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ABSTRACT
Polymorphisms in an ancestral population can cause conflicts between gene trees and the species tree.

Such conflicts can be used to estimate ancestral population sizes when data from multiple loci are available.
In this article I extend previous work for estimating ancestral population sizes to analyze sequence data
from three species under a finite-site nucleotide substitution model. Both maximum-likelihood (ML) and
Bayes methods are implemented for joint estimation of the two speciation dates and the two population
size parameters. Both methods account for uncertainties in the gene tree due to few informative sites at
each locus and make an efficient use of information in the data. The Bayes algorithm using Markov chain
Monte Carlo (MCMC) enjoys a computational advantage over ML and also provides a framework for
incorporating prior information about the parameters. The methods are applied to a data set of 53 nuclear
noncoding contigs from human, chimpanzee, and gorilla published by Chen and Li. Estimates of the
effective population size for the common ancestor of humans and chimpanzees by both ML and Bayes
methods are �12,000–21,000, comparable to estimates for modern humans, and do not support the notion
of a dramatic size reduction in early human populations. Estimates published previously from the same
data are several times larger and appear to be biased due to methodological deficiency. The divergence
between humans and chimpanzees is dated at �5.2 million years ago and the gorilla divergence 1.1–1.7
million years earlier. The analysis suggests that typical data sets contain useful information about the
ancestral population sizes and that it is advantageous to analyze data of several species simultaneously.

THE amount of sequence polymorphism in a popula- et al. 2000 for extensive reviews). They require data from
multiple loci and make use of the information in thetion is mainly determined by the parameter � �

4N�, where N is the (effective) population size and � conflict of gene trees among loci. For example, Takahata
(1986) suggested a method for estimating the popula-is the mutation rate per nucleotide site per generation.
tion size of the common ancestor of two closely relatedIn addition to its effect on the amount of neutral varia-
species when a pair of homologous DNA sequences aretion maintained in a population, the population size
available from the two species at each locus. The averageis also important in affecting the efficiency of natural
divergence at many loci provides information on theselection and is a critical parameter in population genet-
species divergence time, while the variation of sequenceics models of mutation and selection. It is important to
divergence among loci reflects the ancestral populationcompeting theories of origin and evolution of modern
size. The method of Takahata (1986) uses summaryhumans. When an estimate of the mutation rate is avail-
statistics from the data and was later extended to aable, as is assumed here, the population size can be
full-likelihood analysis and to the case of three species,obtained from estimates of �. The population size of a
where the population sizes of the two extinct ancestorspresent-day species can be estimated by using observed
as well as the two speciation dates were estimated (Taka-DNA sequence variation in the population (e.g., Kreit-
hata et al. 1995).man 1983; Fu 1994; Takahata et al. 1995; Yang 1997a).

In the case of three species, another simpler methodThe population size of modern humans has been esti-
has also been used (Nei 1987; Wu 1991; Hudson 1992).mated to be �10,000 (e.g., Takahata et al. 1995; Zhao
This approach uses the proportion of loci at which theet al. 2000; Yu et al. 2001).
gene tree does not match the species tree to estimateThe population size of an extinct ancestral species,
the ancestral population size and exploits the fact thatsuch as the common ancestor of humans and chimpan-
ancestral polymorphism creates conflicts between thezees, is harder to estimate, but a few methods have been
gene tree and the species tree. I refer to it as the tree-developed (see Edwards and Beerli 2000 and Satta
mismatch method. Its application to human and great
ape sequence data has led to estimates of the population
size for the ancestor of humans and chimpanzees that
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For example, Chen and Li (2001) sequenced 53 non- data contain DNA sequences from multiple loci, with
one individual sequenced from each of the three speciescoding contigs from human, common chimpanzee, go-

rilla, and orangutan, and estimated the population size at each locus. It is assumed that there is no recombina-
tion within a locus and free recombination betweenof the common ancestor of humans and chimpanzees to

range from 52,000 to 150,000, depending on the genera- loci. The population is assumed to be random mating,
with no gene flow after species divergence.tion time used (15 or 20 years) and on whether parsimony

or neighbor joining was used to infer the gene trees. The likelihood function: Consider the probability dis-
tribution of the gene tree and its branch lengths atThe tree-mismatch approach has room for improve-

ment. First, the conflicts in the estimated gene trees any locus i. Two cases are possible and are dealt with
separately. Case I is represented by Figure 1b, whereamong loci can be due to both ancestral polymorphism

and sampling errors in tree reconstruction. As the se- the gene tree is T0 � ((12)3), identical to the species
tree, and sequences 1 and 2 coalesce between the twoquences are highly similar, with few variable or informa-

tive sites at each locus, the reconstructed gene tree, no speciation events C and D. The coalescent times t0 and
t1 are defined in Figure 1b. Case I occurs when t1 � �0,matter what method was used to infer it, is unreliable.

Ignoring the sampling error in the estimated gene tree with probability
leads to overestimation of the conflict among loci and
overestimation of the ancestral population size (see be- � � �

�0

0

1
2N1

e�t1/(2N1)dt1 � 1 � e�2�0/�1 (1)
low). Second, the branch lengths in the gene tree pro-
vide, in a probabilistic sense, information about the (e.g., Takahata et al. 1995). In case II, both coalescent
ancestral population parameters, but are ignored by the events occur in the population ancestral to all three
method. The method clearly makes poor use of the species (Figure 1, c–e). The three gene trees T1 �
information in the data. Third, the method assumes ((12)3), T2 � ((23)1), and T3 � ((31)2) occur with
that one knows the species divergence times, while they equal probability (1 � �)/3.
might not be known. Indeed, some authors argue for the In case I (tree T0 in Figure 1b), the coalescent time
importance of accounting for ancestral polymorphism t1 is an exponential random variable truncated at t1 �
when estimating speciation dates (Takahata et al. 1995). �0, and t0 is an independent random variable with an

It seems advantageous to use information in both the exponential distribution
conflicting gene genealogies as well as the branch
lengths while accounting for their uncertainties. This
can be achieved by using the likelihood method under a

fI(t1|T0) �
1

2N1

e�t1/(2N1)/�, 0 � t1 � �0 ,

fI(t0|T0) �
1

2N0

e�t0/(2N0), 0 � t0 � ∞ .
coalescent model developed by Takahata et al. (1995).
However, the infinite-sites model assumed in the method
is sometimes violated by the data. In this article, I extend

