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ABSTRACT
Maximum-likelihood methods based on models of codon substitution accounting for heterogeneous

selective pressures across sites have proved to be powerful in detecting positive selection in protein-coding
DNA sequences. Those methods are phylogeny based and do not account for the effects of recombination.
When recombination occurs, such as in population data, no unique tree topology can describe the
evolutionary history of the whole sequence. This violation of assumptions raises serious concerns about
the likelihood method for detecting positive selection. Here we use computer simulation to evaluate the
reliability of the likelihood-ratio test (LRT) for positive selection in the presence of recombination. We
examine three tests based on different models of variable selective pressures among sites. Sequences are
simulated using a coalescent model with recombination and analyzed using codon-based likelihood models
ignoring recombination. We find that the LRT is robust to low levels of recombination (with fewer than
three recombination events in the history of a sample of 10 sequences). However, at higher levels of
recombination, the type I error rate can be as high as 90%, especially when the null model in the LRT
is unrealistic, and the test often mistakes recombination as evidence for positive selection. The test that
compares the more realistic models M7 (�) against M8 (� and �) is more robust to recombination, where
the null model M7 allows the positive selection pressure to vary between 0 and 1 (and so does not account
for positive selection), and the alternative model M8 allows an additional discrete class with � � dN/dS

that could be estimated to be �1 (and thus accounts for positive selection). Identification of sites under
positive selection by the empirical Bayes method appears to be less affected than the LRT by recombination.

ADAPTIVE molecular evolution has long been a sub- al. (2000a) detect positive selection by comparing two
ject of intense interest among evolutionary biolo- nested probabilistic models of variable � ratios among

gists. For protein-coding genes, robust evidence for posi- sites, the simpler of which does not allow for sites with
tive selection is provided by an excess of nonsynonymous � � 1 and the more general of which does. When the
substitutions relative to synonymous substitutions (see LRT suggests presence of sites under positive selection,
Yang and Bielawski 2000 for review). If a change of the empirical Bayes approach can be used to identify
amino acid offers a selective advantage, causing acceler- locations of those sites in a sequence (Nielsen and Yang
ated fixation of the nonsynonymous mutation, the non- 1998). Although the underlying evolutionary process is
synonymous substitution rate dN will be higher than the almost certainly more complex than existing models,
synonymous rate dS, with the rate ratio � � dN/dS � 1. the maximum-likelihood (ML) approach provides a sta-
Since positive selection is not expected to act at all tistically sound framework for testing for presence of
amino acid sites, much effort has been taken to account sites under positive selection, measuring the strength
for variable selective pressures across sites to improve of selection, and identifying critical amino acids under
the power of the methods for detecting positive selec- selection (Yang et al. 2000a; Anisimova et al. 2002).
tion (e.g., Fitch et al. 1997; Nielsen and Yang 1998; A number of genes have been detected by the LRT
Suzuki and Gojobori 1999; Yamaguchi-Kabata and to be undergoing positive selection. Among the nonviral
Gojobori 2000; Yang et al. 2000a). Such methods have examples are mammalian �-globin, mitochondrial genes
little power to detect positive episodic or directional from hominoids (Yang et al. 2000a), plant chitinases
selection but have been successful in detecting recur- (Bishop et al. 2000), abalone sperm lysin (Yang et al.
rent diversifying selection. Likelihood-ratio tests (LRTs) 2000b), mammalian female reproductive proteins (Swan-
proposed by Nielsen and Yang (1998) and Yang et son et al. 2001), salmonid iron-binding proteins (Ford

2001), and fimbrial adhesins of Escherichia coli (Peek et
al. 2001). Positive selective pressure was detected with

1Corresponding author: Department of Biology, University College LRTs in a number of viral genes: capsid genes of foot-London, Darwin Bldg., Gower St., London WC1E 6BT, United King-
dom. E-mail: m.anisimova@ucl.ac.uk and-mouth virus (Fares et al. 2001; Haydon et al. 2001),
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TABLE 1

Models of �-ratio variation among sites used for simulation and analysis

Model code Description Free parameters

M0: one ratio Constant � for all sites �
M1: neutral p0 of sites with �0 � 0 p0

p1 of sites with �1 � 1
M2: selection Three site classes with �0 � 0, �1 � 1, �2 in proportions p0, p1, p2 p0, p1, �2

