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ABSTRACT
The effective population sizes of ancestral as well as modern species are important parameters in

models of population genetics and human evolution. The commonly used method for estimating ancestral
population sizes, based on counting mismatches between the species tree and the inferred gene trees, is
highly biased as it ignores uncertainties in gene tree reconstruction. In this article, we develop a Bayes
method for simultaneous estimation of the species divergence times and current and ancestral population
sizes. The method uses DNA sequence data from multiple loci and extracts information about conflicts
among gene tree topologies and coalescent times to estimate ancestral population sizes. The topology of
the species tree is assumed known. A Markov chain Monte Carlo algorithm is implemented to integrate
over uncertain gene trees and branch lengths (or coalescence times) at each locus as well as species
divergence times. The method can handle any species tree and allows different numbers of sequences at
different loci. We apply the method to published noncoding DNA sequences from the human and the
great apes. There are strong correlations between posterior estimates of speciation times and ancestral
population sizes. With the use of an informative prior for the human-chimpanzee divergence date, the
population size of the common ancestor of the two species is estimated to be �20,000, with a 95%
credibility interval (8000, 40,000). Our estimates, however, are affected by model assumptions as well as
data quality. We suggest that reliable estimates have yet to await more data and more realistic models.

THE (effective) population size N is a central param- and chimpanzees, on the order of 100,000 (Ruvolo
1997; Chen and Li 2001). However, this tree-mismatcheter in models of population genetics, conservation

genetics, and human evolution. For example, the amount method ignores sampling errors in the reconstructed
gene tree, due to a finite number of nucleotide sites atof genetic variation in a population is determined by

� � 4N�, where � is the mutation rate per site per each locus, and produces serious overestimates (Yang
2002).generation. When an independent estimate of the muta-

tion rate is available, we can use the estimate of � to Yang (2002) implemented a finite-sites model using
both likelihood and Bayes methodologies. The methodinfer the population size N. Estimation of � or N of a

modern species is relatively simple. The population size is limited to the case of three species, with one individual
sequenced at each locus from each species. However,of modern humans has been estimated to be �10,000

(Takahata et al. 1995; Ruvolo 1997; Edwards and it is advantageous to analyze multiple species and loci
simultaneously, which may circumvent the sensitivity ofBeerli 2000; Zhao et al. 2000; Yu et al. 2001). Estimation

of population sizes of extinct ancestors of closely related such analysis to possible variation in evolutionary rates
among loci (Yang 1997; Chen and Li 2001). The realiza-species is more challenging, but Takahata et al. (1995)
tion that typical data do contain information about an-have developed a maximum-likelihood method under
cestral population sizes and that information is betterthe infinite-sites model for either two or three species.
extracted by a combined analysis of sequence data fromAnother commonly used method, for three species, ex-
multiple species and loci provided motivation for theploits the fact that ancestral polymorphism creates con-
present study. Here we extend the method of Yangflicts between the species tree and the gene tree (Nei
(2002) to deal with an arbitrary species tree and differ-1987; Wu 1991) and estimates the ancestral population
ent numbers of sequences at different loci. The likeli-size by equating the proportion of mismatched gene
hood calculation using numerical integration does nottrees to the theoretical expectation. Application of this
seem feasible due to the increased dimension of themethod to hominid data sets has led to large estimates
integral. Thus we adopt the Bayes approach and imple-of population sizes for the common ancestor of humans
ment a Markov chain Monte Carlo (MCMC) algorithm.
We apply the method to published data of noncoding
DNA sequences from the human and the great apes.1Corresponding author: Department of Biology, Darwin Bldg., Gower

St., London WC1E 6BT, England. E-mail: z.yang@ucl.ac.uk Computation-intensive MCMC algorithms are in-
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creasingly being used in inference in molecular popula- gence times as well as the ancestral and current popula-
tion sizes. The population size of a current species istion genetics (see Felsenstein et al. 1999; Stephens

and Donnelly 2000 for reviews). Bahlo and Griffiths considered only if more than one individual is sampled
from that species at some loci. Because time and rate(2000) developed a likelihood approach to analyzing

sequence data from subdivided populations, estimating are confounded in the data, both divergence times and
population sizes are multiplied by the mutation rate.jointly the population sizes and migration rates. They

used an importance-sampling strategy that works effi- Thus parameters in the model for the example of Figure
1 include the three divergence times �HC, �HCG, and �HCGOciently under the infinite-sites model (Griffiths and

Tavaré 1994). Beerli and Felsenstein (1999, 2001) and population size parameters �H for humans; �C for
chimpanzees; and �HC, �HCG, and �HCGO for the threeimplemented MCMC algorithms for likelihood analysis

of subdivided populations under the finite-sites model. ancestral species. The divergence times (�’s) are mea-
sured by the expected number of mutations per siteThose methods assume an equilibrium migration model,

which is suitable for geographically structured popula- from the ancestral node in the species tree to the present
time (Figure 1). Collectively we let � � {�H, �C, �HC, �HCG,tions, but not for the species phylogeny considered in

this study, as different species diverged at different times �HCGO, �HC, �HCG, �HCGO} denote all parameters in the model
to be estimated.and never reached equilibrium. Nielsen and Wakeley

(2001) implemented an MCMC algorithm for likeli- Bayes estimation of parameters: The Bayes hierar-
chical model has two main components: the prior dis-hood and Bayes inference using data from two species,

modeling both ancestral polymorphism and gene flow tribution of the parameters and the likelihood, i.e., the
probability of the data given the parameters. We useafter the species divergence. More recently Wilson et al.

