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Every functional protein appears to have some conserved amino acids which are critically
important to the basic structure and function of the protein and thus under purifying selection.
Some proteins also have variable amino acids which, when changed, offer a selective
advantage, and thus undergo adaptive evolution.  These amino acids are also important to the
structure and function of the protein, although in a different way.  It seems that the selective
pressure in every protein varies among sites.  Maximum likelihood models developed
recently for comparison of silent and replacement nucleotide substitution rates allow for
variable selective pressures among amino acid sites, and provide a powerful approach to
studying the evolutionary process of protein-coding genes.  This paper applies the likelihood
models to analyze a data set of 186 HIV-1 gp120 env gene sequences for comparison with a
previous analysis of the same data set.  The maximum likelihood analysis identified a number
of sites under positive selection, some in the conserved regions of the protein.

1  Introduction

The HIV-1 env gene is one of the best-known examples of molecular adaptation
(e.g., [1-4]).  The envelope glycoprotein interacts with the receptors on target cells
in the host, and amino acids involved in such interactions are expected to be
constrained by purifying selection to maintain viral infectivity.  On the other hand,
the same viral protein is involved in immune recognition by the host, and amino acid
changes resulting in viral escape from the host immune surveillance will be at a
selective advantage.  Such evolutionary changes will be promoted by Darwinian
selection.  Positive selection in the HIV-1 env gene has been demonstrated by viral
escape experiments [5, 6] and by the observed higher nonsynonymous  (amino acid-
altering, dN) than synonymous (silent, dS) substitution rates [1, 4].

Comparison of synonymous and nonsynonymous substitution rates provides an
important means for studying the selective pressure on a protein.  The
nonsynonymous/synonymous substitution rate ratio (ω = dN/dS) provides a sensitive
measure of selective pressure on the protein, with values of ω = 1, > 1 and < 1
indicating neutral evolution, positive (diversifying) selection and negative
(purifying) selection, respectively.  Note that the definition of ω accounts for the fact
that more nonsynonymous than synonymous mutations are expected due to the
structure of the genetic code.  Most previous studies calculated the dN and dS rates



(and their ratio ω) by averaging over all sites and ignored the fact that the selective
pressure varies among amino acid sites.  As many amino acids may be under strong
structural or functional constraints with very small dN or ω and adaptive evolution
likely affects only a few amino acids, such analysis rarely found ω ratios >1 or
detected positive selection [7].  Some genes showed similar synonymous and
nonsynonymous rates and similar rates at the three codon positions and were thus
falsely claimed to be completely neutral [8, 9], while the patterns in fact reflect
strong diversifying selection at a few sites and purifying selection at others.

Recent efforts have focused on methods that account for variable selective
pressures among sites.  Fitch et al. [10] and Suzuki and Gojobori [11] reconstructed
sequences in extinct ancestors using parsimony and counted synonymous and
nonsynonymous changes along the phylogeny at each site to determine which sites
have undergone excessive nonsynonymous substitutions and may thus be under
positive selection.  Nielsen and Yang [12] and Yang et al. [13] developed
probabilistic models of codon substitution that allow for variable ω ratios among
sites and implemented them in the likelihood framework.  The method uses a
statistical distribution to describe the variation of ω among sties; that is,  there are
several classes of sites in the sequence, which have different ω ratios.  We use the
likelihood ratio test to determine whether allowing for sites with ω > 1 significantly
improves the fit of the model to data.  If the ω ratio for any site class is > 1, we use
the Bayes theorem to calculate the (posterior) probability that each site, given its
data, is from such a site class.  Sites with high probabilities are inferred to be under
positive selection (see [12, 13] for details of the models).  The maximum likelihood
(ML) method has several advantages.  The substitution model accounts for
important features of DNA sequence evolution that are often ignored by other
methods, such as biased transition and transversion rates and biased codon usage.
The model naturally accounts for the genetic code, and the probability theory
underlying the method corrects for multiple hits properly.  Applications of the ML
method to real data suggest that the method is powerful in detecting adaptive
evolution at a few sites in a background of purifying selection [12-14].  For example,
in an analysis of HIV-1 nef gene, Zanotto et al. [15] detected a number of sites under
positive selection, many of which corresponded to previously-identified epitopes,
while both pairwise comparison and sliding window analysis failed.

The data sets analyzed in most of the studies mentioned above are relatively
small.  Recently, Yang [16] made some improvements to the ML algorithm,
enabling the method to be applied to large data sets of a few hundred sequences.  In
this paper, I use the ML method to reanalyze the data set of Yamaguchi-Kabata and
Gojobori [4] containing 186 HIV-1 gp120 env gene sequences.  The env gene is well
characterized and provides a good test example.  It is also interesting to compare the
ML analysis with the previous analysis [4], which used inferred ancestral sequences
to count synonymous and nonsynonymous changes at each site along the tree [11].