M3: discrete Three site classes in proportions p0, p1, p2 p0, p1, �0, �1, �2

M7: � All sites are from B(p, q) p, q
M8: � and � p0 of sites are from B(p, q) p, q, p0, �

p1 of sites are from a class with �

the G and N genes of rabies virus (Holmes et al. 2002), antigen genes, in which both recombination and posi-
tive selection were reported (Wu et al. 1999).and major HIV-1 genes (Nielsen and Yang 1998; Yang

et al. 2000a; Yang 2001). Recent simulations confirmed
that LRTs for detecting positive selection are conserva-

MATERIALS AND METHODStive (Anisimova et al. 2001). Those observations suggest
that genes inferred by the LRT to undergo positive Likelihood-ratio tests: In this article we test the accuracy of
selection are most likely to be true cases of adaptation likelihood-ratio tests for detecting positive selection at amino

acid sites in the presence of recombination. We consider therather than an artifact of the method.
following models of variable selective pressures among sites:Furthermore, in most of the published studies, posi-
M0 (one ratio), M1 (neutral), M2 (selection), M3 (discrete),tively selected sites inferred by the Bayes approach were
M7 (�), and M8 (� and �; Yang et al. 2000a). See Table 1.

biologically meaningful and/or clustered in a 3D struc- The simplest model, M0, assumes one �-ratio for all sites.
ture of a protein while being dispersed in the primary Model M1 allows two site classes, conserved sites with �0 � 0

and neutrally evolving sites with �1 � 1. Model M7 allowssequence (e.g., Bishop et al. 2000; Yang et al. 2000b;
several site classes with �-ratios drawn from the � distributionPeek et al. 2001; Yang and Swanson 2002).
B(p, q) and, hence, limited between 0 and 1. The three models,However, patterns of genetic variability created by
M0, M1, and M7, are taken as null hypotheses in the LRTs

recombination can closely resemble the effects of molec- against their alternative models, M3, M2, and M8, respectively.
ular adaptation (e.g., McVean 2001). With recombina- Model M3 allows K discrete site classes with �-ratios �0, �1,

. . . , �K–1 taken in proportions p0, p1, . . . , pK–1. Here we usetion, nucleotide sites in a sequence do not evolve along
K � 3 as suggested by Yang et al. (2000a). Note that K � 1a single tree, but instead along a set of correlated trees
in M0. Model M2 adds an extra class to M1 with an �2 estimated(Hudson 1983). Recombination leads to apparent sub-
from data. Similarly, model M8 adds one discrete class to M7

stitution rate heterogeneity (Worobey 2001). In phy- with � estimated from data. We consider three LRTs: (i) M0
logeny reconstruction, it is known to lead to star-like (one ratio) vs. M3 (discrete), (ii) M1 (neutral) vs. M2 (selec-

tion), and (iii) M7 (�) vs. M8 (� and �). We note that thephylogenies and biases in tests of the molecular clock
M0-M3 comparison is really a test of variability of selective(Schierup and Hein 2000a,b). Current codon models
pressures among sites whereas the M1-M2 and M7-M8 compar-of heterogeneous �-ratios among sites assume no re-
isons are tests of positive selection.

combination, raising concerns about the possibility that We simulated data under the null model and analyzed them
the LRT can mistakenly interpret the effects of recombi- under both the null and the alternative models to calculate

the LRT statistic 2�� (twice the log-likelihood difference be-nation as evidence for positive selection. Our previous
tween the two models). For each data set, we reconstructedsimulation examined the accuracy of the LRT in nonre-
a neighbor-joining (NJ) tree using PAUP* (Swofford 2000).combinant data sets (Anisimova et al. 2001).
This tree was then used to perform codon-based likelihood

In this article, we use computer simulation to investi- analysis with the codeml program from the PAML package
gate whether the LRT can lead to false detection of (Yang 2000). The statistic 2�� was compared with the �2

