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Bayes prediction quantifies uncertainty by assigning posterior probabilities. It was used to identify amino acids in
a protein under recurrent diversifying selection indicated by higher nonsynonymous (dN) than synonymous (dS)
substitution rates or by v 5 dN/dS . 1. Parameters were estimated by maximum likelihood under a codon substi-
tution model that assumed several classes of sites with different v ratios. The Bayes theorem was used to calculate
the posterior probabilities of each site falling into these site classes. Here, we evaluate the performance of Bayes
prediction of amino acids under positive selection by computer simulation. We measured the accuracy by the
proportion of predicted sites that were truly under selection and the power by the proportion of true positively
selected sites that were predicted by the method. The accuracy was slightly better for longer sequences, whereas
the power was largely unaffected by the increase in sequence length. Both accuracy and power were higher for
medium or highly diverged sequences than for similar sequences. We found that accuracy and power were unac-
ceptably low when data contained only a few highly similar sequences. However, sampling a large number of
lineages improved the performance substantially. Even for very similar sequences, accuracy and power can be high
if over 100 taxa are used in the analysis. We make the following recommendations: (1) prediction of positive
selection sites is not feasible for a few closely related sequences; (2) using a large number of lineages is the best
way to improve the accuracy and power of the prediction; and (3) multiple models of heterogeneous selective
pressures among sites should be applied in real data analysis.

Introduction

One of the ways to study adaptive molecular evo-
lution is by identifying the amino acid sites where the
nonsynonymous substitution rate (dN) exceeds the syn-
onymous rate (dS). Only when nonsynonymous muta-
tions offer a selective advantage are they fixed at a high-
er rate than synonymous mutations. The difference be-
tween these two rates is measured by the ratio v 5 dN/
dS, with v . 1 indicating evolution by positive selec-
tion. (We use the terms ‘‘adaptive evolution,’’ ‘‘posi-
tive’’ and ‘‘diversifying’’ selection interchangeably, al-
though the methods we examine here are mainly suitable
for detecting recurrent diversifying selection and may
lack the power of detecting directional selection or ep-
isodic adaptive evolution.) Models assuming the same
v ratio for all sites only detect positive selection if the
average v . 1 (Yang and Bielawski 2000). However,
most amino acid sites are functionally conserved (with
v close to 0), and only a few are responsible for mo-
lecular adaptation (Golding and Dean 1998). Moreover,
these few sites might not be clustered in a sequence
because sites that are far apart in a primary sequence
can be clustered in the three-dimensional structure.
Thus, even a sliding window analysis might not detect
positive Darwinian selection in many genes (e.g., Endo,
Ikeo, and Gojobori 1996).

A number of authors proposed alternative methods
that account for variable selective pressures across sites.
Fitch et al. (1997) and Suzuki and Gojobori (1999) used
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the parsimony method to reconstruct sequences in the
extinct ancestors and counted the changes along the tree
at each site to identify sites at which there was an excess
of nonsynonymous substitutions. Nielsen and Yang
(1998) and Yang et al. (2000) implemented codon sub-
stitution models of heterogeneous v ratios among sites
in the maximum likelihood (ML) framework and used
the Bayes method to predict sites under positive selec-
tion. ML and Bayes methods are major statistical esti-
mation methods and are widely used in molecular phy-
logenetics (Huelsenbeck and Rannala 1997; Lewis 2001;
Whelan, Lio, and Goldman 2001). Although ML models
are computationally intense for large numbers of line-
ages, they do not rely on ancestral reconstruction and
can easily accommodate known features of sequence
evolution, such as the transition-transversion rate bias
and the codon usage bias. The ML approach uses the
likelihood ratio test (LRT) to compare two nested mod-
els: a null model, which does not account for sites with
v . 1, and an alternative model that does. A gene is
considered to be under positive selection if (1) the LRT
is significant, and (2) at least one of the ML estimates
of v .1. When the ML parameter estimates indicate the
presence of sites under positive selection, the empirical
Bayes approach can be used to predict them (Nielsen
and Yang 1998; Yang et al. 2000). One computes the
posterior probability that a site belongs to each v class
of the model, given the data at that site. Sites with high
posterior probabilities of belonging to a class with v .
1 are likely to be evolving by positive selection.