2  Data and Methods

The data consisted of 186 HIV-1 env gene (gp120) sequences from subtype B,
aligned and analyzed by Yamaguchi-Kabata and Gojobori [4].  Since my analysis
does not require inference of ancestral sequences, I did not use the outgroup
subtype-D sequence those authors used.  The reference sequence for numbering
amino acid positions is from strain HXBc2 (K03455).  Following Yamaguchi-
Kabata and Gojobori, sites involving alignment gaps are removed, with 421 codons
left in each sequence.  Those sites are identified in figure 1, together with the amino
acids in the reference HXBc2 sequence.  Site 31T is removed in the present analysis,
although it was used and found to be under positive selection by Yamaguchi-Kabata
and Gojobori [4].

The methods of Nei and Gojobori [17] and Yang and Nielsen [18] are used to to
perform pairwise comparison to calculate the numbers of synonymous (dS) and
nonsynonymous (dN) substitutions per site and the number of nucleotide substitutions
per codon (t), resulting in three distance matrices for each method.  The neighbor-
joining method [19] was used to infer phylogenies from each distance matrix, with
the neighbor program of the PHYLIP package used [20].  The resulting six trees
were evaluated using the baseml program in the PAML package [21], with
different substitution rates, transition/transversion rate ratios, and base frequencies
assumed for the three codon positions.  The tree based on the t distance from the
method of Yang and Nielsen [18] had the highest likelihood and was used in fitting
codon-substitution models later.  The estimated substitution rates at the three codon
positions are in proportions 1 : 0.87 : 1.28, while the transition/transversion rate
ratios for the three positions are κ = 2.98, 3.26, and 4.68.

Codon-substitution models that allow the selective pressure, indicated by the ω
ratio, to vary among sites are fitted to the sequence data by ML [13].  Parameters
involved in those models are explained below in the Results section.  The codeml
program in the PAML package [21] is used.

3  Results

3.1 Pairwise Sequence Comparison

Estimates of synonymous (dS) and nonsynonymous (dN) substitution rates in pairwise
comparisons of the 186 sequences are plotted in figure 1.  The method of Yang and
Nielsen [18] is used.  In some pairs, dN > dS, while in the majority of comparisons,
dN < dS.  As those distances are averages over all sites in the sequence, they are not
very informative about the selective pressures exerted on the protein.  However, it is
noteworthy that the calculated dN/dS ratios are much higher than in most other



proteins (e.g., [22]).
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Fig. 1. Estimates of synonymous (dS) and nonsynonymous (dN) substitution rates in pairwise
comparisons using the method of Yang and Nielsen (2000).  The straight line represents the

neutral expectation dN = dS

3.2 Estimation of Substitution Parameters and Likelihood Ratio Test of Positive
Selection

Table 1 shows the log-likelihood values and parameter estimates obtained under
different models of variable ωs among sites [12, 13].  Model M0 assumes one ω
ratio for all sites; the estimated ratio (0.593) suggests that, on average, purifying
selection dominates the evolution of the env gene.  The neutral model (M1) assumes
a class of conserved sites with ω0 = 0 and another class of neutral sites with ω1 = 1.
The proportion p0 for the conserved class is estimated by ML, with p1 = 1 − p0.  This
model does not allow for sites with ω > 1 and serves as a null model for testing
positive selection.  Model M2 (selection) adds a third site class with the proportion
(p2) and the ω ratio (ω2) estimated from the data.  The estimates suggest a large
proportion of sites (19%) under strong diversifying selection with ω2 = 4.3 (table 1).
M3 (discrete) also assumes three site classes, with both the proportions and ω ratios
estimated from data.  This model suggests that about 10% of sites are under
diversifying selection with ω2 = 3.1.  Model M7 (beta) assumes a beta distribution of
ω among sites.  The beta distribution with parameters p and q can take different
shapes in the interval (0, 1) and is a flexible null model for testing positive selection.
The ML estimates under this model (table 1) indicates a U-shaped distribution.
Model M8 (beta&ω) adds another site class with the proportion p1 and the ratio ω
estimated from the data.  Parameter estimates under this model suggest that 90% of



sites have ω from a U-shaped beta distribution, and about 10% of sites are under
positive selection with ω = 2.8.  Note that all models that can allow for sites with
ω > 1 (M2, M3, and M8) do suggest presence of such sites, although the exact
proportion and the ω ratio vary.