� distri-
bution, with the degree of freedom � equal to the differencepositive selection in the presence of recombination. We
in the number of free parameters between the two models;envisage that the problem mainly concerns viral genes,
we used � � 4 for the M0-M3 comparison and � � 2 forwhere sequence divergence is high and recombination
the M1-M2 and M7-M8 comparisons. We note that strictly

may be frequent. Although recombination also occurs speaking, the asymptotic �2 approximation does not apply to
in population samples from other species such as ani- those tests even without recombination and that our use of

the �2 distribution makes the LRTs conservative (Anisimovamals and plants, the sequence divergence is in general
et al. 2001). We counted the number of replicates in whichtoo low for phylogeny-based likelihood methods to be
the LRT was significant at 	 � 5 and 1% (type I errors)useful (Anisimova et al. 2001). With this consideration
and in which parameter estimates in the alternative models

of sequence divergence in mind, we simulate sequences suggested positive selection; that is, �2 in M3 and M2 and �
using codon frequencies and parameter estimates ob- in M8 were �1. Those were the cases in which positive selec-

tion was detected falsely.tained from a data set of the hepatitis D virus (HDV)
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TABLE 2

Number of replicates (out of 100) in the likelihood analysis comparing M0 (one ratio) and M3 (discrete)

Simulation parameters Analysis under M0 Analysis under M3

Significant at 5 (1)%
� 
S � �̂ � 1 Mean of �̂ At least one �̂i � 1 and �̂ � 1

1 0.011 0 54 1.05 61 0 (0)
1 0.011 0.01 54 1.15 86 63 (61)
1 0.11 0 51 1.00 54 0 (0)
1 0.11 0.01 54 1.02 100 98 (94)
0.6 0.11 0 0 0.61 19 0 (0)
0.6 0.11 0.01 0 0.61 94 90 (89)
0.4 0.11 0 0 0.41 9 0 (0)
0.4 0.11 0.01 0 0.42 90 88 (88)

Data sets of 30 sequences were simulated under M0 and analyzed using both M0 and M3. Numbers of
replicates significant at 1% are in parentheses.

Coalescent simulation with recombination: Sequence data models M0 (one ratio), M1 (neutral), or M7 (�), and analyzed
them using both the null models and the alternative modelswere simulated by generating genealogies for sites in the se-

quence from a standard neutral coalescent model with recom- M3 (discrete), M2 (selection), and M8 (� and �). We used
two levels of sequence divergence at silent sites: 
S � 0.011bination and then using them to “evolve” sequences according

to a codon-substitution model. The genealogies are described and 0.11. The strength of selection was varied by changing
the �-parameter. Under M0 (one ratio), we used � � 0.4, 0.6,by an ancestral recombination graph, generated by tracing the

sample of DNA sequences backward in time while recording and 1, while under M1, we assumed �0 � 0 and �1 � 1 in
equal proportions. Under M7, the �-parameters were esti-the coalescent and recombination events (e.g., Hudson 1983;

Griffiths and Marjoram 1996; Nielsen 2000). While selec- mated from the HDV data: p � 0.23, q � 0.41. Reliable esti-
mates of the scaled recombination rate � are unavailable fortion clearly operates on a protein-coding gene, we ignore

the effect of selection on the genealogy since currently no viral genes. As a result, we simulated data with different levels
of recombination: � � 0, 0.0001, 0.0005, 0.001, 0.005, andalgorithm is available to simulate coalescent trees under both

recombination and strong selection. The parameters involved 0.01, with most of the simulations done using only � � 0
in the coalescent simulation are 
 � 2N� and � � 2Nr, where N (no recombination) and 0.01 (high level of recombination).
is the effective population size, � is the mutation (substitution) Details of the parameter values used in the simulation are
rate per codon site per generation, and r is the recombination given in the results.
rate per codon site per generation. In this article, we measure In many viral genes, both recombination and positive selec-

 by the synonymous substitution rate and use the notation tion may be operating. We thus used simulation to examine the

S, calculated as dS in Goldman and Yang (1994), with the effect of recombination on identification of positively selected
expected coalescence time for a pair of sequences replacing sites by the likelihood method. We simulated 30- and 10-taxa
branch length t. This is the expected number of synonymous data sets using the alternative model M3 (discrete), assuming
substitutions per synonymous site between two sequences �13.5% of sites under positive selection with �2 � 2.55 and
drawn at random from the population. Furthermore, since the remaining 65.8 and 20.6% of sites with �0 � 0.08 and
our mutation/substitution model is codon based, we allow �1 � 0.61, respectively, as estimated from the HDV data set.
recombination to occur between codons but not within a All replicates were moderately divergent (
S � 0.11) and only
codon, so a site below refers to a codon (codon site). two levels of recombination were used (� � 0 and � � 0.01).