The codon models were successfully applied to de-
tect positive selection in a number of genes. For ex-
ample, Bishop, Dean, and Mitchell-Olds (2000) detected
strong adaptive pressure in the cell wall–attacking en-
zyme chitinase and mapped positively selected residues
on a three-dimensional structure of the class I chitinase.
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An excess of amino acid replacements in the active cleft
of the enzyme indicated that class I chitinase evolves in
response to pathogenic variation. This supported a hy-
pothesis of coevolutionary ‘‘arms race’’ between plants
and their pathogens. The same approach demonstrated
that evasion of the immune system by viruses occurs by
diversifying selection, e.g., across the HIV-1 nef gene
(Zanotto et al. 1999) and the capsid gene of the foot-
and-mouth disease virus (Fares et al. 2001; Haydon et
al. 2001). Remarkably, there was a correlation between
the known cytotoxic T-lymphocytes (CTL) epitopes re-
sponsible for antigenic determination and the predicted
positive selection sites.

A better understanding of adaptive evolution, how-
ever, also requires an understanding of how the adaptive
changes affect phenotypes. The Bayes method can iden-
tify the few sites responsible for adaptive change, pro-
viding the initial information required to understand the
changes in the form and function of proteins over evo-
lutionary time. Specific structural and functional hy-
potheses can be formulated if we know which sites in
an ancestral protein evolve by positive selection (e.g.,
Adey et al. 1994; Chandrasekharan et al. 1996; Dean
and Golding 1997; Yang, Swanson, and Vacquier 2000).
Site-directed mutagenesis could then be used to conduct
biochemical testing of such hypotheses (Chang, Kazmi,
and Sakmar 2001).

Although the ML method appeared successful in
real data analysis, its performance is not well under-
stood. Anisimova, Bielawski, and Yang (2001) used
computer simulation to examine the performance of the
LRT in detecting adaptive evolution; they found that the
use of the x2 distribution made the LRT conservative;
however, the test was powerful when enough lineages
were analyzed. In this study we examine the perfor-
mance of Bayes prediction of positive selection sites.
We simulate data under heterogeneous v models and
evaluate the performance of the method under different
sequence lengths, sequence divergences, and numbers of
taxa. We explore conditions under which Bayes poste-
rior probabilities give a reliable measure of uncertainty.

Theory and Methods
Codon Substitution Models of Heterogeneous v Ratios
Among Sites

The following models for the distribution of v
among sites are used in this paper either for simulating
or for analyzing the data: M0 (one-ratio), M1 (neutral),
M2 (selection), M3 (discrete), M7 (beta), and M8
(beta&v) (Yang et al. 2000). M0 (one-ratio) assumes the
same v ratio for all sites. M1 (neutral) assumes two site
classes with v0 5 0 (conserved sites) and v1 5 1 (neu-
tral sites). M2 (selection) adds an extra class to M1 with
an v2 estimated from the data. Under model M3 (dis-
crete), sites in the sequence are drawn from K discrete
classes with the v ratios v0, v1, . . . , vK 2 1 taken in
proportions p0, p1, . . . , pK 2 1. In this paper K 5 3. Mod-
el M7 (beta) assumes a beta distribution B(p,q), with
parameters p and q. Because the beta distribution is lim-
ited within the interval (0,1), it provides a flexible null

hypothesis for testing positive selection. Model M8
(beta&v) adds another site class with a constant v. In
PAML (Yang 1997) the beta distribution is approximat-
ed by 10 equal-probability discrete categories, with the
median v value for each category calculated using the
parameters p and q (Yang et al. 2000).