Table 1. Log-likelihood values and ML estimates of parameters

Model code p l Estimates of Parameters dN/dS

M0: one-ratio 1 −31,065.09 ω = 0.593 0.593

M1: neutral 1 −30,690.37 p0 = 0.189 (p1 = 0.811) 0.811

M2: selection 3 −29,741.64 p0 = 0.182, p1 = 0.628 (p2 = 0.190),
ω2 = 4.295

1.443

M3: discrete 5 −29,040.62 p0 = 0.618, p1 = 0.283 (p2 = 0.098),
ω0 = 0.122, ω1 = 0.970, ω2 = 3.083

0.654

M7: beta 2 −29,402.73 p = 0.322, q = 0.485 0.399

M8: beta&ω 4 −29,022.33 p0 = 0.899, p = 0.403, q = 0.705
(p1 = 0.101), ω = 2.799

0.609

Note. p is the number of parameters in the ω distribution.  Estimates of κ are between 3.0 and

3.7 among models.  Estimates of parameters indicating positive selection are in bold.  l is the log-

likelihood value, while dN/dS is the average ω over sites.

Table 2. Likelihood ratio test statistics for testing positive selection

Models compared 2∆l χ2 significance value (1%) d.f

   M0 vs. M3 4048.94 13.28 4

   M7 vs. M8 760.80 9.21 2

Those models can be compared using the likelihood ratio test (table 2).  For
example, the comparison between models M0 and M3 is a test of the assumption
that the selective pressure indicated by the ω ratio is constant among sites.  The huge
likelihood difference between the two models suggests that ω varies greatly among
sites (table 2).  While this is more a test of variability than a test of positive
selection, parameter estimates under M3 suggest presence of sites under positive
selection (with ω2 > 1).  The comparison between M7 and M8 examines directly
whether allowing for sites with ω > 1 in M8 leads to significant improvement to
M7’s fit to data.  Again the likelihood improvement is significant (table 2).  In sum,
those models provide strong statistical evidence for presence of amino acid sites
under diversifying selection.



3.3 Inference of Sites Under Positive Selection

Models M3 (discrete) and M8 (beta&ω) are found to produce very similar results,
and below I use M3 as an example.  Parameter estimates under the model suggest
three site classes in the proportions p0 = 0.618, p1 = 0.283, p2 = 0.098 with ω0 =
0.122, ω1 = 0.970, and ω2 = 3.083 (table 1).  Those proportions are the prior
probabilities for each site.  We use the Bayes theorem to calculate the (posterior)
probabilities that each site, given the data at that site, is from the three site classes.
If the posterior probability for the ω2 class, P, is large, say >95%, we may conclude
that the site is under positive selection.  For example, at site 25, the posterior
probabilities are 0.000, 0.095, and 0.905, so that there is P = 90.5% chance that the
site is from the ω2 class.  The posterior probability distributions for sites in the env
gene are shown in figure 2.

Table 3.  List of positively selected sites

Sites Location Sites Location Sites Location
19T Signal

sequence
275V C2 343K C3

33K C1 279D C2 344Q C3
85V C1 283T C2 346A C3
87V C1 291S C2 347S C3
161I V2 306R V3 360I C3
164S V2 308R V3 363Q C3
169V V2 317F V3 (387S) V4
200V C2 333I C3 389Q V4
209S C2 336A C3 440S C4
219A C2 337K C3 (442Q) C4
232T C2 339N C3 467I V5
240T C2 340N C3 (500K) C5

Note. Amino acid sites with the posterior probability of coming from the ω2 class P >99% or

>95% (in parentheses). Those in bold were also identified by Yamaguchi-Kabata and Gojobori

[4].  Location designations are according to ref. [4] (see also [23, 24]).
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Fig. 2.  Posterior distribution of ω for each site calculated under M3 (discrete).  The protein consists of five “variable” loop regions and five

“constant” regions [4, 23, 24].  These are C1: 29S-125L, V1: 126C-157C, V2: 158S-196C, C2: 197N-295N, V3: 296C-330H, C3: 331C-384Y;

V4: 385C-417P; C4: 418C-460N; V5: 461S-471G; C5: 472G-511R.  Note that some variable sites involving alignment gaps are removed, with

only 421 codons analyzed.



Thirty-six sites had posterior probabilities >95%; those sites are listed in table 3.
Models M3 and M8 produced the same list of sites at this significance level.
Twenty-six of the sites are in the conserved regions (“C”), and nine are in the
variable loops (“V”).  Eighteen of the sites were also identified by Yamaguchi-
Kabata and Gojobori [4] to be under positive selection, while the remaining 18 sites
are not.  Also 15 sites identified by those authors to be under positive selection are
not in the list of the present analysis (fig. 2).  These are 31T, 130K, 132T, 172E,
178K, 195S, 281A, 293E, 303T, 319T, 322K, 335R, 429K, 444R, and 446S.  Among
them, sites 31, 319, 322 are not included in the present analysis, and sites 281, 293,
and 335 showed evidence, although not very strong, of positive selection in the
present analysis as well.  The other nine sites (130, 132, 172, 178, 195, 303, 429,
444, and 446), however, have low probabilities for the ω2 class (see fig. 2).