(2)

the method of Takahata et al. for estimating ancestral Let branch lengths b0 and b1 in the gene tree of Figure
population sizes, using data from three species. I use 1b be defined as follows:
the nucleotide substitution model of Jukes and Cantor

b0 � (�0 	 t0 � t1)� � �0 	 t0� � t1� ,(1969) to correct for multiple substitutions at the same
site. The model is also implemented in a Bayes frame- b1 � (�1 	 t1)� � �1 	 t1� . (3)
work, with Markov chain Monte Carlo (MCMC) used

Note that b0 is the length of the internal branch AB andto achieve efficient calculation. The methods are ap-
b1 is the distance from sequence 1 to ancestor B (Figureplied to the data of Chen and Li (2001).
1b). Given that the gene tree at locus i is Ti � T0 and its
branch lengths are bi 0 and bi1, the probability of observing

MAXIMUM-LIKELIHOOD ESTIMATION sequence data Di at locus i, P(Di|T0, bi 0, bi1), is the likelihood
in traditional molecular phylogenetics (Felsenstein 1981).The species phylogeny is represented ((12)3) and is
Calculation of this probability is discussed in the nextassumed known. Species 1 and 2 diverged �1 generations
section. By averaging over the distribution of the ran-ago while species 3 diverged �0 generations earlier (Fig-
dom variables t0 and t1 (or b0 and b1), the probability ofure 1a). In this article, species 1, 2, and 3 represent
observing the data at locus i for case I ishuman (H), chimpanzee (C), and gorilla (G), respec-

tively. The effective population size of the ancestor of
f(Di|T0) � �

∞

0
�

�0

0

P(Di|T0, �0 	 t0� � t1�, �1 	 t1�)species 1 and 2 is N1, and that of the common ancestor
of all three species is N0. The mutation rate � is mea-


 fI(t1|T0)fI(t0|T0)dt1dt0sured as the number of nucleotide substitutions per site
per generation. As rate and time are confounded in

�
1
��

∞

0
�

2�0/�1

0

P(Di|T0, �0 	
1
2

�0x0 �
1
2

�1x1, �1 	
1
2

�1x1)such analysis, the parameters of the model are �0 �
4N0�, �1 � 4N1�, �0 � �0�, and �1 � �1� (Figure 1a).


 e�(x0	x1)dx1dx0 , (4)Collectively they are denoted � � {�0, �1, �0, �1}. The
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Figure 1.—(a) The species
tree ((12)3) for three species:
1 (human), 2 (chimpanzee),
and 3 (gorilla). Species 1 and
2 diverged �1 generations ago
and species 3 diverged �0 gener-
ations earlier. The population
sizes are N0 in the common an-
cestor of all three species and
N1 in the common ancestor of
species 1 and 2. The four pa-
rameters in the model are �0 �
4N0�, �1 � 4N1�, �0 � �0�, and
�1 � �1�, where � is the muta-
tion rate per site per genera-
tion. There are four possible
gene trees, represented by b–e.

In case I (b), sequences 1 and 2 coalescence between the two speciation events and the gene tree T0 � ((12)3) is consistent
with the species tree. This is referred to as case I in the text. In c–e, both coalescence events occur in the common ancestor of
all three species. In this case (case II), the gene tree can be T1 � ((12)3), T2 � ((23)1), or T3 � ((31)2), with equal probability.

after a change of variables. f(Di|�0, �1, �0, �1) � �f(Di|T0) 	
1 � �

3 �
3

k�1

f(Di|Tk)
In case II (Figure 1, c–e), both coalescence events

occur in the population ancestral to all three species.
� �

∞

0
�

2�0/�1

0

P(Di|T0, �0 	
1
2

�0x0 �
1
2

�1x1, �1 	
1
2

�1x1)The three gene trees T1, T2, and T3 have equal probabili-
ties. The coalescent times t0 and t1, defined in Figure 1,


 e�(x0	x1)dx1dx0c–e, are independent random variables with exponen-
tial distributions

	 e�2�0/�1�
∞

0
�

∞

0
�
3

k�1

P(Di|Tk,
1
2

�0x0, �0 	 �1 	
1
2

�0x1)


 e�(x0	3x1)dx1dx0 . (8)
fII(t1|Tk) �

3
2N0

e�3t1/(2N0), 0 � t1 � ∞ ,

fII(t0|Tk) �
1

2N0

e�t0/(2N0), 0 � t0 � ∞ , The log likelihood is a sum over all the L loci,(5)

�(�0, �1, �0, �1|D) � �
L

i�1

log� f(Di|�0, �1, �0, �1)�, (9)for k � 1, 2, or 3. Similarly, the branch lengths in the
gene tree are defined as

where D � {Di} represents data at all L loci. Parametersb0 � t0� ,
�0, �1, �0, and �1 are estimated by numerical maximiza-

b1 � �0 	 �1 	 t0� . (6) tion of the log-likelihood function. A C-optimization
routine from the PAML package (Yang 1997b) wasCalculation of the probability, P(Di|Tk, bi 0, bi1), of ob-
used. Each likelihood calculation requires evaluation ofserving data Di at locus i, given the gene tree Ti � Tk (k �
2L two-dimensional integrals (Equation 8), which are1, 2, 3) and its branch lengths bi 0 and bi1, will be described
calculated numerically using Mathematica. The Math-in the next section. The probability of observing the
link library was used to establish communication be-data at locus i for case II is
tween the C routine and Mathematica. For the data of
Chen and Li (2001) with L � 53 loci, the ML iterationf(Di|Tk) � �

∞

0
�

∞

0

P(Di|Tk, t0�, �0 	 �1 	 t1�)
takes �1 hr on a Pentium III PC at 1.2 GHz.

Probability of data at a locus given the gene tree and
 fII(t1|Tk)fII(t0|Tk)dt1dt0
branch lengths: Given the gene tree Ti, which is one of
T0, T1, T2, or T3 in Figure 1b, and its branch lengths (bi 0� �

∞

0
�

∞

0

P(Di|Tk,
1
2

�0x0, �0 	 �1 	
1
2

�0x1)
and bi1), the probability of observing the data, P(Di|Ti,
bi 0, bi1), in Equation 8 can be calculated under any model
 3e�(x0	3x1)dx1dx0 , (7)
of nucleotide substitution (Lio and Goldman 1998).
The model of Jukes and Cantor (1969) is used in thisfor k � 1, 2, 3.
article, which seems sufficient for such highly similarAveraging over cases I and II or over the four gene
sequences. Under this model, the sequence data cantrees T0, T1, T2, T3 in Figure 1, we obtain the marginal

probability of observing data Di at locus i as be summarized as counts of five possible site patterns
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TABLE 1 with those five site patterns: Di � {ni 0, ni1, ni 2, ni 3, ni 4}.
The observed number of counts from the data of ChenNumber of site patterns from the data of Chen and Li (2001)
and Li (2001) is listed in Table 1.