Positive selection, that is, the presence of sites with
v . 1, can be tested by LRTs by comparing models M0
(one-ratio) with M3 (discrete), M1 (neutral) with M2
(selection), and M7 (beta) and M8 (beta&v). The per-
formance of two LRTs, which compare M0 with M3 and
M7 with M8, was examined by Anisimova, Bielawski,
and Yang (2001).

Bayes Prediction of Sites Under Positive Selection

We estimate the parameters of the codon model by
ML and use the Bayes theorem to infer to which v class
each site is most likely to belong (Nielsen and Yang
1998; Yang et al. 2000). Suppose a model of heteroge-
neous v ratios assumes K classes, with the proportions
and v ratios given as

v , v , . . . , v , p , p , . . . , p .0 1 K 2 1 0 1 K 2 1 (1)

Proportions pi are the prior probabilities for site
classes, i 5 0, 1, . . . , K 2 1. The posterior probability
that site h with data xh belongs to class i is

P(x z v )p P(x z v )ph i i h i iP(v z x ) 5 5 . (2)i h K21P(x )h P(x z v )pO h j j
j50

Here, P(xhzvi) is the probability of the data at site
h, given that it belongs to site class i. In the implemen-
tation of models by Nielsen and Yang (1998) and Yang
et al. (2000), parameters such as vi and pi in equation
(1) are estimated by ML, and the ML estimates are used
to calculate the posterior probabilities in equation (2).
This is known as the empirical Bayes approach. If a site
has a high posterior probability of coming from a class
with v estimated to be .1, the site is likely to be under
positive selection. A conservative approach can be taken
to predict sites under positive selection by requiring this
posterior probability to exceed a cut-off value such as
P 5 0.95 or 0.99. Thus, a site with a high probability
(say 0.9) of being under positive selection is not con-
sidered to be under positive selection if a stringent cutoff
is applied (say P 5 0.95).

Simulations

All results were based on 100 simulated replicates.
All data sets were simulated under models M3 (discrete)
and M8 (beta&v) and included a small fraction of sites
evolving under positive selection (table 1). ML esti-
mates of parameters from 17 vertebrate b-globin genes
(Yang et al. 2000) formed the basis of most simulations
(table 1). Simulated data sets varied in the number of
taxa T, sequence length in the number of codons Lc,
sequence divergence S, and selective pressure, here v2
for M3 and v for M8 (table 1). S was measured by tree
length, i.e., the expected number of nucleotide substi-
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Table 1
Parameter Values Used in Simulations

Model System
Simulation

Model
Parameters in the

v Distribution
Sequence
Length, Lc

Number
of Taxa, T Tree Length, S

b-Globin genes of
vertebrates . . . . . . . . . . . Discrete (M3) p0 5 0.386, p1 5 0.535, p2 5 0.079,

v0 5 0.018, v1 5 0.304, v2 5 1.691
100, 500 6 0.11, 1.1, 11

Discrete (M3) As above 100, 500 17 0.38, 2.11, 16.88
Discrete (M3) As above except v2 5 4.739 100, 500 6 0.11, 1.1, 11
Beta&v (M8) p0 5 0.943, p 5 0.572, q 5 2.172,

p1 5 0.057, v 5 2.081
500 6 1.1

Beta&v (M8) As above 500 17 8.44
Hemagglutinin genes of

human flu virus . . . . . . Discrete (M3) p0 5 0.470, p1 5 0.470, p2 5 0.060,
v0 5 0.018, v1 5 0.304, v2 5 3.143

329 98 1.3

NOTE.—Simulation parameters representing positive selection are indicated in bold. The beta distribution in M8 was discretized into 10 equal probability
classes with v ratios 0.002, 0.015, 0.038, 0.070, 0.112, 0.165, 0.234, 0.323, 0.446, and 0.651.

tutions per codon along the tree. We used three values
for S (table 1) and referred to them as low, medium, and
high sequence divergences, respectively. We also sim-
ulated data sets using the ML parameter estimates ob-
tained from 98 hemagglutinin gene sequences of the hu-
man influenza type A virus (GenBank accession num-
bers AF180564–AF180666; except for duplicates
AF180572, AF180577, AF180596, AF180636, and a
highly divergent outlier AF180666; table 1). These se-
quences constitute a subset of the data analyzed by Bush
et al. (1999) and Yang (2000).