The gene genealogy can be deduced at each site from the For 10-taxa data sets we varied the strength of positive selection
ancestral recombination graph. Evolution of sequences along while keeping other parameters the same: the �2 values were
the genealogy for each site (codon) can be simulated using 2.55 and 6. Data were analyzed using alternative models, and
standard methods (e.g., Anisimova et al. 2001). In brief, a sites inferred by the codeml program to be under selection
continuous-time Markov chain with rate matrix Q � {qij} is were compared with the truly selected sites during the simula-
superimposed along each lineage of the genealogy of a site. tion. In all simulations the sequence length was 500 codons,
Multiple substitutions at the same site are thus allowed. The while the number of replicates was 100.
data were simulated using a C program written by R.N.

Values of parameters used in the simulation: All data sets
were generated using codon frequencies and ML parameter

RESULTSestimates obtained from 33 geographically dispersed strains
of a hepatitis D small antigen gene. The GenBank accession Impact of recombination on the LRT: Table 2 showsnumbers of the hepatitis D antigen strains are AB015442,

the results for the likelihood analysis comparing M0AB01543, AB015446, AB015447, AB037947–AB037949,
(one ratio) and M3 (discrete), performed on large dataAF018077, AF104263, AF104264, AF209859, AF309420,

AJ309879, AJ309880, D01075, L22063, L22066, M28267, sets of 30 sequences. The data were simulated under
M58299, M58301, M58303, M58305, M58629, M84917, M0. For nonrecombinant data (� � 0), the LRT did not
M92448, U19598, U25667, U81988, U81989, X04451, X63373, reject the null model (M0) in any of the 100 replicates,X77627, and X85253. The transition/transversion ratio was

regardless of the level of selective pressure (�) or silentfixed at 
 � 3.
We simulated data sets of 10 or 30 lineages under the null mutation rate (
S). The type I error rate was consistently
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TABLE 3

Number of replicates (out of 100) in the likelihood analysis comparing M1 (neutral) and M2 (selection)

Simulation parameters
Analysis under M2

Significant at 5 (1)%

S � Significant at 5 (1)% �̂2 � 1 and �̂2 � 1

0.011 0 2 (0) 45 2 (0)
0.011 0.01 74 (61) 100 74 (61)
0.11 0 2 (2) 54 0 (0)
0.11 0.01 80 (71) 99 80 (71)

Data sets of 30 sequences were simulated under M1 (with �0 � 0 and �1 � 1 in equal proportions). Numbers
of replicates significant at 1% are in parentheses.

lower than the significance level (	 � 1 or 5%). This LRT was conservative, with the type I error rate lower
than the significance level. With recombination (� �result is consistent with the previous observation that

the use of the �2 makes the LRT comparing M0 and 0.01), the type I error rate increased dramatically to
74% (
S � 0.011) and 80% (
S � 0.11) at the 	 � 5%M3 conservative (Anisimova et al. 2001).

However, when the data were simulated with recombi- significance level. Recombination increased the num-
ber of replicates in which the ML estimate �̂2 in modelnation (� � 0.01), the LRT falsely rejected the null

model M0 in many replicates. The type I error rate was M2 was �1 (Table 3).
Table 4 summarizes results obtained for different re-much greater than the significance value for all parame-

ter combinations and was higher for more divergent combination rates when the LRT was used to compare
models M0 (one ratio) and model M3 (discrete). Thesequences (with larger 
S) and larger �. The error rate

was as high as 98% when � � 1, 
S � 0.11, and � � average number of recombination events observed in
the simulation is shown for each recombination rate.0.01 at the 	 � 5% significance level. Examination of

parameter estimates under M3 suggests that recombina- When the recombination rate was low, with � � 0.001
or �2.7 recombination events in the history of a sampletion increased the number of replicates in which at least

one of the ML estimates of the �-ratios under M3 was of 10 sequences, the LRT was conservative, with the type
I error rate lower than the significance level (Table 4).�1 and that, in most such replicates, the M0-M3 compar-

ison was significant. Recombination also inflated the When � � 0.001, the type I error rate was very slightly
higher than the significance level 	. Yet the percentageestimates of � under model M0, but the effect was minor