To examine whether the differences are caused by the use of different tree
topologies, the tree used by Yamaguchi-Kabata and Gojobori [4] is applied to fit the
discrete model (M3).  The log likelihood for this tree is −29052.77, slightly worse
than the tree used to produce table 1.  The estimates of parameters are p0 = 0.614,
p1 = 0.288 (p2 = 0.098), ω0 = 0.121, ω1 = 0.985, ω2 = 3.102, very similar to estimates
in table 1.  ML analysis using this tree suggested 36 sites under positive selection,
identifying one new site (3V) and missing one old site (387S).  The effect of the tree
topology is thus minimal.  The differences in the two studies thus appear to be due to
the methods of analysis.

4 Discussions

4.1 Inference of Sites Under Positive Selection

The Bayes calculation of posterior probabilities to identify sites under positive
selection used estimated parameter values and do not account for the sampling errors
in the estimates.  The approach is known as Empirical Bayes.  An alternative is the
hierarchical Bayes approach, which uses a prior distribution of parameters to
account for their uncertainties.  However, such an approach is computationally much
more demanding than the approach adopted here.  The posterior distribution might
be expected to be more spread out if random errors in parameters were incorporated,
suggesting that our method might overestimate the confidence of inference.
Furthermore, it should be noted that many inferences are made when all sites in the
sequence are assigned to classes.  As a result, it is very unlikely for all of them to be
correct.  Nevertheless, statistical identification of sites under positive selection might
be very useful for generating hypotheses for laboratory-based investigation.

Alignment gaps in the variable regions of the protein are removed in the



analysis (table 1).  To see the effect of alignment gaps, the data were also analyzed
with alignment gaps included and treated as ambiguity data [16].  The sequence then
contained 511 codons (1,533 nucleotides).  The one-ratio model leads to the estimate
ω = 0.723, higher than that in table 1.  Similar to results of table 1, all models that
allow for sites under positive selection suggest presence of such sites.  For example,
parameter estimates under M8 (beta&ω) are p0 = 0.964, p = 0.304, q = 0.619,
(p1 = 0.036), ω = 4.311, suggesting about 3.6% of sites under positive selection with
ω2 = 4.3.  Many more sites are identified to be under positive selection, including a
number of variable sites that were removed in the analysis of table 1.  These include
most of sites 133D-150E in region V1, sites 395W-413T in V4, and sites 460N-465S
in V5.  Alignment clearly has a major impact on identification of sites under positive
selection, and sites in mis-aligned regions are expected to have a high chance of
being identified as under selection.  In the HIV-1 env gene, however, insertions and
deletions are common and appear to play a key role in immune escape and viral
variation.  It is thus possible that these sites are indeed under positive selection.

The likelihood models assume a constant synonymous rate over sites and only
the nonsynonymous rate varies due to selection on the protein.  As the selective
pressure to maintain the structure of the RNA genome appears to reduce the
synonymous rate in certain regions of the gene, the assumption of a constant
synonymous rate may be unrealistic.  However, selective constraint on the RNA
reduces both synonymous and nonsynonymous rates in such regions, so that the rate
ratio ω will not be elevated.  We thus expect it to be unlikely for the model to
generate false positives.  Simulations may be needed to find out whether this is the
case.  Recombination might also affect the analysis, although Yamaguchi-Kabata
and Gojobori [4] discussed that it does not appear important for these data.  A
detailed discussion of the strength and weakness of the ML methods used here is
provided by Yang and Bielawski [25].

4.2 Computational Requirement

The ML iteration algorithm cycles through two phases.  Phase I optimizes branch
lengths, one at a time, with parameters in the substitution model (such as κ and ω).
Phase II optimizes substitution parameters, with branch lengths in the tree fixed
(Fig. 3).  As computation is saved when only one branch length is optimized at one
time, this algorithm makes analysis of large data set possible [16].  The old
algorithm, which updates all parameters including the branch lengths
simultaneously, and calculating first derivatives by the difference approximation, is
not feasible for data sets of this size.



Fig. 3 Iteration algorithm for obtaining ML parameter estimates (Yang 2000)

The ML analysis of the present data set is feasible on today’s workstations,
although nearly 500 Megabytes of memory was required for the computationally
most-intensive model M8 (beta&ω).  The computational time ranges from several
hours for the simple model M0 (one-ratio) to several days for M8 (beta&ω).
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