For gene trees T0 or T1, the probabilities of observingLocus (i) ni ni 0 ni 1 ni 2 ni 3 ni 4 dHCG-O Rate
the five site patterns are

1-2609 472 462 3 3 4 0 0.0299 1.010
2-1251 531 509 13 4 5 0 0.0662 2.236 p0(b0, b1) � prob(xxx)
3-2659 560 551 4 1 4 0 0.0206 0.696
7-2012 528 511 10 2 5 0 0.0284 0.959 � (1 	 3e�8b1/3 	 6e�8(b0	b1)/3 	 6e�(8b0	12b1)/3)/16 ,
8-1364 475 465 6 3 1 0 0.0295 0.996
9-1386 484 471 3 3 7 0 0.0437 1.476 p1(b0, b1) � prob(xxy)
10-1412N 474 462 8 3 1 0 0.0254 0.858

� (3 	 9e�8b1/3 � 6e�8(b0	b1)/3 � 6e�(8b0	12b1)/3)/16 ,10-2207 480 475 3 2 0 0 0.0337 1.138
10-2215-3 515 505 4 3 3 0 0.0278 0.939

p2(b0, b1) � prob(yxx)10-2891-2 545 538 1 3 3 0 0.0227 0.767
11-1419-2 474 464 4 1 5 0 0.0317 1.071

� (3 � 3e�8b1/3 	 6e�8(b0	b1)/3 � 6e�(8b0	12b1)/3)/16 ,11-2224 371 369 0 0 2 0 0.0200 0.675
11-73646 463 451 5 1 6 0 0.0294 0.993

p3(b0, b1) � prob(xyx)12-1482-2 368 359 4 2 3 0 0.0299 1.010
12-2906 396 390 5 0 1 0 0.0259 0.875

� (3 � 3e�8b1/3 	 6e�8(b0	b1)/3 � 6e�(8b0	12b1)/3)/16 � p2 ,12-2924 492 479 6 3 4 0 0.0229 0.773
12-2927-2 471 461 3 5 2 0 0.0298 1.006

p4(b0, b1) � prob(xyz)14-2960 301 297 3 1 0 0 0.0248 0.838
14-2963 366 360 6 0 0 0 0.0253 0.854 � (6 � 6e�8b1/3 � 12e�8(b0	b1)/3 	 12e�(8b0	12b1)/3)/16
15-2265-2 459 450 5 2 2 0 0.0259 0.875

(10)15-2266 510 497 8 1 4 0 0.0243 0.821
16-598D4 518 511 3 0 4 0 0.0164 0.554

(Yang 1994). For gene trees T2 and T3 (Figure 1, d and17-0787 450 443 2 3 2 0 0.0264 0.892
e), the probabilities can be obtained by considering the17-0801 491 485 3 2 1 0 0.0321 1.084

17-0812-2 374 361 8 2 3 0 0.0348 1.175 symmetry of the problem. Thus with functions p0–p4
17-0813 444 436 4 2 2 0 0.0291 0.983 defined above, the probability of data at locus i, condi-
17-1574 359 352 4 1 2 0 0.0226 0.763 tional on the gene tree Tk, k � 1 (or 0), 2, 3, and its17-2294 514 500 9 4 1 0 0.0277 0.936

branch lengths b0 and b1, is given by the multinomial17-2987 497 486 4 1 5 1 0.0285 0.963
distribution17-2988 494 481 7 4 2 0 0.0306 1.034

17-0784 462 454 3 1 4 0 0.0484 1.635
P(Di|T1, b0, b1) � C 
 pni 0

0 pni1
1 pni 2	ni3

2 pni 44 ,17-276O15 433 419 7 3 4 0 0.0324 1.094
17-2984 502 483 8 7 4 0 0.0245 0.827

P(Di|T2, b0, b1) � C 
 pni 0
0 pni 2

1 pni 3	ni 1
2 pni 4

4 ,17-2986 419 412 2 2 3 0 0.0185 0.625
18-0864 373 360 7 5 1 0 0.0415 1.402

P(Di|T3, b0, b1) � C 
 pni 0
0 pni 3

1 pni 1	ni 2
2 pni 4

4 , (11)18-0866 443 434 2 4 3 0 0.0175 0.591
18-1506 461 456 3 0 2 0 0.0257 0.868

where C � ni!/�4
j�0nij!, and ni � ni 0 	 ni1 	 ni 2 	18-1584 481 470 1 5 5 0 0.0400 1.351

18-2558 443 434 5 4 0 0 0.0372 1.256 ni 3 	 ni 4.
19-0946 320 310 6 4 0 0 0.0169 0.571 Mutation rate variation among loci: An important fac-
19-0953 479 474 2 1 1 1 0.0240 0.811 tor that may influence the estimation of ancestral popu-20-1636 535 517 4 10 4 0 0.0447 1.510

lation sizes is the variation of mutation rates among20-2012 511 502 5 2 2 0 0.0391 1.321
loci (Yang 1997a; Chen and Li 2001). For example,20-2018 535 522 5 4 4 0 0.0319 1.077

20-2019 410 401 5 2 2 0 0.0299 1.010 estimation of ancestral population size from comparison
20-2020 450 439 3 3 5 0 0.0334 1.128 between two species was found to be sensitive to even
20-2064 512 504 6 1 1 0 0.0260 0.878

slight rate variation (Yang 1997a). If relative rates for20-2085 542 534 1 2 5 0 0.0219 0.740
the loci are available, it will be straightforward to incor-20-2352 511 502 2 4 3 0 0.0279 0.942

20-2472 452 444 4 2 2 0 0.0520 1.756 porate them in the likelihood calculation (Yang 1997a).
20-2560 517 510 5 1 0 1 0.0286 0.966 In this article, I use the average distance from the orang-
20-2563 545 535 1 4 5 0 0.0217 0.733 utan to the three African apes to calculate the relative
20-2568 487 480 2 4 1 0 0.0195 0.659

rate for the locus (Table 1). This ad hoc approach ap-
ni 0, n i1, ni 2, ni 3, ni 4 are counts of sites with patterns xxx, xxy, pears sensible since the orangutan diverged from the

yxx, xyx, and xyz in human (H), chimpanzee (C), and gorilla African apes very early and ancestral polymorphism in
(G), while ni � ni 0 	 ni 1 	 ni 2 	 ni 3 	 ni 4 is the total number their common ancestor does not seem important. Theof sites at locus i.

