to test for the presence of positively selected sites and
to identify them when they exist.

12.6.2 Positive Selection in the HIV-1 vif Genes

An example data set of HIV-1 vif genes from 29 subtype-B isolates is used here to
demonstrate the likelihood models of variable w ratios among sites (Yang et al., 2000).
The sequence has 192 codons. Several models are used in ML estimation, with the results
shown in Table 12.4. I list only those parameters involved in the w distribution, as other
parameters (branch lengths in the phylogeny, the transition/transversion rate ratio «, and
the base frequencies at the three codon positions) are common to all models. The model
codes are those used in the PAML program package (Yang, 1999).

Table 12.4 Likelihood values and parameter estimates under models of variable w ratios among
sites for HIV-1 vif genes.

Model code £ K dn/ds Estimates of parameters

MO. one-ratio (1) —3499.60 3.72 0.644 w = 0.644

MI. neutral (1) —3413.07 3.78 0.575 p1 =0.425, (w0, =0)
(p2 =0.575), (wy =1)

M2. selection (3) —3377.94 422 0.870 p1 =0.404, (w; =0)

p2 =0511, (w2 = 1)
(p3 = 0.085), w3 = 4.220
M3. discrete (5) -3367.16 4.13 0.742 p1 =0.604, w; = 0.108
p2 =0.325, w; = 1.211
(p3 = 0.070), w; = 4.024
M. beta (2) —3400.45 3.55 0.440 p =0.176, g = 0.223

M8.beta&w (4)  —337066 402 0687  p;=0909, p=0222¢=0312
(p2 =0.091), » = 3.385

Note: The number of parameters in the w distribution is given in parentheses after the model code. dn/dyg is
the average w ratio over all sites in the gene. Parameters in parentheses are given to ease interpretation but
they are not free parameters. Source: Yang et al. (2000).
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The model of one w ratio for all sites (MO) gives an average w ratio of 0.644, indicating
that on average purifying selection is the dominating force during the evolution of the
gene. The selection model (M2) suggests about p3 = 8.5% of sites are under strong
positive selection with ws = 4.2. The discrete model (M3) suggests about p; = 7% of sites
are under strong positive selection with w3 = 4.0, while a large proportion (p; = 33%) of
sites are under weak positive selection or are nearly neutral with w, = 1.2. Both models
have significantly higher likelihood values than models MO (one-ratio) and M1 (neutral),
indicating presence of sites under diversifying selection. Model M7 assumes that o is
drawn from a beta distribution B(p, q). The beta distribution can take a variety of shapes
(such as L-, inverted L-, U-, and inverted U-shapes) but is restricted to the interval (0, 1).
It provides a useful null model to test for positive selection. The estimated B(0.176, 0.223)
distribution has a U shape, possibly because the w ratios at some sites are greater than 1,
which the beta distribution cannot accommodate. Model M8 adds an extra class of sites
to the beta, with a free w ratio estimated. So a proportion p; of sites have the w ratio
drawn from the beta distribution, while the remaining sites have the same unknown ratio
w. Estimates under this model (Table 12.3) suggest that 90.9% of sites are from the beta
distribution B(0.222, 0.312), while the remaining sites (9.1%) are under positive selection
with @ = 3.4. The likelihood ratio statistic for comparing M7 and M8 is 2Af =2 x
29.79 = 59.58, much greater than x2, (2) = 9.21. M8 thus fits the data significantly better
than M7, and we conclude that the data contain a class of sites under positive selection.

Figure 12.6 plots the posterior probabilities for site classes at each site under the discrete
model (M3). Parameter estimates under this model suggest that the w ratios for the three
site classes are 0.108, 1.211, and 4.024. The site classes are in the proportions 60.4%,
32.5%, and 7.0% (Table 12.4). Those are the prior probabilities for site classes for each
site. The observed data will alter those probabilities considerably, so that the posterior
probabilities are very different from the prior. For example, the posterior probabilities for
site 1 are 0.993, 0.007, and 0.000, and site 1 is almost certainly a highly conserved site.
In contrast, the probabilities at site 31 are 0.000, 0.030, and 0.970, and this site is most
likely under strong diversifying selection (Figure 12.6).
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Figure 12.6 Posterior probabilities of site classes along the gene for the HIV-1 vif genes under
the discrete model. After Yang et al. (2000).
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12.6.3 Comparison with Methods Based on Reconstructed Ancestral Sequences

Reconstructed ancestral sequences can also be used to perform ad hoc analysis to identify
amino acid sites in the protein that may be targets of diversifying selection. On a large
phylogeny, it is possible to use reconstructed ancestral sequences to count the numbers
of synonymous and non-synonymous changes along branches of the tree and compare
them with ‘neutral’ expectations when selection at the protein level has no effect on the
non-synonymous rate. However, the analysis suffers from errors and biases in inferred
ancestral sequences, and it is problematic to devise rigorous statistical tests on data at one
site. Fitch et al. (1997) performed such an intuitive analysis of the HA gene of human
influenza virus type A. Suzuki and Gojobori (1999) developed a systematic approach
based on this idea and were able to detect positively selected amino acid sites in a
number of genes suspected to be undergoing adaptive evolution. Both studies used the
parsimony algorithm to infer ancestral sequences and used them to count changes along
branches in the tree for each site in the sequence. Such methods require a large number
of sequences to operate, and may be useful for exploratory analysis of large data sets.

12.7 LIMITATIONS OF CURRENT METHODS

Both the test of positive selection along lineages and the test of positive selection at amino
acid sites discussed in this chapter are highly conservative. When testing for lineages under
positive selection, we assumed the w ratio is identical across sites. Positive selection is
detected along a lineage only if the w ratio averaged over all sites is significantly greater
than 1. Since many or most sites in a protein are under purifying selection with the
underlying e« ratios close to 0, this procedure constitutes a very conservative test of
positive selection. Similarly, the likelihood ratio test of positively selected sites is based
on the assumption that the w ratio is identical among all lineages on the tree. Positive
selection is detected for a site only if the underlying w ratio averaged over all lineages
is significantly greater than 1. This assumption appears unrealistic for most genes, as
positive selection probably affects only a few lineages.

The models discussed here assume the same o ratio for any amino acid changes; at a
positively selected site, changes to any amino acids are assumed to be advantageous. This
assumption appears unrealistic for any protein. Furthermore, the tests discussed here only
identify diversifying selection which increases the non-synonymous rates, and may have
little power in detecting other types of selection such as balancing selection (Yang et al.,
1999). While all those unrealistic assumptions make the test conservative for detecting
adaptive evolution, it is noteworthy that in both the lysozyme gene and the HIV-1 vif
gene examples, adaptive evolution is detected even though the average w ratio is less
than 1.

An obvious step to improve the power of the likelihood ratio tests is to develop models
that allow the w ratio to vary both among lineages and among sites. It appears possible
to construct such a model, although it will require more computation than the models
discussed here. Nevertheless, at some stage we will have to compromise. On the one
hand, we want to focus on a short time period and a few amino acid sites so that the
signal of adaptive evolution will not be overwhelmed by the effect of purifying selection
during other time periods and at other amino acid sites. On the other hand, a short time
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period and a few amino acid sites may not offer enough room for evolutionary change
(adaptive or otherwise) to generate a signal of positive selection that is detectable by
statistical tests.

12.8  COMPUTER SOFTWARE

Several programs are available to implement ad hoc methods to estimate dy and dg
between two sequences; they are often distributed by the authors of the methods. PAML
(Yang, 1999) is currently the only program that implements the ML models discussed in
this chapter.
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