(Table 2). When � � 0.01, the recombination rate ap- of replicates with falsely detected positive selection was
approximately equal to the significance level 	 (Tablepears to be quite high, indicating an average of 32 re-

combination events in the history of a sample of 10 4). Increasing recombination rate further made the
LRT highly inaccurate: positive selection was falsely de-sequences.

Next we simulated data under the neutral model M1 tected in 23% (for � � 0.005) and 54% (for � � 0.01)
of replicates at 	 � 5%.to test whether the LRT comparing M1 and M2 was

affected by recombination. The results are shown in Tables 2 and 4 also suggest that the type I error rate
of the LRT is higher on big trees with 30 lineages thanTable 3. In the absence of recombination (� � 0), the

TABLE 4

Number of replicates (out of 100) in the likelihood analysis comparing M0 (one ratio) and M3 (discrete)

Analysis under M3
Average no. of
recombination Significant at 5 (1)% Mean of �̂

� events Significant at 5 (1)% At least one �̂i � 1 and �̂i � 1 under M0

0 0.00 0 (0) 14 0 (0) 0.4080
0.0001 0.23 0 (0) 17 0 (0) 0.4083
0.0005 1.27 1 (0) 21 0 (0) 0.4162
0.001 2.71 5 (2) 19 4 (2) 0.4120
0.005 15.50 36 (28) 46 23 (19) 0.4208
0.01 32.42 69 (58) 70 54 (46) 0.4224

Data sets of 10 sequences were simulated under M0 (� � 0.4, 
S � 0.11). For none of replicates was the
estimate �̂ under M0 � 1. Numbers of replicates significant at 1% are in parentheses.
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TABLE 5

Number of replicates (out of 100) in the likelihood analysis
comparing M7 (�) and M8 (� and �)

Analysis under M8

Significant Significant at 5 (1)%
� at 5 (1)% �̂ � 1 and �̂ � 1

0 8 (4) 47 4 (1)
0.001 7 (5) 49 3 (2)
0.01 21 (12) 81 20 (11)

Data sets of 10 sequences were simulated under M7 B(p �
0.23, q � 0.41) with 
S � 0.11. Numbers of replicates significant
at 1% are in parentheses.

Figure 1.—Accuracy of Bayes’ prediction of amino acid
sites under positive selection, as measured by the proportionon small trees with 10 lineages. For example, at the 5%
of identified sites that are truly under positive selection. Thesignificance level, the LRT comparing M0 with M3 failed
data were simulated under M3 (discrete) with 13.5% of sitesin 88% of replicates for 30-lineage data sets and in 54% under positive selection with �2 � 2.55. The scaled recombina-

of replicates for 10-lineage data sets. Similarly, increas- tion rate was � � 0 (no recombination) and 0.01 (high recom-
ing the mutation/substitution rate leads to an increased bination). Each data set contained 30 sequences, simulated

with 
S � 0.11 and was analyzed using models M2 (�, � � 0;false-positive rate in the LRT (Table 2).
�, � � 0.01), M3 (�, � � 0; �, � � 0.01), and M8 (�, � �Results obtained for the LRT comparing M7 (�) and
0; �, � � 0.01).