likelihood calculation proceeds as before except that
the branch lengths for the gene tree at each locus are
multiplied by the relative rate for that locus.(configurations): xxx, xxy, yxx, xyx, and xyz, where x, y,

and z are any three different nucleotides. The data at Application to the data of Chen and Li: Chen and Li
(2001) sequenced one individual from each of the fourlocus i can thus be represented by the number of sites
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TABLE 2 among loci, I calculated the average sequence distance
under the model of Jukes and Cantor (1969) fromMaximum-likelihood estimates of parameters
the human, chimpanzee, and gorilla to the orangutan,
that is, dHCG-O � (dH-O 	 dC-O 	 dG-O)/3. This is dividedVariable rates

Parameter One rate for all loci among loci by the average across all loci to give the relative rate for
that locus (Table 1). The average distance from the

�̂0 (N̂0) 0.003057 (38,000) 0.002348 (29,000)
orangutan to the African apes is found to be 0.0296;�̂1 (N̂1) 0.000990 (12,000) 0.001650 (21,000)
this is consistent with a mutation rate of 10�9 substitu-�̂0 (time in MY) 0.001089 (1.1 MY) 0.001704 (1.7 MY)
tions per site per year and an orangutan divergence�̂1 (time in MY) 0.005194 (5.2 MY) 0.004936 (4.9 MY)

� �3,099.41 �3,100.01 date of �13 MYA (e.g., Hasegawa et al. 1987) since
0.0296/(2 
 13 
 106) � 1.1387 
 10�9. The relativeIn converting � into N and � into speciation time, the gener-
rates for loci calculated this way are used as fixed con-ation time is assumed to be g � 20 years in all species and
stants in the likelihood calculation for the data of threethe mutation rate to be 10�9 substitutions per site per year.
species. The MLEs of parameters are shown in Table 2.
Using the same generation time and mutation rate as
above, we get the estimate of the population size forspecies, human, chimpanzee, gorilla, and orangutan, at

53 independent noncoding loci (contigs). An advantage the ancestor of humans and chimpanzees to be 21,000,
larger than the estimate under the assumption of aof the data set is that the sequences are expected to

be outside and far away from coding regions and not constant rate for all loci. The population size for the
ancestor of all three species is estimated to be 29,000,affected by selection at linked sites or loci. The model

of this article assumes the molecular clock and uses only smaller than under the constant-rate model. The differ-
ences between the two analyses are somewhat surprising,three species. The counts of site patterns are listed in

Table 1. At some loci, the total number of sites used in as one might expect the population sizes to be smaller
when rate variation among loci is accounted for. How-this article is larger than that in Chen and Li (2001;

Table 1), because some sites had alignment gaps in the ever, it is noted that the distance from orangutan to the
African apes has only a weak correlation (0.44) with theorangutan and were removed by Chen and Li.

The three-species data are analyzed by the maximum- average distance within the H-C-G group, which appears
to suggest that the mutation rates are rather homoge-likelihood (ML) method of this article. The estimates

of parameters are given in Table 2. If we assume a neous among loci and that the conflict among loci in
sequence divergence is mainly caused by ancestral poly-generation time of 20 years and a mutation rate of

10�9 substitutions per site per year (e.g., Nachman and morphism.
If the average distances within the H-C-G group,Crowell 2000), the estimates suggest a population size

for the ancestor of humans and chimpanzees of (dHC 	 dCG 	 dGH)/3, are used as relative rates for the
loci, parameter estimates become �̂0 � 0.0000014, �̂1 ��12,000. This is several times smaller than the estimates

of Chen and Li (2001) from the same data, at a mini- 0.002902, �̂0 � 0.003229, and �̂1 � 0.004555, with � �
�3069.73. Those correspond to a population size ofmum of 52,000. The estimate is also similar to estimates

of the population size of modern humans, for example, 36,000 for the ancestor of humans and chimpanzees, a
population size of only 18 for the ancestor of all three12,000 by Yu et al. (2001). The population size for the

common ancestor of all three species is estimated to species, 4.5 MY for the H-C divergence, and 7.7 MY
for the gorilla divergence. This calculation effectivelybe �38,000. The same analysis estimated the human-

chimpanzee divergence time at 5.1 million years ago attributes all variation in sequence divergence among
loci to mutation rate variation and causes underestima-(MYA) and the gorilla divergence at �1.1 million years

(MY) earlier. Those estimates are largely consistent with tion of �0 and �1 and overestimation of �1 and �0 (see
also Table 2).those of previous studies (e.g., Hasegawa et al. 1985;

Ruvolo 1997; Kumar and Hedges 1998; Yoder and Comparison with the tree-mismatch method: When
the gene tree is T2 or T3 (Figure 1), there is a mismatchYang 2000). Figure 2a shows the likelihood surface as

a function of �0 and �1 when �0 and �1 are fixed at their between the species tree and the gene tree. This occurs
with probability PSG � f(T2) 	 f(T3) � 2(1 � �)/3 �maximum-likelihood estimates (MLEs). The �95% con-

fidence region is given by the likelihood contour at 3.32 2⁄3e�2�0/�1 (e.g., Nei 1987, pp. 288–289). The tree-mis-
match method estimates �1 by equating this probabilityunits below the optimum, that is, at �3102.73 (Figure

2a). The sampling errors are quite large. Analysis of the to the proportion (p̂) of loci at which the estimated
gene tree differs from the species tree, with �0 beinghuman and chimpanzee sequences at the 53 loci using

the ML method of Takahata et al. (1995) under the assumed known; that is, �̂1 � �2�0/log{3p̂/2}. Chen and
Li (2001) used the orangutan to root the H-C-G treeinfinite-sites model leads to �̂1 � 0.0017 and �̂1 � 0.0055

(N. Takahata, personal communication). Those esti- and were able to resolve the gene tree at 33 loci, out
of which 9 mismatches were found, at a proportion ofmates are similar to the MLEs of Table 2.

To examine the effect of mutation rate variation 27.3%. Several coding loci were included as well, so that
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clock-rooting approach uses more “informative” sites
than out-group rooting and resolves the gene tree at 49
of the 53 loci, out of which 18 are mismatches, at the
proportion 36.7%. This proportion is even higher than
those of Chen and Li and produces even larger estimates
of �1 and N1.