(2003) extended the Bayes MCMC algorithm developed independent gamma distributions as priors for �’s. The
gamma density isfor microsatellite data by Wilson and Balding (1998)

to account for population subdivision and growth. Wil-
g(x ; �, �) � ��e��xx��1/	(�), (1)son et al.’s (2003) population-split model allows differ-

ent subpopulations to diverge at different times, al- with mean �/� and variance �/�2. The hyperparame-
though the total population size is fixed. Their method ters � and � are chosen by the user to reflect the range
was not implemented to analyze sequence data. The and likely values of the parameters.
implementation we present here does not yet account For parameters �’s, we used independent gamma pri-
for population demographic processes (such as popula- ors for the time gaps (interarrival times) on the species
tion growth) or possible gene flow after species diver- tree. For example, for the species tree of Figure 1,
gences, although it is straightforward to add these fea- (�HCGO � �HCG), (�HCG � �HC), and �HC are assumed to
tures. Our method is unique among current methods in have independent gamma distributions, and the prior
being applicable to any species phylogeny and allowing f(�) is a product of the independent gamma densities.
combined analyses of multiple sequences per species as We also implemented an option of specifying gamma
well as sequences from multiple loci. priors for the node ages (�HCGO, �HCG, and �HC for the

tree of Figure 1), but the prior means are not given by
�/� anymore; because of the constraints on node agesTHEORY
(for example, �HCGO 
 �HCG 
 �HC), the joint gamma

Data and model parameters: The data consist of distribution is truncated. The MCMC always updates
aligned homologous DNA sequences at multiple neutral the node ages (�’s) and not time gaps.
loci sampled from present-day species. The model and The gene genealogy Gi at each locus i is represented
implementation apply to any species tree. As an exam- by the tree topology Ti and the coalescent times ti. Given
ple, we focus on the case of the great apes: human (H), parameters �, the probability distribution of Gi � {Ti,
chimpanzee (C), gorilla (G), and orangutan (O). The ti } is specified by the coalescent processes under the
topology of the species tree, (((HC)G)O), is assumed model. This is described in the next section. Let G �
known and fixed in the analysis (Figure 1). The number {Gi}. We have
of sequences sampled may differ among loci. Let D � {Di}

f(G |�) � �
i

f(Gi |�) � �
i

f(Ti ,ti |�). (2)be the entire data set, where Di represent the sequence
alignment at locus i, with i � 1, 2, . . . , L for a total of
L loci. We expect the method to be applied to closely The probability of data Di given the gene tree and coa-

lescent times (and thus branch lengths) at the locus,related species only and assume the molecular clock,
that is, rate constancy among lineages. Furthermore, we f(Di|Gi), is the traditional likelihood in molecular phylo-

genetics and can be calculated using any Markov modelassume random mating in each population and no gene
flow after species divergences. We also assume no re- of nucleotide substitution (Felsenstein 1981). Here we

use the model of Jukes and Cantor (1969) to correctcombination within a locus and free recombination be-
tween loci. for multiple hits at the same site. As we assume indepen-

dent evolution across loci,Parameters in the model include the species diver-
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Figure 1.—(A) A gene tree for a locus with
three humans (H), two chimpanzees (C), one
gorilla (G), and one orangutan (O) for derivation
of the probability distribution of gene trees and
coalescent times. Both the speciation times (�HC,
�HCG, and �HCGO) and the coalescent times (the t’s)
are measured by the expected number of muta-
tions per site. Coalescent processes in the five
populations (denoted H, C, HC, HCG, and
HCGO, shaded) have different population size
parameters (�H, �C, �HC, �HCG, and �HCGO). (B) The
tree topology of the species tree is assumed
known.

f(D |G) � �
i

f(Di |Gi). (3) rithm and calculate the proposal ratio, q(�, G|�*, G*)/
q(�*, G*|�, G).

The proposal density q can be rather flexible as longBayes inference is based on the joint conditional distri-
as it specifies an aperiodic and irreducible Markovbution
chain. The algorithm we implemented cycles through

f(�, G |D) � f(D |G) f(G |�) f(�). (4) several steps, with each step updating some variables.
Step 1 changes the age of an internal node in each

For example, the posterior density of � is given by gene tree without changing the gene tree topology or
speciation times. Step 2 cycles through all loci and, atf(�|D) � � f(�, G |D)dG, (5)
each locus, changes the gene tree topology by pruning
a subtree and then regrafting it back onto a feasiblewhere the integration represents summation over all
branch. Step 3 updates the �’s. Step 4 cycles throughpossible gene tree topologies and integration over the
all speciation times (�’s) in the species tree and modifiescoalescent times at each locus.
each. This step also uses a “rubber-band” algorithm toWe construct a Markov chain, whose states are (�,
jointly modify the ages of nodes in each gene tree suchG) and whose stationary distribution is f(�, G|D). A
that the coalescence times on the gene trees remainMetropolis-Hastings algorithm (Metropolis et al. 1953;
compatible with the modified species divergence times.Hastings 1970) is used. Given the current state of the
Step 5 is a mixing step, in which all coalescent timeschain (�, G), a new state (�*, G*) is proposed through
in the gene trees and all species divergence times area proposal density, q(�*, G*|�, G), and is accepted with
multiplied by the same constant. The details of the algo-probability
rithm are given in the appendix.

Distribution of the gene genealogy derived from cen-R � min�1,
f(�*, G*|D)
f(�, G |D)

�
q(�, G |�*, G*)
q(�*, G*|�, G)� sored coalescent processes: The prior probability,

f(Gi|�), of any gene tree and its coalescent times at a
� min�1,

f(D |G*)f(G*|�*) f(�*)
f(D |G) f(G |�) f(�)

�
q(�, G |�*, G*)
q(�*, G*|�, G)� . locus are specified by the coalescent processes in the

different populations in the species tree. The theory(6)
applies to any gene tree, but is best explained with an
example, for which we use the gene tree of Figure 1.If the new state is accepted, the chain moves to the new
Five populations, H, C, HC, HCG, and HCGO, are con-state (�*, G*). Otherwise the chain stays in the old state
sidered. We use HC to represent the population ances-(�, G). The challenge of the MCMC algorithm and the
tral to H, and C. Yang (2002; see also Takahata et al.focus of this article is to derive the prior distribution,

f(G|�), and to implement an efficient proposal algo- 1995) derived the joint prior distribution f(Gi |�) �
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TABLE 1