M8 (� and �) are summarized in Table 5. As those two
models are computationally expensive, we used only
three recombination levels: � � 0, 0.001, and 0.01. With M0 (one ratio) were always very close to the true value,
no recombination (� � 0), the type I error rate was whichever tree was used (results not shown).
close to the significance level 	 (Table 5). A low recom- Bayes’ prediction of sites under positive selection in
bination rate, with � � 0.001 or �2.7 recombination the presence of recombination: In some genes, there is
events in a sample of 10 sequences, did not appear to convincing evidence for both recombination and posi-
make much difference in terms of the accuracy of the tive selection, and testing for the presence of sites under
LRT (Table 5). Increasing � to 0.01, or �32 recombina- selection is not as important as identifying sites under
tion events in a sample of 10 sequences, caused the LRT selection. Thus we used simulation to evaluate the effect
to detect positive selection falsely in 20% of replicates of recombination on the accuracy of Bayes’ prediction
at 	 � 5%. Although such an error rate is high, it is much of positive selection sites (Nielsen and Yang 1998; Yang
lower than the error rate in the M0-M3 comparison for et al. 2000a). Data sets with 30 lineages each were ana-
the same recombination rate (compare results for � � lyzed to identify sites under selection using three mod-
0.01 in Tables 4 and 5). els: M2 (selection), M3 (discrete), and M8 (� and �).

The effect of incorrect phylogeny on the LRT: It is We measured the accuracy of Bayes’ prediction by the
interesting to know why the LRT generates many false proportion of sites identified by the codeml program
positives when the recombination rate is high. One pos- to be under selection that were truly under selection
sible reason is that the tree topology is incorrect for (Anisimova et al. 2002). Figure 1 shows the results of
many sites since recombination causes different seg- the analysis. When there was no recombination (� �
ments of the sequence to have different tree topologies. 0), the accuracy of Bayes’ site prediction was very high
Schierup and Hein (2000a) suggested that even low for M2 and M8, but slightly lower than predicted when
levels of recombination can lead to biases in phyloge- data were analyzed using M3. For example, out of the
netic analyses. To examine the effect of assuming a sites predicted to be under positive selection at the 95%
“wrong” tree, we used a star topology to analyze the 10- posterior probability cutoff, �100 and 95% of sites were
taxa data sets generated in previous analyses (results truly under positive selection when data were analyzed
not shown). The effect of using a star tree was profound: with M2 and M8, respectively, while the proportion was
even for nonrecombinant data, the LRT falsely sug- only 91% under M3. When recombination rate was high
gested positive selection in 96% of the replicates in the with � � 0.01, or an average of 46.7 recombination
M0-M3 comparison and in 86% of the replicates in the events in the history of a sample of 30 sequences, the
M7-M8 comparison at the 	 � 5% significance level. accuracy of Bayes’ site prediction decreased for all mod-
Similarly high error rates for the LRT were observed els (Figure 1). For M2, accuracy still remained high: at
when random tree topologies were used in the analysis the 95% cutoff, �95% of the inferred sites were correct.

Accuracy of the analysis with M8 was only slightly lower(results not shown). Yet the ML estimates of � under
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TABLE 6

Counts of replicates (out of 100) in the likelihood analysis comparing M0 (� � 1 fixed) against M0
(� estimated)

Significant at 5 (1)%
� Significant at 5 (1)% �̂ � 1 and �̂ � 1 Mean of �̂

NJ tree
0 6 (1) 53 2 (1) 1.022
0.01 12 (4) 53 8 (2) 1.030

Star tree
0 21 (13) 53 13 (9) 1.026
0.01 31 (20) 53 15 (12) 1.028

Data sets of 10 sequences were simulated under M0 with � � 1 and 
S � 0.11. Numbers of replicates
significant at 1% are in parentheses.

than predicted: at the 95% cutoff, �91% of the inferred tree lengths have more of both synonymous and nonsyn-
onymous substitutions. At such sites the apparent non-sites were correct. However, when M3 was used for site

identification, accuracy was much lower than predicted: synonymous rate, even if lower than the synonymous
rate at that site, can be higher than the average synony-at the 95% cutoff, only 75% of the inferred sites were

predicted correctly. Such differences among models mous rate. Consequently, the method might incorrectly
identify such sites as evolving under positive selection.were also found by Anisimova et al. (2002) in simula-

tions without recombination, where models M2 and M8 If this interpretation is correct, accounting for variation
in both synonymous and nonsynonymous rates willproduced more accurate results than M3 produced,

whichever model was used to simulate data. make the LRTs more robust to the presence of recombi-
nation.Additionally, we investigated how the accuracy of