To understand the difference between the tree-mis-
match method and ML, note that three aspects of the
data are ignored by the tree-mismatch method and ac-
counted for by ML: (i) uncertainty in the estimated
gene tree due to the finite number of nucleotide sites
at the locus, (ii) unresolved loci (ties), and (iii) branch
lengths in the gene tree reflected in the sequence diver-
gences. While all three probably contribute to the large
differences discussed above, uncertainty in the esti-
mated gene tree seems to be the predominant reason.
A more “proper” tree-mismatch method should equate
the observed proportion of mismatches (p̂) not to PSG

but to PSE, the probability of a mismatch between the
species tree and the estimated gene tree. This probability
is given by

PSE � �
max{ni 2,ni 3}
ni1

f(Di|�0, �1, �0, �1), (12)

where f is the probability of data Di � {ni 0, ni1, ni 2, ni 3,
ni 4} in Equation 8, and the summation is over all data
configurations in which the ML tree for the locus is
either T2 or T3 (Figure 1). Unlike PSG, PSE is dependent
on all four parameters, �0, �1, �0, and �1, as well as the
sequence length ni and appears no easier to calculate
than the full likelihood (Equation 9). Instead I use
Monte Carlo simulation to calculate those probabilities
to assess the impact of errors in gene tree reconstruction
on the difference between PSG and PSE. The MLEs of
parameters in Table 2 (“constant rate”) are used to
generate gene trees, which are used to “evolve” se-
quences. The sites are counted to obtain the data Di �
{ni 0, ni1, ni 2, ni 3, ni 4}, which are used to estimate the gene
tree by ML.

Figure 2.—Log-likelihood surface (contour) as a function Figure 3 shows the probabilities that the species tree
of �0 and �1 when �0 and �1 are fixed at their MLEs. (a) The (S), the gene tree (G), and the estimated gene tree (E)
same substitution (mutation) rate is assumed for all loci. (b) differ from each other. The probability of a mismatchFixed relative rates obtained from comparison between the

between the species tree and the gene tree is PSG �orangutan and the African apes (human, chimpanzee, and
2(1 � �)/3 � 0.0739, much lower than the observedgorilla) are used to account for possible evolutionary rate

variation among loci. Maximum-likelihood estimates of pa- mismatch proportion p̂ � 0.367. The probability of a
rameters are listed in Table 2. mismatch between the species tree and the estimated

gene tree is higher. With 466 sites (the average across
the 53 loci, Table 1), PSE � 0.2028, which is 2.7 times

16 mismatches were found at a total of 52 resolved loci, as high as PSG (Figure 3). Now consider the four gene
at the proportion 30.8%. The authors assumed an H-C trees T0, T1, T2, and T3 (Figure 1), which occur with
divergence at �1 � 1.6 MYA and arrived at �̂1 � 0.00414, probabilities f(T0) � � � 0.8892 and f(T1) � f(T2) �
which, if the generation time is 20 years, corresponds f(T3) � (1 � �)/3 � 0.0369 (Equation 1). According
to a minimum population size of N̂1 � 52,000 for the to the simulation, the probability that the topology of
ancestor of humans and chimpanzees. In this article, the gene tree is incorrectly reconstructed when the true
the molecular clock has been assumed, which can also gene tree is T0, T1, T2, or T3 is P0 � 0.1453 and P1 �
be used to root the H-C-G tree. Under the clock, T1, T2, P2 � P3 � 0.1981. Note that for the estimated gene
or T3 is the ML tree if ni1, ni 2, or ni 3 is the greatest among tree, we consider only the topology and disregard its

divergence times relative to the speciation times. Thethe three, respectively (Saitou 1988; Yang 1994). The



1817Ancestral Population Sizes in Hominoids

Figure 3.—Tree-mismatch prob-
abilities calculated using Monte
Carlo simulation plotted as func-
tions of the sequence length.
MLEs of parameters in Table 2
(one rate for all loci) are used in
the simulation. Note that S, G, and
E in the subscripts stand for the
species tree, the gene tree, and the
estimated gene tree (the ML tree),
respectively. Thus PSG is the proba-
bility that the species tree and the
gene tree differ; this is 0.0739 for
the parameter values used. PSE is
the probability of a mismatch be-
tween the species tree and the esti-
mated gene tree, and PGE is the
probability of a mismatch between
the gene tree and the estimated
gene tree. Ptie is the proportion of
replicates in which a tie occurs,
that is, the two best trees are
equally good. Ties are excluded
in calculation of PSE and PGE. Ten
million replicates were simulated
for each sequence length.

average error probability of gene tree reconstruction is g(x ; �, �) � ��e��xx��1/�(�), (13)
thus PGE � �3

i�0 f(Ti)Pi � 0.8892 
 0.1453 	 3 
 0.0369 

with mean �/� and variance �/�2. The hyperparamet-0.1981 � 0.1512 (see Figure 3). When gene trees T0 or
ers � and � are chosen to reflect the range and likelyT1 are incorrectly reconstructed, the estimated gene tree
values of the parameters.will always be a mismatch with the species tree; such

Instead of the coalescent times t0 and t1, which haveerrors will cause an overcount of f(T0)P0 	 f(T1)P1 �
different definitions in different gene trees (Figure 1),0.1366. Conversely, when gene trees T2 or T3 are incor-
branch lengths b0 and b1 in the gene tree are used inrectly reconstructed, the estimated tree will not be
the MCMC. The joint prior distributions of the genecounted as a mismatch one-half of the time, so the
tree T0 and its branch lengths b0 and b1 given � can beundercount is f(T2)P2/2 	 f(T3)P3/2 � f(T2)P2 � 0.0074.
easily derived from the distributions of the coalescentThe difference between those two error rates gives rise
times t0 and t1 (Equation 2),to the net error due to gene tree reconstruction: PSE �

PSG � f(T0)P0 � �P0 � 0.1290. The above argument f(T0, b0, b1|�) � f(T0|�)f(b1|T0, �)f(b0|T0, b1, �)
suggests that ignoring errors in gene tree reconstruction
always causes overestimation of the mismatch between � � 


2
��1

e�2(b1��1)/�1 

2
�0

e�2(b0	b1��0��1)/�0

the species tree and the gene tree and leads to overesti-
mation of the ancestral population size N1. It is interest- � 4/(�0�1) 
 e�2(b1��1)/�1�2(b0	b1��0��1)/�0,
ing that the bias in the tree-mismatch method is caused (14)
by reconstruction errors for gene tree T0 alone and thus
can be reduced if � is reduced, for example, if the for �1 � b1 � �1 	 �0 and �1 	 �0 � b1 � b0 � ∞.
two speciation events are very close or if the ancestral Similarly, the joint prior distribution of gene tree Tk,
population size N1 is large. Obviously factors that reduce k � 1, 2, 3, and its branch lengths b0 and b1 given � is
the reconstruction error P0, such as longer sequences

f(Tk, b0, b1|�) � f(Tk|�)f(b0|Tk, �)f(b1|Tk, �)(Figure 3) and higher mutation rates, will reduce the
bias as well.