Descriptions of the five populations (coalescent processes) represented in Figure 1, for deriving the probability
of the gene tree and coalescent times

Population � In (m) Out (n) Duration (�) Coalescent times

H �H 3 2 �HC t (H)
3

C �C 2 1 �HC t (C)
2

HC �HC 3 1 �HCG � �HC t (HC)
3 , t (HC)

2

HCG �HCG 2 2 �HCGO � �HCG None
HCGO �HCGO 3 1 ∞ t (HCGO)

3 , t (HCGO)
2

f(Ti, ti |�) for three species by considering the marginal sample of j lineages, the probability that a particular
pair of lineages coalesce is 1/(

j
2) � 2/j( j � 1), j � m,probability of the tree topology Ti and the conditional

distribution of the coalescent times given the topology; m � 1, . . . , n 
 1.
Multiplying those probabilities together, we obtainthat is, f(Ti, ti |�) � f(Ti |�) f(ti |Ti, �). This strategy is

the joint probability distribution of the gene tree topol-not workable for larger species trees because of the
ogy in the population and its coalescent times tm, tm�1,increased number of tree topologies and the high di-
. . . , tn
1 asmension of the integral in deriving f(Ti|�). Here we

derive the joint distribution f(Ti, ti|�) directly.
�
m

j�n
1
�2�exp��j( j�1)

�
tj ��Note that two sequences from different species can

coalesce only in populations that are ancestral to the
two species. For example, sequences H1 and G can co-

� exp��n(n�1)
�

(� � (tm 
 tm�1 
 . . . 
 tn
1))�.alesce in populations HCG or HCGO, but not in popula-
tions H or HC. The coalescent processes in different (8)
populations are independent. For each population, we

The probability of the gene tree and coalescent timestrace the genealogy backward in time, until the end of
for the locus is the product of such probabilities acrossthe population at time �, and record the number of
all the populations. Thus, for the gene genealogy oflineages (m) entering the population and the number
Figure 1, we haveof lineages leaving it (n). For example, m � 3, n � 2, and

� � �HC, for population H (Table 1). Such a coalescent f (Gi |�) � [2/�Hexp{�6t (H)
3 /�H}exp{�2(�HC � t (H)

3 )/�H}]
process may be termed a censored coalescent process

� [2/�Cexp{�2t (C)
2 /�C}]since the process is terminated before it is complete.

When n 
 1, the genealogical tree in the population � [2/�HCexp{�6t (HC)
3 /�HC} � 2/�HCexp{�2t (HC)

2 /�HC}]
consists of n disconnected subtrees or lineages.

� [exp{�2(�HCG � �HC � (t (HC)
3 
 t (HC)

2 ))/�HCG}]Within each population, we measure time in units of
2N generations and further multiply time by the muta- � [2/�HCGOexp{�6t (HCGO)

3 /�HCGO} � 2/�HCGOexp{�2t (HCGO)
2 /�HCGO}].

tion rate. With this scaling, coalescent times are mea- (9)
sured by the expected number of mutations per site,
and any two lineages in the sample coalesce at the rate

APPLICATION TO HOMINOID DATA�/2 (Hudson 1990). The waiting time tj until the next
coalescent event, which reduces the number of lineages Data: We apply the new method to the following data,
from j to j � 1, has the exponential density all composed of noncoding regions. Noncoding regions

are preferable for this kind of analysis as they are likely
f(tj) �

j( j � 1)
2

�
2
�
exp�� j( j � 1)

2
�

2
�

tj �, to be evolving neutrally, less affected by background
selection than, for example, silent sites in coding re-

j � m, m � 1, . . . , n 
 1. (7) gions.

i. Chen and Li (2001) sequenced one individual fromIf n 
 1, we have to consider the probability that no
coalescent event occurred between the last coalescent each of the four species, human, chimpanzee, go-

rilla, and orangutan, at 53 independent noncodingevent and the end of the population at time �, that is,
during the time interval � � (tm 
 tm�1 
 . . . 
 tn
1). loci (contigs), with �500 bp at each locus. Chen

and Li’s analysis using the tree-mismatch methodThis probability is exp{�(n(n � 1)/�)[� � (tm 
 tm�1 

. . . 
 tn
1)]} and is 1 if n � 1. In addition, to derive the estimated the population size for the common an-

cestor of humans and chimpanzees to be fromprobability of a particular gene tree topology in the
population, note that if a coalescent event occurs in a 52,000 to 150,000. Maximum-likelihood (ML) analy-

ziheng
Cross-Out

ziheng
Inserted Text
\tau_{HCGO} - \tau_{HCG}
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TABLE 2

Prior and posterior distributions of parameters in the Bayes analysis of the 53 loci of Chen and Li (2001)

Parameter (�, �)a Prior Posterior (53 loci) Posterior (56 loci)

�H (2, 2000) 0.001 (0.00012, 0.00279) 0.00057 (0.00039, 0.00076)
�HC (2, 2000) 0.001 (0.00012, 0.00279) 0.00197 (0.00077, 0.00374) 0.00258 (0.00120, 0.00448)
�HCG As above As above 0.00342 (0.00219, 0.00487) 0.00387 (0.00262, 0.00536)
�HCGO As above As above 0.00198 (0.00023, 0.00446) 0.00235 (0.00033, 0.00467)
�HCGO � �HCG (7.4, 1000) 0.0074 (0.00307, 0.01361) 0.00797 (0.00630, 0.00952) 0.00773 (0.00637, 0.00906)
�HCG � �HC (4, 2500) 0.0016 (0.00044, 0.00351) 0.00118 (0.00047, 0.00211) 0.00134 (0.00063, 0.00213)
�HC (20, 4000) 0.0050 (0.00305, 0.00742) 0.00481 (0.00406, 0.00554) 0.00432 (0.00369, 0.00495)