Three unrooted trees were used in simulation: (1)
an artificial 6-taxon tree, (2) a 17-taxon tree with branch
lengths estimated from the vertebrate b-globin genes,
and (3) a 98-taxon tree with branch lengths estimated
from the influenza A hemagglutinin gene. Trees (1) and
(2) were used previously to evaluate the properties of
the LRT to detect positive selection (see fig. 1 of Ani-
simova, Bielawski, and Yang 2001). Tree (3) was similar
in shape to the influenza trees presented by Bush et al.
(1999) and Yang (2000). Different levels of sequence
divergence were generated by multiplying all branch
lengths by a scale factor to achieve the desired tree
length (S). Data were simulated under models M3 and
M8, using the program evolver in the PAML package
(Yang 1997). An v ratio and an ancestral codon state at
the root of the tree are randomly drawn from the given
multinomial distributions. Then the program ‘‘evolves’’
each site along the branches of the tree independently,
according to the Markov process of codon substitution
(Goldman and Yang 1994; Muse and Gaut 1994). Sites
evolving by positive selection (with v . 1) are listed in
a file and are later compared with the predicted sites.

Analysis

Simulated data were analyzed by ML under models
M3 (discrete) or M8 (beta&v), using the codeml pro-
gram in the PAML package (Yang 1997). The branch
lengths in the tree were estimated by ML iteration, to-
gether with the parameters in the substitution models.
Positive selection sites predicted by codeml (eq. 2) were
compared with the true sites from evolver. We did not

perform the LRTs before Bayes prediction of the se-
lected sites.

Accuracy of Bayes prediction was measured by the
probability that a site predicted to be under positive se-
lection was truly under positive selection. Let N•1 denote
the number of sites predicted to be under positive se-
lection (table 2). Here, the first subscript refers to clas-
sifications by evolver, and the second subscript refers to
prediction by codeml, with ‘‘•’’ meaning all sites, ‘‘1’’
meaning sites with v . 1, and ‘‘2’’ meaning sites with
v , 1. For example, N11 denotes the number of cor-
rectly predicted positive selection sites. Accuracy was
estimated by averaging the proportion N11/N•1 over the
replicates. Replicates in which positive selection was not
detected (N•1 5 0) were ignored in the calculation. Note
that prediction of sites under positive selection by cod-
eml depends on a cut-off probability P.

The power of Bayes prediction was measured by
the probability that a site truly under positive selection
(from evolver) was predicted to be under positive selec-
tion by codeml. Thus, for each replicate the power was
calculated as N11/N1•, where N1• is the number of all
sites that are truly under positive selection (table 2).
Here, we include replicates in which no positive selec-
tion was predicted (N11 5 N•1 5 0). However, we ig-
nored replicates in which all estimates of v were .1
(N•1 5 Lc and N11 5 N1•); this happened on rare oc-
casions for very similar sequences if no or very few
synonymous substitutions occurred. In such cases, v es-
timates are highly unreliable.

Although it is convenient to think of false positives
and false negatives for the prediction of positive selec-
tion sites, the Bayes method is not based on formal hy-
pothesis testing. Our use of the terms accuracy and pow-
er in this paper is informal, and they are not equal to (1
2 type I error rate) and (1 2 type II error rate) in hy-
pothesis testing. One could measure accuracy by N2 2/
N2•, so that both accuracy and power (N11/N1•) are con-
ditional on the truth (classification of sites by evolver).
However, prediction of conserved sites or sites not under
positive selection is easy and biologically not so
interesting.
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FIG. 1.—Accuracy of the Bayes prediction under M3 (discrete)
for sequences of 500 codons. Simulated data varied in the number of
lineages (T 5 6, 17), sequence divergence (S, see table 1), and strength
of selective pressure (v2 5 1.691, 4.739).