Bayes’ prediction of selected sites in the presence of This interpretation can be used to explain why the
LRT of M7-M8 is much less affected than the LRTs ofrecombination (� � 0.01) was affected by the number

of sampled lineages and by the strength of positive selec- M0-M3 and M1-M2 by the presence of recombination.
The M0-M3 comparison is a test for variability amongtion. Models M2 and M3 were used to analyze data sets

of 10 lineages. The accuracy of prediction (results not sites. Variation in the tree length introduced by recom-
bination can be seen as heterogeneity among sites inshown) was found to be very similar to that with 30

lineages (Figure 1). We also simulated data sets of 10 the gene tree and branch lengths. Thus, it can be ex-
pected that the test misinterprets such heterogeneity aslineages using the same model M3 (discrete) but with

the strength of positive selection increased from �2 � variable �-ratios. The case of the M1-M2 comparison is
similar. Model M1 (neutral) accounts for only two site2.55 to �2 � 6. We observed a substantial increase in

both accuracy and power of Bayes’ site prediction (re- classes with �0 � 0 and �1 � 1 and is very unrealistic.
As a result, model M2 (selection) misinterprets hetero-sults not shown).
geneity introduced by recombination as evidence for
positive selection.

DISCUSSION A second possible reason for the failure of the LRTs
is that the tree topology, estimated by NJ for all sites inEffect of recombination on the LRT: It is not surpris-
the sequence, becomes incorrect for many sites whening that the LRT becomes unreliable when recombina-
recombination is frequent. It has been pointed out thattion is frequent, since a basic assumption of the model
recombination causes the estimated phylogeny to haveis violated. Nevertheless, it is important to understand
long terminal branches resembling a star tree (Schierupwhy the test fails at high recombination rates. As yet we
and Hein 2000a; Worobey 2001). Consistent with thisdo not have a good understanding of possible reasons
interpretation, we found that use of the star topologyfor the failure of the LRT.
leads to many false positives in the LRT even when thereOne possible reason is that recombination introduces
is no recombination.variation in the tree length (the sum of branch lengths

To explore this interpretation further, we examinedover the genealogy, measured in time) among sites,
another LRT, in which the null model was M0 withwhich introduces apparent variation in both synony-
� � 1 fixed, while the alternative model was M0 withmous and nonsynonymous substitution rates among
� estimated as a free parameter. The test statistic 2��sites. The codon models examined in this article ac-
was compared with the �2

1 distribution, using both thecount for variation only in nonsynonymous rates and
star tree and the NJ tree. For nonrecombinant data, theassume a constant rate at synonymous sites. The synony-

mous rate is thus averaged over all sites. Sites with long type I error rate at the 	 � 5% significance level was
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2% when the NJ tree was used and 13% when the star that Bayes’ site prediction may still be useful if positive
selection is known to operate on the gene.tree was used (Table 6). The error rate when the NJ