�
1��

3



2
�0

e�2b0/�0 

6
�0

e�6(b1��0��1)/�0

THE BAYES APPROACH USING MCMC �
4
�2

0

e�2�0/�1�[2b0	6(b1��0��1)]/�0, (15)
A Bayes approach is implemented under the same

model, using MCMC. As parameters � � {�0, �1, �0, �1} with 0 � b0 � ∞ and �1 	 �0 � b1 � ∞.
are all positive, I use independent gamma distributions The variables to be updated in the Markov chain

include the parameters � � {�0, �1, �0, �1} and the geneas the prior. The gamma density is
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TABLE 3

Prior and posterior distributions of parameters in the Bayes analysis

Prior Posterior

Parameter (�, �)a Mean (95% interval)b Mean Mean (95% interval)b

Good priors
�0 (N0) (2, 2,000) 12,500 (1,500, 34,800) 0.00158 19,700 (2,900, 41,600)
�1 (N1) As above 0.00100 12,400 (1,700, 32,100)
�0 (time in MY) (4, 2,500) 1.6 MY (0.44 MY, 3.51 MY) 0.00164 1.6 MY (0.7 MY, 2.7 MY)
�1 (time in MY) (20, 4,000) 5.0 MY (3.1 MY, 7.4 MY) 0.00530 5.3 MY (4.4 MY, 6.1 MY)

Poor priors
�0 (N0) (1.5, 300) 62,500 (4,500, 194,800) 0.00263 32,900 (5,300, 57,800)
�1 (N1) As above 0.00265 33,100 (5,300, 88,600)
�0 (time in MY) (4, 2,000) 2.0 MY (0.55 MY, 4.4 MY) 0.00190 1.9 MY (0.8 MY, 3.2 MY)
�1 (time in MY) (4, 800) 5.0 MY (1.3 MY, 11.0 MY) 0.00464 4.6 MY (3.4 MY, 5.7 MY)

a Parameters � and � are for the gamma priors; the prior mean is �/� (not shown).
b Mean and 2.5 and 97.5% percentiles of the prior or posterior distributions for population sizes or speciation

times. In converting � and � into N and speciation time, the generation time is assumed to be g � 20 years
and the mutation rate 10�9 substitutions per site per year.

trees and branch lengths at all L loci, G � {Ti, bi 0, bi 1}, If the new state is accepted, the chain moves to the new
i � 1, 2, . . . , L. The Markov chain is constructed so state (�*, G *). Otherwise the chain stays in the old state
that its steady-state distribution is the posterior distribu- (�, G). Note that f(D) in Equation 16 cancels in calcula-
tion of those variables. Bayes inference is then based tion of the acceptance ratio R. Calculation of f(�*,
on the joint posterior distribution G *|D)/f(�, G|D) is straightforward due to the condi-

tional independence in the model as described above.
f (�, G|D) �

f (D|G)f (G|�)f(�)
f (D) So the focus here is the proposal mechanism and the

proposal ratio q(�, G|�*, G *)/q(�*, G *|�, G).
�

�L
i�1P(Di|Ti, bi 0, bi1) 
 �L

i�1 f (Ti, bi 0, bi1|�) 
 f (�0)f (�1)f (�0)f (�1)
f (D) The proposal density q can be rather flexible as long

as it specifies an aperiodic and irreducible Markov(16)
chain. The algorithm I implemented cycles through

The denominator f(D) is the marginal probability of several steps, with each step updating some but not all
the data variables. In step 1, the gene tree and branch lengths

at each locus i (Ti, bi 0, bi 1) are updated, while parametersf(D) � �
�
�
G

f(D|G)f(G|�)f(�)dGd� , (17)
� are fixed. Each locus is updated once in this step.
Step 2 updates parameters � while the branch lengthswhere the integral over G represents summation over
{bi 0, bi1} are fixed. This step can cause changes to thethe four gene trees (T0, T1, T2, T3 in Figure 1) and

integration over branch lengths in each tree. The poste- gene trees at some loci. Step 3 is a mixing step, in which
rior distribution of any parameter is then given by inte- parameters �0, �1, �0, �1 and branch lengths at all loci
grating over the joint posterior distribution. For ex- are multiplied by a constant while the gene trees remain
ample, unchanged. The MCMC algorithm is tedious and the

details are given in the appendix.f(�|D) � �
G

f(�, G|D)dG . (18)
The Markov chain is started from a random initial

state. Sampling starts after a certain number of genera-A Metropolis-Hastings algorithm (Metropolis et al.
tions, which are discarded as burn-in, and samples are1953; Hasting 1970) is used to update variables in the
taken every certain number of steps, thus “thinning”MCMC. Given the current state of the chain (�, G),
the chain. Convergence of the chain is checked by exam-a new state (�*, G *) is proposed through a proposal
ining the output and also by running multiple chains.distribution q(�*, G *|�, G). The new state is then ac-
The algorithm is also run without sequence data, andcepted with probability
the posterior distribution generated is found to be close

R � min�1,
f(�*, G*|D)
f(�, G|D)



q(�, G|�*, G*)
q(�*, G*|�, G)� to the prior.

Application to the data of Chen and Li: The Bayes
MCMC algorithm is applied to the data of Chen and

� min�1,
f(D|G*)f(G*|�*)f(�*)

f(D|G)f(G|�)f(�)



q(�, G|�*, G*)
q(�*, G*|�, G)� . (19)

Li (2001; see Table 1). I used two sets of priors (Table
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Figure 4.—Prior and posterior
distributions for parameters �0, �1,
�0, and �1. Parameter estimates are
shown in Table 3 (good priors).

3). Parameters � and � in the gamma prior distributions the ancestor of humans and chimpanzees is estimated
to be 12,400, with the 95% credibility interval (CI) toare chosen by considering likely values and ranges of

ancestral population sizes and species divergence times be (1700, 32,100). The H-C divergence is dated at
5.3 MY, with the 95% CI to be (4.4, 6.1). The estimatesand converting them into parameters �0, �1, �0, and �1

using a generation time of 20 years and a mutation rate of �1 and �1 are very similar to the MLEs. The posterior
mean of �0 is smaller and that of �0 is larger than theof 10�9 substitutions per site per year. The first set is

considered more realistic and referred to as the “good MLEs (Tables 2 and 3). The correlation coefficients
calculated from the posterior distributions of parame-priors” in Table 3. Ancestral population sizes N0 and N1

are centered �12,500, close to estimates for modern ters �0, �1, �0, and �1 are shown in Table 4. There is strong
negative correlation between �0 and �0 and between �1humans, with the 2.5 and 97.5% percentiles at 1500 and

34,800, respectively. The divergence time for humans and �1. Comparison of the prior and posterior distribu-
tions (Figure 4) suggests that the data contain muchand chimpanzees is centered �5 MY, while the diver-

gence time for the gorilla is centered �1.6 MY. Note more information about the divergence times, especially
the H-C divergence time (�1), than about the populationthat parameters �0, �1, �0, and �1 are all �1 but are

definitely 
0; thus values of � 
1 are used so that the sizes.
To see the effect of prior assumptions on the posteriorgamma distribution has a mode 
0.