Table 2
Partition of Sites in a Sequence Used in the Estimation of
Accuracy and Power of Bayes Prediction

PREDICTED SITES (codeml)

1 2 Total

True sites (evolver) . . . . 1
2
Total

N11

N21

N•1

N12

N2 2

N•2

N1•

N2•

Lc

NOTE.—The first subscript refers to classifications by evolver and the sec-
ond subscript refers to prediction by codeml, with ‘‘1’’ meaning sites under
positive selection with v . 1 and ‘‘2’’ meaning sites not under positive selec-
tion. Accuracy is calculated as N11/N•1 and power as N11/N1•. Note that the
Bayes prediction by codeml depends on a cutoff value P.

Results
Accuracy of Bayes Prediction

For all parameter combinations accuracy increased
only very slightly with the increase in sequence length
from Lc 5 100 to 500 codons. Hence, the results for Lc
5 100 codons are not shown. Figure 1 presents simu-
lation results concerning the accuracy of Bayes site pre-
diction under the discrete model (M3) for sequences of
500 codons. Each point shows the estimated probability
that a site predicted by codeml at a cut-off P is truly
under positive selection, i.e., in the list from evolver.
Bayes prediction is trustable only if accuracy is higher
than the cut-off value P.

Accuracy was always much higher for sequences
of medium and high sequence divergences than for those
at low sequence divergence (fig. 1). The worst case was
observed for data sets of six sequences at low diver-
gence (S 5 0.11), where accuracy was much lower than
the cut-off values (fig. 1A). Note that tree length S 5
0.11 means highly similar sequences, with 0.024 nucle-
otide substitutions per nonsynonymous site and 0.078
nucleotide substitutions per synonymous site along the
tree. In such data sets, only about 10% of the sites (co-
dons) showed any variability, and even fewer sites had
two or more changes. Even at medium and high se-
quence divergences (S 5 1.1, S 5 11), accuracy was
lower than the cut-off P for P . 0.8 (Lc 5 100) or P
. 0.9 (Lc 5 500; fig. 1A). Also note that high diver-
gence (S 5 11) means very divergent sequences, with
2.4 nonsynonymous substitutions per nonsynonymous
site and 7.8 synonymous substitutions per synonymous
site on the small tree consisting of six taxa. The results
of figure 1 suggest that Bayes prediction is tolerant of
multiple substitutions at the same site.

Accuracy was improved by increasing the number
of taxa to 17 (compare fig. 1A with B). However, for
similar sequences (S 5 0.38) accuracy remained well
below the cut-off P for P . 0.7 (N 5 100; results not
shown) or P . 0.8 (N 5 500; fig. 1B). For medium and
high sequence divergences (S 5 2.11, S 5 16.88), ac-
curacy was always higher than the cut-off P (fig. 1B).
We note that the best accuracy was achieved at medium
divergence in the small tree (fig. 1A) and at high diver-
gence in the large tree (fig. 1B). Although sequence di-
vergences in trees of different sizes are not directly com-
parable, we expect large trees to be more tolerant of
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FIG. 2.—Accuracy (A) and power (B) of Bayes site prediction in
data sets of T 5 98 sequences, using parameter estimates obtained from
the hemagglutinin gene of human influenza type A virus (N 5 329, S
5 1.3; see table 1).

FIG. 3.—Power of the Bayes prediction under M3 (discrete) for
sequences of 500 codons. See caption of figure 1.

multiple substitutions. We also analyzed data in which
the strength of positive selection was higher (v2 5 4.74)
and observed a substantial improvement in accuracy at
all levels of sequence divergence (compare fig. 1C with
A). Although in reality one has no control over the level
of positive selection pressure on a gene, Bayes predic-
tion is likely to be more accurate in the presence of
strong positive selection.