Both � and � are measured as the expected number of mutations per site.
a Parameters � and � are for the gamma prior, with the prior mean to be �/�.
b Mean and 2.5 and 97.5 percentiles of the prior or posterior distributions.

sis of the same loci using only the H-C-G sequences Estimation of ancestral population sizes and specia-
tion times: The gamma priors for the ancestral popula-suggested smaller estimates of �12,000–21,000

(Yang 2002). Here we use the data from all four tion size and speciation time parameters are specified
on the basis of our expectations about those parametersspecies.

ii. Yu et al. (2001) sequenced �10 kb at the region (Table 2). For easy comparison, the same priors are
used for parameters �HC, �HCG, (�HCG � �HC), and �HC as in1q24 from 61 humans, one chimpanzee, one gorilla,

and one orangutan. This region was intended to be Yang (2002), although parameters �HCGO and (�HCGO �
�HCG) are new. The gamma parameter � is chosen to benoncoding but was discovered to contain four exons

(of 115, 155, 138, and 151 nucleotides long), which 
1, so that the distribution peaks at a positive value
instead of 0. The prior for each � has the mean 0.001are removed before analysis.
and 95% of the density is in the interval (0.00012,iii. Makova et al. (2001) sequenced a region of �6.6
0.00279). We assume a generation time of g � 20 yearskb at 16q24.3, located upstream from the melano-
and a neutral mutation rate of 10�9 mutations/site/cortin 1 receptor gene and containing its promoter,
year. Thus the population sizes have a prior mean offrom 54 humans, one chimpanzee, one gorilla, and
12,500 with the 95% interval (1500, 34,800). The meanone orangutan. The orangutan sequence was incom-
speciation times in the prior are 5 million years (MY)plete and unavailable from GenBank. Only the hu-
before present, 6.6 MY, and 14 MY for the H-C, HC-G,man, chimpanzee, and gorilla sequences are used.
and HCG-O divergences, respectively.iv. Zhao et al. (2000) sequenced �10 kb in the region

We use 10,000 iterations as the burn-in and then take22q11.2 from 64 humans, one chimpanzee, and one
1,000,000 samples, sampling every two iterations. Theorangutan. One human sequence (AF291608) ap-
results are presented in Tables 2 and 3. The posteriorpears to be corrupted, so only 63 human sequences
distribution for �HC from the 53-loci data (Chen and Liare used.
2001) indicates a population size of 24,600 with the 95%

In all data sets, most alignment gaps occur at the ends credibility interval (CI) of (9600, 46,800) for the H-C
of the sequence and probably represent undetermined ancestor. These are larger than the Bayes estimates ob-
nucleotides. The three large loci (Zhao et al. 2000; tained from the H-C-G sequences only, which were
Makova et al. 2001; Yu et al. 2001) involve many ambigu- 13,100 with the 95% CI (1700, 32,100; Yang 2002; Table
ity nucleotides. These are included in the likelihood 3). The size for population HCG has posterior mean
calculation (Yang 2000). 42,700 with the 95% CI (27,000, 60,900), which are also

Two analyses are performed. The first estimates the larger than those from the H-C-G sequences only (Yang
ancestral population size and speciation time parame- 2002). The H-C divergence time is calculated to be �4.8
ters �HC, �HCG, �HCGO, �HCGO, �HCG, and �HC, initially using MY with the 95% CI (4.1, 5.5). Those estimates seem
the data set of Chen and Li (2001) at 53 loci and then too young, as current opinion appears to favor a date
including the data at the three other loci as well, in as old as 7 MY (Brunet et al. 2002). The gap between
which case an additional parameter �H is also estimated. the H-C and HC-G divergences is estimated to be �1.2
The results are presented in Table 2 under the headings MY with the 95% CI (0.47, 2.11), smaller than the esti-
“53 loci” and “56 loci,” respectively. The second analysis mates from the H-C-G sequences only (Yang 2002). We
uses only the human sequences at the three loci (Zhao also analyzed the H-C sequences only from the Chen
et al. 2000; Makova et al. 2001; Yu et al. 2001) to estimate and Li data and obtained estimates of �HC and �HC that
�H and tMRCA, the time to the most recent common ances- are almost identical to estimates from the H-C-G se-

quences (results not shown). In sum, inclusion of thetor in the sample. The results are presented in Table 3.
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TABLE 3

Bayes estimates from the human data

Bayes: mean (95% CI)

Region and length (reference) n �H �tMRCA

1q24, �10 kb (Yu et al. 2001) 61 0.00035 (0.00017, 0.00062) 0.00031 (0.00015, 0.00055)
16q24.3, �6.6 kb (Makova et al. 2001) 54 0.00071 (0.00038, 0.00116) 0.00075 (0.00042, 0.00121)
22q11.2, �10 kb (Zhao et al. 2000) 63 0.00065 (0.00038, 0.00103) 0.00051 (0.00030, 0.00079)
Combined 0.00056 (0.00040, 0.00076) 0.00037 (0.00020, 0.00062)

0.00060 (0.00036, 0.00094)
0.00045 (0.00028, 0.00070)

orangutan has led to more recent estimates of speciation 0.00529) for �HCG and 0.00240 (0.00042, 0.00453) for
�HCGO. The posterior means and 95% CIs for speciationtimes and to large estimates of ancestral population

sizes. The reasons for the differences are unclear, but times are 0.00757 (0.00629, 0.00887) for �HCGO � �HCG

and 0.00109 (0.00048, 0.00177) for �HCG � �HC.they are not due to exclusion of alignment gaps in the
analysis of Yang (2002). Estimation of human population size �H and the tMRCA:

The human sequences at the three large loci (Zhao etWe note strong negative correlations in the posterior
density between �’s and �’s, especially between � and � al. 2000; Makova et al. 2001; Yu et al. 2001) are analyzed

separately and then combined. The only parameter tofor the population representing the root of the species
tree (Table 4). For example, the correlation between be estimated is �H, and the same gamma prior G(2,

2000) is used as in Table 2, which corresponds to a�HCGO and �HCGO is �0.75. The joint posterior density for
�HCGO and (�HCGO � �HCG) is shown in Figure 2, after prior mean of NH � 12,500 with the 95% interval (1500,

34,800). The results are shown in Table 3.kernel density smoothing (Silverman 1986).
Including the three large loci of Yu et al. (2001), For locus 1q24 (Yu et al. 2001), the Bayes analysis

suggests a posterior mean of 0.00035 with the 95% CIMakova et al. (2001), and Zhao et al. (2000) leads to
even younger estimates of speciation times and larger (0.00017, 0.00062) for �H. With the generation time g �

20 years and mutation rate � � 10�9 substitutions/site/estimates of ancestral population sizes (Table 2; column
labeled 56 loci). The H-C divergence time, estimated year, those estimates correspond to an average long-

term human population size of only NH � 4400 withat 4.3 MY with a 95% CI (3.7, 5.0), appears too recent.
The strong correlations between parameters � and � in the 95% CI (2100, 7700). Yu et al. (2001) suggested a

lower mutation rate for the locus at � � 0.74 � 10�9the posterior distribution suggest that estimation of �’s
is affected by uncertainties in the �’s. To alleviate such substitutions/site/year. Use of this rate gives the poste-

rior mean 5900 with the CI (2800, 10,500). The tMRCAeffects, we used a highly informative prior for �HC with
� � 120, � � 20,000, corresponding to a prior mean has the posterior mean 0.31 MY with the CI (0.15, 0.55)

if the mutation rate is � � 10�9 or 0.42 MY with the CIof 6 MY for the H-C divergence with the 95% prior
interval (5.0 MY, 7.1 MY). The 53-loci data then give (0.20, 0.74) if the mutation rate is � � 0.74 � 10�9. Yu

et al. (2001) estimated �H using Watterson’s methodthe posterior mean 5.3 MY with the CI (4.7 MY, 5.9 MY)
for the H-C divergence. The posterior mean and the based on the number of segregating sites (Watterson

1975), Tajima’s method (Tajima 1983), and Fu and Li’s95% CI for �HC are 0.0015 (0.0006, 0.0029), which corre-
spond to an HC population size of 19,000 with the CI BLUE method (Fu 1994), either with or without the

singletons removed. The estimates varied considerably(7600, 36,600), 0.0034 (0.0022, 0.0048) for �HCG, and
0.0019 (0.0002, 0.0044) for �HCGO. The posterior means among methods and are all much larger than the Bayes

estimates obtained here. The estimate suggested by theand 95% CIs for speciation times are 0.0079 (0.0062,
0.0094) for �HCGO � �HCG and 0.0010 (0.0004, 0.0017) authors was � � 6.7/8991 � 0.00074, twice as large as

the Bayes mean and outside the 95% CI. With � �for �HCG � �HC. Those estimates appear more reasonable.
Application of this informative prior for �HC to the 0.74 � 10�9 used, the population size was estimated to

be NH � 12,600 (Yu et al. 2001). Similarly Yu et al.’s56-loci data had a similar effect of reducing �HC. The
posterior mean and 95% CI for �HC are 0.00201 analysis estimated tMRCA of the human sample to be �1.5

MY, more than three times older than the Bayes esti-(0.00088, 0.00352), which correspond to a mean NHC of
25,000 with the CI (11,000, 44,000). Estimates for �HC mates.

For locus 16q24.3 (Makova et al. 2001), the Bayesare 0.00481 (0.00430, 0.00535). Estimates for �H are
0.00055 (0.00039, 0.00075), identical to those of Table analysis suggests a posterior mean of NH � 8800 with

the 95% CI (5500, 15,000) if g � 20 years and � � 10�9.2. Estimates of other parameters are 0.00379 (0.00258,
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TABLE 4

Correlation coefficients between parameters in the posterior
distribution for the 53-loci data of Table 1

�HC �HCG �HCGO �HCGO �HCG

�HCG �0.21
�HCGO 0.02 0.00
�HCGO 0.01 0.05 �0.75
�HCG 0.24 �0.48 �0.01 0.14
�HC �0.55 0.01 �0.03 0.12 0.40

Makova et al. (2001) estimated a mutation rate of � �
1.65 � 10�9 for this locus. Use of this rate gives the
posterior mean 5300 with the CI (3300, 9100) for NH.
The tMRCA has the posterior mean 0.77 MY with the CI
(0.44, 1.2) if the mutation rate is � � 10�9 or 0.47 MY
with the CI (0.27, 0.73) if the mutation rate is � �
1.65 � 10�9. Makova et al.’s (2001) estimates are � �

Figure 2.—Contour plot for the joint posterior density of13.7/6545 � 0.00209, which is twice as large as the Bayes
�HCGO and �HCGO � �HCG. The correlation between the two param-

mean, and NH � 10,000 for the human population size eters in the posterior is �0.71.
and tMRCA � �1.5 MY.