The posterior distributions of parameters �0, �1, �0, distributions, I used a second set of priors, which are
more spread out and also assume large population sizesand �1 are shown in Figure 4 together with their priors.

They are also summarized in Table 3 (good priors). (mean 62,500). The posterior distributions are summa-
rized in Table 3 under the heading “Poor priors.” TheThe means of the posterior distributions for �0, �1, �0,

and �1 are listed, and then the means and the 95% point estimates of both N0 and N1 are �33,000, smaller
than the prior means. The H-C divergence is dated atcredibility sets for the two population sizes (N0 and N1)

and for the two speciation times are listed. The posterior 4.6 MY, and the gorilla divergence is dated 1.9 MY ear-
lier. Those estimates appear reasonable, although themeans and medians are close. The population size for
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TABLE 4 and �1 is not well understood, although Satta et al.
(2000) emphasized its possible significance. As the hu-Correlation coefficients in the posterior distribution
man, chimpanzee, and gorilla sequences are extremely
similar, most of the recombination events will not be�0 �1 �0

visible in the sequence data, and the few sites at which
�1 0.05 more than two nucleotides are observed in the data (see
�0 �0.58 0.43

counts ni 4 for site pattern xyz in Table 1) are probably�1 �0.16 �0.60 �0.41
due to multiple substitutions at the same site. Third,
the substitution model of Jukes and Cantor (1969) is
simplistic. More complex models, such as those that

H-C divergence date is too recent. Similar strong corre- account for variable substitution rates among sites
lations between the parameters are discovered as in the within the locus, can be easily implemented, but are
analysis using the good priors. The negative correlation expected to have little effect. The most serious issue
between �1 and �1 (calculated to be �0.76), combined seems to be mutation rate variation among loci. In the
with the assumed and estimated large population sizes, case of two species, the ancestral population size is over-
appears to have led to a H-C divergence date that is too estimated when mutation rate variation is ignored and
recent. accounting for the bias leads to dramatic reduction in

the estimated population size (Yang 1997a). In this
article, the population size of the ancestor of humansDISCUSSION
and chimpanzees is not very large under the constant-

ML and Bayes methods of this article estimated the rate model and becomes larger when variable rates for
population size for the common ancestor of humans loci are assumed. The effect is much less important and
and chimpanzees to be �12,000, similar to estimates also in the opposite direction compared with the two-
for modern humans. The estimates are several times species case. Lack of strong correlation among sequence
smaller than those obtained by Chen and Li (2001) distances with the orangutan seems to suggest that the
from the same data using the tree-mismatch method, rates are relatively homogeneous among those loci. It
which range from 52,000 to 150,000. Even the worst- seems that simultaneous analysis of data from three
case estimates—e.g., 36,000 by ML under the assumption species allows the parameters to constrain each other,
that all sequence divergence variation among loci is due leading to a better use of information in the data. It is
to mutation rate variation and 33,000 from the Bayes quite likely that the estimation can be further improved
analysis using the poor priors—are smaller than the by sampling multiple individuals from the same species.
minimum estimate of Chen and Li. The tree-mismatch The ML and Bayes methods produced similar results
method used by Chen and Li appears to have serious for the data analyzed in this article. However, the ML
biases due to errors in gene tree reconstruction, and calculation is slower than the MCMC algorithm. The
the likelihood and Bayes estimates reported here are Bayes approach also provides a framework for incorpo-
probably more reliable. Thus it may be concluded that rating prior information about the parameters. For ex-
the sequence data of Chen and Li (2001) do not support ample, a wealth of information is available about the
much larger ancestral populations than the modern divergence time between humans and chimpanzees. By
humans or the notion that early human populations forcing a very narrow prior distribution for �1, such
experienced dramatic size reductions (Hacia 2001; information can be incorporated in the Bayes analysis.
Kaessmann et al. 2001). Using an informative prior will reduce the adverse effect

While the ML and Bayes methods are expected to of strong correlation among parameters when other
have better statistical properties than the simple tree- parameters are estimated. Furthermore, the Bayes algo-
mismatch method, it is worthwhile to examine some of rithm seems easier than ML to extend to data that con-
the assumptions made in this article. First, the evolution- tain more than three species and more than one individ-
ary rate is assumed to be constant over lineages. This ual from each species.
assumption seems reasonable as the species compared Program availability: C programs implementing the
are very closely related; Chen and Li’s (2001) relative- MCMC algorithm and calculating the mismatch proba-
rate tests supported the molecular clock. The large dif- bilities (PSG, PSE, and PGE, etc.) are available from the author
ferences between the tree-mismatch method and the upon request. The C and Mathematica programs for the
likelihood and Bayes methods are clearly not due to the likelihood method are available as well, but they make
use of the clock assumption in this article; use of clock use of the Mathlink library and are awkward to use.
rooting in the tree-mismatch method produced even

I am very grateful to Drs. W.-H. Li and F.-C. Chen for providinglarger estimates of the population size for the ancestor
the data analyzed in this article. I thank M. Hasegawa and B. Larget

of humans and chimpanzees. Second, the analysis as- for discussions and N. Takahata for comments. This study is supported
sumes no recombination within a locus. The effect of by grant 31/G13580 from the Biotechnology and Biological Sciences
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where r is a random variable from U(0, 1). If y*
1 is out bi 1 for all loci are fixed. At each locus the following

constraints have to be satisfied: 0 � �1 � b1 � �0 	 �1 �of the range (0, 1), it is reflected back into the range.
The new branch lengths b*

0 and b*
1 are calculated from b0 	 b1 � ∞ in gene tree T0 and 0 � b0 � ∞ and �0 	

�1 � b1 � ∞ in gene tree T1, T2, or T3 (Figure 1). Tothe relationships
allow the chain to move more freely, the gene tree is

b0 � (�0 	 y0)(1 � y1) , allowed to change, if necessary, from T0 to T1, T2, or T3

or vice versa. Thus only the following constraints haveb1 � �1 	 y1(�0 	 y0) . (A5)
to be satisfied when new values are proposed for �0 and