We simulated data sets of 98 lineages using the ML
parameter estimates from the influenza A hemagglutinin
gene under model M3 (discrete) (table 1). The results
are presented in figure 2. The tree length S 5 1.3 means
an average branch length of S/(2T 2 3) ø 0.007 nucle-
otide substitutions per codon, so that the sequence di-
vergence is even lower than the low divergences in the
6-taxon (S 5 0.11) and 17-taxon (S 5 0.38) trees in
previous experiments. However, accuracy was much
higher in the 98-taxon data sets (compare fig. 2A with
fig. 1A, B, and low S). Accuracy was higher than the
cut-off values when P , 0.90 and only slightly lower
than the cut-off values when P . 0.90 (fig. 2A). For

example, accuracy was ø0.93 at P 5 0.95 and ø0.97
at P 5 0.99 (fig. 2A).

Power of Bayes Prediction

Power to predict positive selection sites was strong-
ly dependent on both the level of sequence divergence
and the number of taxa but was largely unaffected by
sequence length. Figure 3 presents power of Bayes site
prediction under the discrete model (M3) for sequences
of 500 codons. Each point in figure 3 shows the esti-
mated probability that a site truly under positive selec-
tion (from evolver) is predicted by codeml at the cut-
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off P. In general, the higher the cut-off P, the fewer are
the sites predicted to be under positive selection. Thus,
the power decreases with the increase in the cutoff.

Regardless of the number of taxa, power was much
higher for medium and high sequence divergences than
for low divergence. For example, for 17-taxon data sets
with Lc 5 500, the power at the 0.95 cutoff was 0.10,
0.35, and 0.81 for low, medium, and high sequence di-
vergences, respectively (fig. 3B). Increasing the number
of taxa from 6 to 17 yielded substantial increases in
power, especially at medium and high divergences (fig.
3A and B). For very similar sequences, power improved
substantially by increasing the number of taxa to 98 (fig.
2B). For example, at the 0.95 cutoff, power was 0.08
(fig. 3A, low S), 0.14 (fig. 3B, low S), and 0.60 (fig. 2B)
for 6-, 17-, and 98-taxon data sets, respectively.

We observed much higher power for data sets sim-
ulated with increased positive selection pressure (v2 5
4.74; compare fig. 3C with A). Thus, one is more likely
to predict positive selection sites if strong positive se-
lection acts on the gene.

The effect of the tree shape reflected in relative
branch lengths was not examined in this paper but is
expected to be similar to that of the sequence diver-
gence. A well-balanced tree, with an even distribution
of changes over its branches, will achieve optimal in-
formation content. Highly biased trees might harbor too
many changes along the long branches and too few
changes along the short branches, leading to lack of in-
formation and low power in the detection method.

Discussion
Sampling Errors of ML Estimates of Parameters and
Their Effect on the Accuracy of Bayes Site Prediction

Because the empirical Bayes method uses param-
eter estimates in the prior distribution, the accuracy of
the prediction is affected by errors in the estimates of
the parameters. Indeed, if the parameters are correct, the
posterior probabilities calculated from equation (2) will
be the exact probabilities that the site is under positive
selection. Thus, the low accuracy of Bayes site predic-
tion in certain parameter combinations reported in this
paper (fig. 1) is the result of sampling errors in the ML
parameter estimation. We expect Bayes prediction (eq.
2) to be much more sensitive to parameters in the v
distribution, such as the proportions and v ratios in
model M3 (discrete), than to other parameters such as
branch lengths of the tree. Models of variable vs among
sites, such as M3 (discrete) and M8 (beta&v) used in
this paper, are known as finite mixture distributions. Pa-
rameters in such mixture distributions are notoriously
difficult to estimate partly because of strong correlations
among parameter estimates (Johnson, Kotz, and Kemp
1993, pp. 309–322). For example, a small proportion of
sites under strong positive selection (with a larger v)
might fit the data almost equally well as does a slightly
larger proportion of sites under less strong selection
(with a lower v), and typical data sets will not contain
sufficient information to distinguish between the two.
Results of figure 1 suggest that this problem is serious

when the data contain only a few highly similar se-
quences, where the information content is very low.