For locus 22q11.2 (Zhao et al. 2000), the Bayes analy-
sis suggests a posterior mean of NH � 8100 with the

increased accuracy in the estimate in the combined95% CI (4700, 13,000), if g � 20 years and � � 10�9.
analysis. The posterior means and CIs of the tMRCA areThe tMRCA has the posterior mean 0.51 MY with the CI
similar to estimates from the separate analyses of the(0.30, 0.79). Zhao et al.’s (2000) estimates of � varied
three loci (Table 3).among methods and were all larger than the Bayes esti-

mates. The population size NH was estimated to be
�10,000–15,000, which is comparable with the Bayes

DISCUSSION
estimate. However, tMRCA was estimated to be �1.3 MY,
with a confidence interval of (0.71, 2.1), much larger Validation of the MCMC algorithm and convergence

monitoring: While MCMC provides a powerful frame-than the Bayes estimates.
In sum, the Bayes estimates of �H and tMRCA are consid- work for fitting sophisticated multiparameter models

to heterogeneous data sets from multiple loci, MCMCerably smaller than the estimates of Yu et al. (2001),
Makova et al. (2001), and Zhao et al. (2000). As found algorithms are notoriously difficult to validate. MCMC

implementations are notably more difficult to debugby those authors, the estimation methods have a great
impact. In all three data sets, there is an excess of rare than maximum-likelihood programs. For example, in

most numerical optimization algorithms for maximum-mutants, such as singletons and doubletons (Zhao et
al. 2000; Makova et al. 2001; Yu et al. 2001), which likelihood estimation, the likelihood always increases.

However, an MCMC algorithm is stochastic and we can-explains why estimates obtained using Watterson’s
method are often a few times larger than other esti- not expect any summary statistics to increase or decrease

monotonically. Second, a likelihood program convergesmates; this is the pattern expected for a recent popula-
tion expansion. The exact reasons for the large differ- to a fixed point (or points in the presence of multiple

local optima). In contrast, convergence of an MCMCences are not entirely clear. One possible reason is the
many ambiguity nucleotides in the human sequence algorithm is to a distribution.

We used several strategies to validate the theory anddata, which are properly dealt with in the Bayes and
likelihood calculations but are typically removed in heu- implementation. For small data sets with only 2 or 3

species, quantities such as the probability of a particularristic methods.
The three human loci are then combined in a Bayes gene tree topology and the expectations of coalescent

times in the gene tree were calculated by both MCMCanalysis, with a single �H estimated (Table 3). The poste-
rior mean �H � 0.00056 with the 95% CI of (0.00040, simulation and numerical integration using Mathemat-

ica. For larger species trees (with, say, 10 species), the0.00076), corresponding to a population size of NH �
7000 with the 95% CI of (5000, 9500), is an average MCMC algorithm was run without data [that is, by fixing

f(D|G) � 1], and the resulting posterior distributionsacross the three loci. However, the 95% CI is much
narrower than those at individual loci, indicating the of parameters (�) were compared with the prior gamma
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TABLE 5

Average size of the 95% CI

(A) (B) (C) (D)
Parameter Prior CI L � 10, C � 10,000 L � 20, C � 5000 L � 100, C � 1000 L � 500, C � 200

�HC 0.0027 0.0016 0.0016 0.0014 0.0016
�HCG 0.0027 0.0017 0.0015 0.0013 0.0012
�HCGO 0.0027 0.0021 0.0023 0.0021 0.0019
�HCGO � �HCG 0.0105 0.0016 0.0016 0.0016 0.0015
�HCG � �HC 0.0031 0.0011 0.0010 0.0011 0.0012
�HC 0.0044 0.0008 0.0008 0.0009 0.0010

L is the number of loci and C is the sequence length. The number of replicates is (A) r � 10, (B) r � 5, (C) r � 3, and (D)
r � 2.

distributions. In addition, a simulation program was an indication of the information content in the data.
Surprisingly the results suggest very little differencewritten to generate testing data and to simulate the

prior distribution of gene trees and coalescent times to among the different strategies (Table 5). Comparison
of the posterior CIs with the prior intervals suggests thatvalidate the theory and the implementation.

For the purpose of convergence monitoring, we speciation times (�’s) are, in general, well estimated,
with their CIs reduced by three to seven times. Parame-found it useful to run multiple chains and to monitor

the values of parameters and the log likelihood over ters � are estimated less well, with about twice the reduc-
tion in the CI for �HC and �HCG, while �HCGO is the mostiterations (e.g., Gelman and Rubin 1992). For the data

analyzed in this study, our algorithm appeared to be poorly estimated parameter.
Population size of the human-chimpanzee commonfast to converge, even if poor starting points were used,

but could be slow in mixing due to correlation between ancestor: The human-chimpanzee ancestral population
size, NHC or �HC, has been of much recent interest (Taka-parameters (Table 4, Figure 2). A relatively short burn-

in of 2000 or 5000 iterations appeared sufficient to bring hata and Satta 2002; Wall 2003). As the size of mod-
ern humans has been consistently estimated to beall parameters to a reasonable range, with each iteration

consisting of the five steps described in the appendix. �10,000 (e.g., Takahata et al. 1995; Ruvolo 1997;
Zhao et al. 2000; Makova et al. 2001; Yu et al. 2001;After the burn-in, 10,000 samples, sampling every 2 itera-

tions, produced stable estimates of posterior distribu- Takahata and Satta 2002), which is surprisingly small
given the widespread distributions of humans in thetions. Results reported in Tables 2–4 were obtained from

much longer runs. past 1–2 million years (Wall 2003), reliable estimation
of the human-chimpanzee ancestral population size isSampling strategies and accuracy of parameter esti-

mation: A small simulation study was conducted to evalu- essential to understand whether there has been a dra-
matic size reduction during human evolution (Haciaate the information content in the data sets. Data are

simulated using the species tree (((HC)G)O) with the 2001; Kaessmann et al. 2001). Our likelihood and Bayes
analyses of the data of Chen and Li (2001) producedparameter values �HC � 0.001, �HCG � 0.001, �HCGO �

0.001, �HCGO � 0.014, �HCG � 0.0066, and �HC � 0.005. estimates that are a few times smaller than estimates
obtained from the same data using the tree-mismatchThe prior of Table 2 is used in the Bayes analysis. The

fact that the prior means are equal to the true values method (Yang 2002 and this study), demonstrating the
importance of the estimation procedure.of parameters suggests that the results are best-time

results. Clearly the method will perform well if we have However, the reliability of our estimates is affected
both by the assumptions made in our model and by thelong sequences to reduce sampling errors in the gene

tree and branch lengths (coalescent times) at each locus quality of the data. We assumed that the evolutionary
rate is the same both among sites within each locus andand also many loci to average over stochastic variations

in the coalescent process among loci. However, given among different loci. Within-locus rate variation is not
expected to be important because its effect is mainly onthe total combined sequence length, it is not obvious

whether it is better to have a few long sequences or correction for multiple hits and because the sequences
used are highly similar. This assumption can be relaxed,many short ones. Thus we simulated a few cases in which

the number of loci, L, and the number of nucleotides although at greater computational cost. Rate variation
among loci should have a greater effect on estimationin the sequence at each locus, C, vary but the total

sequence length from each species is fixed at L � C � of ancestral population sizes (Yang 1997). It is straight-
forward to incorporate variable evolutionary rates across100,000 (Table 5). The average posterior means of pa-

rameters (not shown) were found to be close to the loci in the MCMC algorithm. However, the effect is
less important when multiple-species data are analyzedtrue values of parameters in all the cases considered.

We examined the size of the 95% credibility interval as simultaneously (Yang 2002). Another assumption we
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some parameters in the Markov chain. The main prob- rooted, the age of the node is constrained, and the
subtree can be attached to only some of the branches.lem is to combat the constraints posed by the speciation

times while updating coalescent times in the gene tree An example is shown in Figure A1A, where the subtree
(H2, H3) at node a is pruned and then reattached. Theand vice versa. The algorithm is tedious. The details

follow. proposal also changes the age of the mother node c.
Let the age of node a be ta. The feasible range of tc isStep 1. Updating the coalescent times at internal

nodes in a gene tree: This step cycles through all loci (ta , ∞). A new age t*c is proposed according to Equation
A3, which happens to be in population HCG. There areand, for each locus, through all internal nodes in the

gene tree to propose changes to the node ages (coales- n � 2 feasible branches (e–d and e–G) that the subtree
can attach to at t*c , and one of them is chosen at random.cent times). The age of only one internal node is

changed at a time, and the gene tree topology remains In the current gene tree, the subtree can attach to m �
2 lineages (d–H1 and d–b) at the current age tc .intact. First the lower and upper bounds for the new

age are determined by examining the current values of We also implemented a version of this proposal in
which only the tips are pruned and regrafted. This wasspeciation dates and the ages of the mother and daugh-

ter nodes in the gene tree. A sliding window is then found to be effective for small gene trees, such as in
the data of Chen and Li (2001), but is inefficient forused to propose the new age; that is,
large gene trees.

t*j � U(tj � ε1/2, tj 
 ε1/2), (A1) Step 3. Updating population size parameters: This
step updates the population size parameters (�’s) onewhere U(a, b) is a random variable from the uniform
by one. A sliding window is used to propose a new value;distribution in the interval (a, b), and ε1 is the window
that is, �*j � U(�j � ε3/2, �j 
 ε3/2), where ε3 is thesize, which is adjustable. If the new age is outside the
window size. If �*j � 0, it is reset to ��*j . The proposalfeasible range, the excess is reflected back into the inter-
ratio is 1, and the acceptance ratio isval. As there are always the same number of routes from

tj to t*j as from t*j to tj, the proposal ratio is 1. The
R � min�1,

f(G |�*) f(�*j )
f(G|�) f(�j)

� . (A5)acceptance ratio is

Step 4. Updating speciation times in the species tree:R � min�1,
f(Di |G *i ) f(G*i |�)

f(Di |Gi) f(Gi |�) �. (A2)
This step cycles through the speciation times, that is,
ages at internal nodes of the species tree. The age � atStep 2. Subtree pruning and regrafting in the gene
any internal node is bounded upward by the speciationtree: This step cycles through nodes in each gene tree
time of its mother node and downward by the ages of(except the root), removes the subtree represented by
its daughter nodes. Let the interval be (�L, �U). A slidingthe node (which includes the node and all its descend-
window is used to propose a new age,ent nodes), and then reattaches it to the remaining

gene tree (Figure A1A). The step changes the gene tree �* � U(� � ε4/2, � 
 ε4/2), (A6)
topology and the coalescent time for the mother node.

where ε4 is the adjustable window size. If the new ageThe feasible range for the new age of the mother node
is outside the range (�L, �U), the excess is reflected back.is determined on the basis of the current values of the
To maintain the compatibility of the gene trees withspeciation times and the age of concerned node in the
the species tree, we change the ages of the affectedgene tree. Then a random age is chosen by using a
nodes in the gene tree at each locus. A node in thesliding window around the current age,
gene tree is affected if its age is in the interval (�L, �U)

t*j � U( tj � ε2/2, tj 
 ε2/2), (A3) and if it is in the population(s) represented by the
concerned node in the species tree or its two daughterwhere the window size ε2 can be fine tuned. If the new
nodes.age is outside the feasible range, the excess is reflected

Our calculation of the new ages for the affected nodesback. Next the feasible branches in the gene tree at
in the gene tree mimics the movements of marks (nodeswhich the mother node can join are counted, and one
in the gene tree) on a rubber band when its two endsof them is chosen at random. If m feasible lineages (to
are fixed (at �L and �U) and when the rubber is held atwhich the mother node can be attached) are in the
a fixed point (�) and pulled slightly to one end (Figurecurrent gene tree and n feasible lineages are in the
A1B). The marks will move relative to the two endsproposed gene tree, the proposal ratio is n/m. Thus
when the rubber expands on one side of the holding
point and shrinks on the other. If the node age in theR � min�1,

f(Di |G*i ) f(G*i |�)
f(Di |Gi) f(Gi |�)

�
n
m� . (A4)

gene tree t 
 �, the new age is given by (�U � t*)/
(�U � t) � (�U � �*)/(�U � �); that is,