While the effect of recombination on the LRT de-tree was used for recombinant data was 8% (Table 6).
pends on the recombination rate, reliable estimates ofThose results appear to be consistent with our interpre-
� � 2Nr are unavailable for viral genes. The homoplasytation that recombination generates false positives
index (Maynard and Smith 1998) and informative-partly because the reconstructed tree is wrong for some
sites index (Worobey 2001) are correlated with thesites.
recombination rate, but their exact relationships areThe effect of recombination on the LRT depends on
unknown. More rigorous estimation methods are basedwhen in the history of the sample recombination events
on the coalescent model (Griffiths and Marjoramhave occurred. Recombinations in early internal branches
1996; Kuhner et al. 2000; Nielsen 2000; Wall 2000;are more disruptive of the genealogical tree and are
Fearnhead and Donnelly 2001; Hudson 2001). Forexpected to have greater effect than recent recombina-
human genes, most studies suggest the estimates of � �tions near the tips of the tree. If major recombination
10�3/bp (e.g., Hey and Wakeley 1997; Nielsen 2000).events can be identified in the sequence data, removing
Such amounts of recombination have little effect on thesequences involved in such events should increase the
LRT of positive selection; yet human population dataperformance of the LRT. Factors that affect the shape
typically lack variation so that the LRT is unlikely toof the genealogy and thus the distribution of recombina-
detect an adaptive signal (Anisimova et al. 2001). Fortion events on it are expected to affect the performance
more divergent data, such as viral genes, estimation ofof the LRT as well. The present simulation is conducted
recombination rates is much more problematic. Mostunder the neutral coalescent model, which generates
methods are based on the neutral mutation model andtrees with long internal branches. If the trees are more
do not account for variable selective pressures and thusstar-like, such as is the case when the population ex-
do not account for variable substitution rates amongpands, recombination will have less effect than that
sites in the gene or for regional positive correlationfound in this study. More importantly, both strong puri-
of substitution rates. As a result, they tend to mistakefying and strong diversifying selection are known to
recurrent substitutions as evidence for recombinationoperate in the viral genome, and genealogies under
(McVean et al. 2002). Subsequently, the range of recom-strong selection may be different from genealogies un-
bination rate estimates in viruses is very wide and thereder neutrality. There is, as yet, no theory or algorithm
is no consensus on what rates might be reasonable. Afor simulating coalescent trees under strong selection
number of studies discuss the possibility of recombina-and recombination. Nevertheless, we expect that the
tion and positive selection both being present in data:

effect of selection on the importance of recombination
e.g., hepatitis D in Wu et al. (1999), foot-and-mouth virus

to the LRT, through its effect on the tree shape, is in Haydon et al. (2001), fimbrial major subunit from E.
quantitative rather than qualitative, and our conclusions coli in Peek et al. (2001), and apical membrane antigen
should remain valid. Studies showed that the shape of 1 gene from malaria parasite Plasmodium falciparum in
the genealogy was not seriously affected by weak-to-mod- Polley and Conway (2001). While recombination is
erate purifying selection (Golding 1997; Przeworski an evolutionary force maintaining genetic diversity, in
et al. 1999; Slade 2000; Williamson and Orive 2002) some cases it can be seen as a strategy of evading the
or by background selection (Charlesworth et al. 1993, immune response, an alternative to diversification (e.g.,
1995; Hudson and Kaplan 1994, 1995). Burke 1997). Numerous reports of positive selection

Detecting positive selection in the presence of recom- and recombination coexisting could also be an indica-
bination: The simulations suggest that when the re- tion that current methods for detecting recombination
combination rate is low, with fewer than about three and positive selection often confuse these two different
recombination events in a sample of 10 sequences, the forces, taking one for the other. McVean et al. (2002)
LRT is still accurate. However, much higher recombina- extended the approximate-likelihood method of Hud-
tion rates cause the LRT to produce many false positives, son (2001) in an attempt to correct for a higher rate
sometimes as high as 100%. We found that Bayes’ pre- of recurrent mutations in viral and bacterial genes. Sim-
diction of sites under positive selection is less affected ulations showed that the method was more robust to
by recombination. The reason seems to be that Bayes’ misspecifications of the mutation model. However, it is
identification of selected sites relies on reconstruction unknown whether an excess of nonsynonymous substi-
of the numbers of synonymous and nonsynonymous tutions at nonsynonymous sites causes an overestimation
substitutions at individual sites, which is not very sensi- of recombination rate and whether the methods for
tive to the tree topology. In contrast to the LRT, increas- detecting recombination are robust to variation of sub-
ing the number of lineages in the sample does not stitution rates among sites.
reduce the accuracy of Bayes’ site prediction. Moreover, Clearly it is desirable to incorporate recombination
Bayes’ site prediction becomes more accurate and pow- into a coalescent codon-based model. The implementa-

tion would require the use of Markov chain Monte Carloerful for higher levels of positive selection. We suggest
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Hudson, R. R., and N. L. Kaplan, 1995 Deleterious backgroundapproximation. Given the computational burdens of
selection with recombination. Genetics 141: 1605–1617.

the current coalescent methods and the codon-based Kuhner, M. K., J. Yamato and J. Felsenstein, 2000 Maximum likeli-
hood estimation of recombination rates from population data.models, such methods are currently computationally
Genetics 156: 1393–1401.intractable.
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