The alternative in this case is the hierarchical Bayes
approach (or full Bayes approach), which accounts for
uncertainties in the parameters in the prior distribution
by assigning and integrating over a hyper-prior distri-
bution for parameters in the prior. This does not increase
the power of the analysis but has the effect of adding
noise into the model so that the posterior distribution
will become more spread out, reducing the confidence
in the prediction. The computation can be achieved by
the Markov chain Monte Carlo algorithms but is ex-
pected to be much more expensive than for the ML pro-
cedure implemented in PAML. For small data sets,
where the use of the full Bayes approach is most re-
warding, the computation seems feasible and well worth
pursuing.

In the mean time, we advise caution on Bayes pre-
diction of sites under selection when the data contain
only a few highly similar sequences. Collecting more
sequences seems to be the most effective strategy in
improving the accuracy and power of the analysis.

A further difficulty is caused by the fact that v is
a continuous variable and is best described by a contin-
uous distribution, but we had to use a discrete distri-
bution for computational reasons (Yang et al. 2000). As
an example, if the three v ratios under M3 are 0.9, 1.0,
and 1.1, it will be extremely difficult to assign sites into
these classes using the Bayes or any other approach.
Consequently, one should be very cautious when draw-
ing a conclusion about positive selection when the es-
timated v is only slightly .1.

Robustness Analysis and Testing Selection with
Multiple Models

To evaluate the robustness of Bayes prediction of
sites under positive selection and to explore the perfor-
mance of different models, we simulated data sets under
models M3 and M8 and analyzed them using three dif-
ferent models: M2 (selection), M3 (discrete), and M8
(beta&v). Both 6-taxon and 17-taxon trees were used in
the simulation, and we present results obtained from the
17-taxon data sets in figure 4. Note that the parameters
for M3 and M8 were obtained from the same real data
set (table 1). When model M3 was used in both simu-
lation and analysis (diamonds in fig. 4B and D), the
accuracy and the power of Bayes site prediction were
similar to those when M8 was used for both simulation
and analysis (circles in fig. 4A and C). Regardless of the
simulation model, a lower accuracy and a higher power
were achieved when data were analyzed under M3 rath-
er than under M8. The difference is because of the fact
that M3 predicted almost 30% more sites than M8 did.
The accuracy and the power of site prediction under M2
(selection) were essentially the same as under M8
(beta&v) (fig. 4). It should be noted, however, that M2
was very conservative for six-taxon data sets, i.e., ac-
curacy was very high, but power was very poor (results
not shown).
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FIG. 4.—Bayes prediction of selected sites using different models: M2 (selection), M3 (discrete), and M8 (beta&v). Data were simulated
under M3 and M8 with S 5 8.44, N 5 500, T 5 17, and v 5 2.081 (see table 1).

The differences among the models appear to be
mainly the result of their different formulations. In this
sense, Bayes prediction of selected sites appears insen-
sitive to the model assumed in generating the data. The
different properties of the models have become apparent
in the analysis of real data sets as well as in simulation
data (fig. 4, see also Yang et al. 2000; Anisimova, Bie-
lawski, and Yang 2001). For example, M8 (beta&v)
makes a strict distinction between sites evolving with v
, 1 and those with v . 1 and is more stringent than
M3 in detecting selective pressure on a gene (discrete).
However, M8 is computationally intense and is known
to have multiple local optima in some data sets. To avoid
being trapped at a local optimum, it is important to run
M8 at least twice, once with initial v . 1 and once with
v , 1, and results corresponding to the highest likeli-
hood value should be used (see PAML manual; Yang
1997). Although M2 is less flexible than M8, its use of
a neutral site class with v1 5 1 means that sites under-
going neutral evolution or under weak positive selection
will be lumped into that class, reducing false positives.
However, M2 can be very conservative. The corre-
sponding null model M1 (neutral) does not account for
sites with 0 , v , 1, and the additional class in M2
may be forced to account for such sites, with positively
selected sites lumped into the class with v1 5 1, leading

to the failure to detect positive selection (Yang et al.
2000).