If b*
1 
 �0 	 �1, the new gene tree T *

i is set to T1; otherwise �1: 0 � �1 � b1 and �0 	 �1 � b0 	 b1 at every locus; that
it is set to T0. This change of gene tree does not change is, �1 � min{bi 1} � c and �1 � �0 	 �1 � min{bi 0 	 bi 1} �
the proposal ratio. The proposal ratio for variables y0 d. The following transformation is used to propose new
and y1 is y*

0/y0. The proposal ratio for the original vari- states,
ables b0 and b1 can be derived by noting

y0 � �0/(d � �1) ,

y1 � �1 , (A10)

� J � � 	
�b0

�y0

�b0

�y1

�b1

�y0

�b1

�y1

	 � �1 � y1 �(�0 	 y0)

y1 �0 	 y0
� � �0 	 y0 .

with constraints 0 � y0 � 1 and 0 � y1 � c. Note that
y0 is the ratio of the distance CD to AD in Figure 1, and
changing y0 will slide the speciation date C (Figure 1)

Thus the acceptance ratio is between A and D. Note that �0 � y0(d � �1), �1 � y1,
and

R � min�1,
P(Di|T *

i , b*
i 0, b*

i 1)
P(Di|Ti, bi 0, bi 1)



f(T *

i , b*
i 0, b*

i 1|�0, �1, �0, �1)
f(Ti, bi 0, bi 1|�0, �1, �0, �1)



(�0 	 y*

0)y*
0

(�0 	 y0)y0
� . (A6) � J � � 	

��0

�y0

��0

�y1

��1

�y0

��1

�y1

	 � d � �1 .

If the gene tree is T1, T2, or T3, the algorithm may
(with a small probability of, say, 0.2 or 0.3) attempt to

Sliding windows are used to propose new values,swap the gene trees. The current gene tree is replaced
by one of the other two trees chosen at random. The y*

0 � U(y0 � H3/2, y0 	 H3/2),
proposal ratio is 1, and the acceptance ratio is

y*
1 � U(y1 � H3/2, y1 	 H3/2), (A11)

R � min�1,
P(Di|T *

i , bi 0, bi 1)
P(Di|Ti, bi 0, bi 1)



f(T *

i , bi 0, bi 1|�0, �1, �0, �1)
f(Ti, bi 0, bi1|�0, �1, �0, �1)

� . where H3 is a small fine-tuning parameter. If the new
values y*

0 and y*
1 are out of the range, they are reflected(A7)

back into the range. The proposal ratio for the trans-
Updating population size and speciation date parame- formed variables y0 and y1 is 1. The proposal ratio for

ters: This step makes two proposals: the first to change variables �0 and �1 is (d � �*
1)/(d � �1). Next, all loci

�0 and �1 and the second to change �0 and �1. Parameters are scanned to see whether the gene tree needs updat-
�0 and �1 are positive but are not constrained otherwise. ing. If the current gene tree is T0 but �*

0 	 �*
1 � bi 1, the

They are updated simultaneously, with all other vari- gene tree T *
i is set to be one of T1, T2, or T3, chosen at

ables fixed. New values are proposed around the current random. The proposal ratio will be multiplied by 3 since
values by there are three trees to move to and only one tree to

move back. If the current tree is T1, T2, or T3 but �*
0 	

�*
0 � �0eH2(r0�0.5),

�*
1 
 bi 1, the gene tree is set to T *

i � T0, and the proposal
ratio is divided by 3. Otherwise the gene tree for the�*

1 � �1eH2(r1�0.5), (A8)
locus remains unchanged: T *

i � Ti. In sum the accep-
where r0 and r1 are uniform random numbers in the tance ratio is
interval (0, 1) and H2 is a small fine-tuning parameter.
The proposal ratio is �*

0�
*
1/(�0�1) and the acceptance R � min�1, �

L

i�1

P(Di|T *
i , bi 0, bi1)f(T *

i , bi 0, bi1|�0, �1, �*
0, �*

1)
P(Di|Ti, bi 0, bi1)f(Ti, bi 0, bi1|�0, �1, �0, �1)ratio is



f(�*

0, �*
1)

f(�0, �1)



d � �*
1

d � �1

c T� , (A12)R � min�1, �
L

i�1

f(Ti, bi 0, bi 1|�*
0, �*

1, �0, �1)
f(Ti, bi 0, bi 1|�0, �1, �0, �1)

where f(�*
0, �*

1)/f(�0, �1) � (�*
0�

*
1/�0�1)��1e��(�*

0��0	�*
1��1)


 
�
*
0�

*
1

�0�1
�
��1

e��(�*
0��0	�*

1��1) 

�*

0�
*
1

�0�1
� . (A9) from the gamma priors and cT is the proposal ratio due

to changes to gene trees at some loci (a product of
threes and one-thirds).Next, speciation date parameters �0 and �1 are up-

dated while �0 and �1 as well as branch lengths bi 0 and Mixing step: A mixing step is found to be effective
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in speeding up convergence when a poor starting point Performance of the algorithm: The performance of
the MCMC algorithm is noted to depend on the choiceis chosen for the chain. In this step, the gene trees
of priors (values of � and � in the gamma distributions).remain unchanged, but parameters �0, �1, �0, and �1 and
For some priors, the algorithm is noted not to mix well,branch lengths bi 0 and bi 1 for all loci are multiplied by
and in particular, parameters �0 and �0 appear to changea constant
slowly. The high correlation among parameters and the

c � eH4(r �0.5), (A13) constraints seem to cause difficulties for the algorithm.
In such cases, the chain has to be run much longer

where r is a random number from U(0, 1) and H4 is a than usual to achieve stable estimates. In proposing new
small fine-tuning parameter. The proposal ratio is c 4	2L. values for �0 and �1, only small steps are taken (with H3
The acceptance ratio is in the range 0.01–0.05) to achieve an acceptance rate

of �0.1–0.3. For other variables, even large steps (with
R � min�1, �

L

i�1
�P(Di|Ti, b*

i 0, b*
i1) 
 f(Ti, b*

i 0, b*
i 1|�*

0, �*
1, �*

0, �*
1)

P(Di|Ti, bi 0, bi1) 
 f(Ti, bi 0, bi 1|�0, �1, �0, �1)

 H1, H2, H4 in the range 0.1–0.5) are accepted at high

frequencies (
50%). The mixing step seems rather ef-
fective so that �1000 generations seem enough for the



f(�*)
f(�)


 c 4	2L� ,
burn-in. For some priors, �500,000 generations appear
sufficient, which takes a few minutes on a Pentium III

where f(�*)/f(�) � c 4(��1)e��(�*
0��0	�

*
1��1	�

*
0��0	�

*
1��1), PC at 1.2 GHz for the data of Chen and Li (2001). For

other priors, the algorithm has to be run much longer.given by the gamma prior distributions.