Note that this is the subtree-pruning and regrafting
(SPR) algorithm used in phylogenetic tree search t* � �U �

(�U � �*)
(�U � �)

(�U � t), for t 
 �. (A7)
(Swofford et al. 1996), except that the gene tree is
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Figure A1.—(A) Subtree pruning and regraft-
ing algorithm to update the gene tree topology.
The subtree (H2, H3), represented by node a, is
pruned by cutting branch a–c. The age tc of the
mother node is changed, and the subtree is re-
grafted to the gene tree at a feasible branch. (B)
Rubber-band algorithm for updating a species di-
vergence time �, bounded by �L and �U. In the
example, �HC is updated between �L � 0 and �U �
�HCG, and the four coalescent times correspond to
nodes a, b, c, and d in the gene tree of Figure 1.
When the proposal changes � to �*, ages of nodes
a, b, c, and d are also changed.

If the node age t � �, the new age is given by (t* � (�U � �) for each of the m nodes with tj 
 �, and yk �
(tk � �L)/(� � �L) for each of the n nodes with tk � �.�L)/(t � �L) � (�* � �L)/(� � �L); that is,
Note that only y0 is changed while all other m 
 n
variables yj and yk remain the same in the proposal. Thet* � �L 


(�* � �L)
(� � �L)

(t � �L), for t � �. (A8)
proposal ratio in the transformed variables is 1. The
proposal ratio in the original variables is easily derivedIf the node in the species tree is the root so that �U �
as ((�U � �*)/(�U � �))m((�* � �L)/(� � �L))n. The∞, all node ages are changed relative to the lower bound
acceptance ratio is thus(Equation A8).

An example is shown in Figure A1B, where �HC of
R � min�1,

f(D |G*) f(G*|�*)
f(D|G) f(G |�)

�
f(�*)
f(�)

� ��U � �*
�U � � �

m

��* � �L

� � �L
�
n

� .Figure 1 is updated. The range is �L � 0 and �U � �HCG.
The ages of nodes a, b, c, and d in the gene tree should (A9)
be changed as well to maintain compatibility between

Step 5. Mixing step: A mixing step is found to bethe gene tree and proposed species tree. Nodes a and
effective in speeding up convergence, especially fromb, which are younger than �HC, are repositioned relative
a poor starting point. The gene tree topologies remainto the lower bound �L according to Equation A8, while
unchanged, but all parameters in the model (�’s andnodes c and d, which are older than �HC, are repositioned
�’s) and node ages (coalescent times) in each gene treerelative to the upper bound �U according to Equation A7.
are multiplied by a constantSuppose m node ages are changed relative to the

upper bound �U (using Equation A7) and n node ages c � e ε5(r �0.5), (A10)
are changed relative to the lower bound �L (using Equa-
tion A8) across all loci. To derive the proposal ratio, we where r is a random number from U(0, 1) and ε5 
 0

is a small fine-tuning parameter. The proposal ratio isapply the following transform: y0 � �, yj � (�U � tj)/
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cn, where n is the total number of variables updated. use of the correlation coefficients between parameters
calculated during the MCMC up to that point. For eachThe acceptance ratio is
parameter �, its strongest correlation with parameters
� is found. If that correlation is �0.2, � is not changed.R � min�1,

f(D |G*) f(G*|�*)
f(D |G) f(G |�)

�
f(�*)
f(�)

� cn� .
Otherwise � is multiplied by c if the correlation is posi-
tive or divided by c if the correlation is negative. Thus(A11)
with the correlation coefficients of Table 4, all the �

To overcome the strong correlation between parame- parameters are divided by c. The proposal ratio for the
ters � and � (Table 4; see also Yang 2002), the mixing modified algorithm is cm�n, where m is the total number
step is modified at an early stage of the MCMC run, say, of parameters multiplied by c and n is the total number

of parameters divided by c.when 10% of the samples have been taken, making
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The following is a detailed derivation of the proposal ratio (Hastings ratio) in equation (A9) 
on page 1655 of Rannala & Yang (2003 Genetics 164:1645-1656) for the rubber band 
algorithm.  The notation here is heuristic and is largely consistent with RY03.  Let tj be the 
set of m node ages on the gene tree that are older than the current τ; those are altered 
according to equation A7 in RY03.  Let tk be the set of n node ages on the gene tree that are 
younger than the current τ; those are altered according to equation A8.  Note that the move 
changes τ, tj, and tk.  We collect those into a vector x = {τ, tj, tk}, of size (1 + m + n).  
Asterisks mean new proposed values.  As stated in equation (A9), the proposal ratio is  
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We show this below, by deriving * * * *( | ) ( , , | , , )j k j kq q τ τ=x x t t t t . 

The move is one-dimensional, along a curve in the (1 + m + n)-dimensional space.  As in 
RY03, define a transform y(x), with y = {y0, yj, yk}, as follows 
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The Jacobi matrix of the transform is  
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, (3) 

so the absolute value of the Jacobi determinant is ( ) ( )1 1
U L

m n

τ τ ττ−
∂
∂ −=y
x .  (My notation here is 

awkward as I am trying not to introduce new variables.  The matrix is lower-diagonal, and on 
the diagonal, –1/(τU – τ) occurs m times, and 1/(τ – τL) occurs n times.) 

Note that from y to y*, only y0 changes, so that  
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* 1( | )q ε=y y        (from equation A6 in RY03) (4) 

Then 
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Conditioning on  is the same as conditioning on 

Derive the density of  as a function of) |
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Similarly ( ) ( )
4

* 1 1 1( | )
U

m
q ε τ τ τ τ− −= ⋅x x

L

n
.  Equation (1) thus follows. 

The above also constitutes a proof of Theorem 2 on page 313 of Yang (2006 
Computational Molecular Evolution, OUP).  Note that there J(y) = 1 ∂∂

∂∂ = yx
xy . 
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