Model M3 is not as precise in distinguishing pos-
itive selection sites as M8 or M2. When the strength of
positive selection is low, and there is a large fraction of
neutral sites, M3 can yield a large number of incorrectly
predicted sites. Anisimova, Bielawski, and Yang (2001)
also showed that violations of model assumptions could
lead to a high rate of false positives for the LRT in
detecting positive selection. However, M3 has some ad-
vantages. First, M3, with only three site classes, appears
to fit any data set as well as any other model (e.g., Yang
et al. 2000). Second, it does not appear to have multiple
local optima and is computationally fast.

Because each model has advantages and disadvan-
tages, we suggest the use of multiple models in real data
analysis. Yang et al. (2000) recommended the following
models for real data analysis: M0 (one-ratio), M1 (neu-
tral), M2 (selection), M3 (discrete), M7 (beta), and M8
(beta&v).

Overall Recommendations Concerning the Likelihood
Method to Detect Positive Selection

The likelihood models implemented by Nielsen and
Yang (1998) and Yang et al. (2000) are designed to per-



Bayes Prediction of Positive Selection 957

form the following tasks, in order of increasing diffi-
culty: (1) test for the presence of sites under positive
selection (v . 1) by LRT, comparing two nested mod-
els, (2) estimation of the proportion of positive selection
sites and the strength of positive selection by ML esti-
mation of parameters in the v distribution, and (3) iden-
tification of amino acid sites under positive selection by
Bayes prediction.

The LRT seems quite reliable even in small data
sets with only a few similar sequences, according to the
simulation study of Anisimova, Bielawski, and Yang
(2001). Although use of the x2 approximation makes the
test conservative, the test appeared quite powerful. We
expect some data sets to contain insufficient information
for reliable identification of sites under positive selec-
tion, but it is still interesting to know whether such sites
exist at all. In such data sets, the LRT, which uses com-
bined evidence from all sites in the sequence, should be
more powerful than methods that test positive selection
at each site by counting substitutions (e.g., Suzuki and
Gojobori 1999).

Estimation of parameters in the v distribution is a
much more difficult matter, mainly because of the strong
correlation among parameters in the v distribution. The
different models of variable vs among sites and differ-
ent parameters of the same model correspond to the dif-
ferent ways of lumping sites into classes, and for a given
data set, there can be many almost equally good ways
of lumping sites.

Lastly, Bayes prediction of sites under selection is
most difficult, and many sequences are required to ac-
cumulate synonymous and nonsynonymous changes at
individual sites, which are the source of information for
inferring the underlying v ratio at each site. Further-
more, random and systematic errors in parameter esti-
mates will affect the accuracy of Bayes prediction. Also,
note that the accuracy and power measures used in this
paper apply to one site and not to the entire sequence,
and that it is almost certain that some sites in the se-
quence will be incorrectly identified, because so many
inferences are made in one analysis.

Given these considerations, it is remarkable that the
application of these methods to real data has generated
biologically highly sensible results (e.g., Zanotto et al.
1999; Bishop, Dean, and Mitchell-Olds 2000; Swanson
et al. 2001). We note that our simulations examined con-
ditions where Bayes site prediction will be most diffi-
cult, i.e., small data sets with a few highly similar se-
quences. To date, most ML-based studies of positive se-
lection in nonviral organisms sampled more than 17 lin-
eages, which represented relatively divergent sequences
(e.g., Bishop, Dean, and Mitchell-Olds 2000; Yang,
Swanson, and Vacquier 2000; Peek et al. 2001). Bayes
prediction in such cases should be more reliable.

Based on our simulations, we make the following
generalizations. (1) Prediction of positively selected
sites is unreliable when sequences are very similar, and
the number of lineages is small (e.g., S # 0.11 or T #
6). (2) Increasing the number of lineages is the most
effective way to improve accuracy and power. Accurate
prediction is possible for data sets comprising very sim-

ilar sequences if a very large number of lineages have
been sequenced. (3) Multiple models should be used in
real data analysis to ensure the robustness of the results.
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