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Discussion on the paper by Wilson, Weale and Balding

Ziheng Yang .University College London/
It is my great pleasure to propose the vote of thanks. The past two decades have seen a rapid accumulation
of genetics data, and the focus of theoretical population genetics has shifted from forward mathematical
modelling to inference from real data. The introduction of the coalescent model, ‘a time machine which
runs evolution backwards’ (Edwards, 1970), and the development of computation-intensive statistical
methods, such as Markov chain Monte Carlo (MCMC) and importance sampling, have made it possible
to implement likelihood-based inference methods under biologically interesting models. In this paper,
the authors describe their flexible MCMC algorithm for Bayes inference, which implements the standard
coalescent model as well as models of deterministic population size change and population subdivision.
The computer program handles all major types of genetics data, such as DNA sequences, short tandem
repeats, single-nucleotide polymorphisms and unique event polymorphisms. It will no doubt become a
powerful tool for population genetics analysis.

I would like to draw attention to some related work and to make two comments on the authors’
algorithm. The population split model of the authors does not allow gene flow (migration) after the
split, and it is quite similar to the model for estimating ancestral population sizes on a species phylogeny
by using data from multiple loci. A maximum likelihood method was developed by Takahata et al. (1995)
for two or three species under the infinite sites model, and Yang (2002) and Rannala and Yang (2003)
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implemented MCMC algorithms for Bayes inference for general species trees under finite sites models.
Two observations that were made in those studies appear relevant here. First, simple methods based on
summary statistics (such as the proportion of loci at which the gene tree does not match the species tree)
may not use the information in the data efficiently and can be very misleading. Second, to estimate param-
eters in a complex model incorporating multiple factors, it seems necessary to combine data from multiple
loci.

The first of my comments concerns the robustness of the posterior to the prior and to model assump-
tions. To some extent, one might argue that the authors’ models are overparameterized. The simplest
(standard coalescent) model has two parameters N and µ, whereas the likelihood depends on their prod-
uct (θ) only. The model is not identifiable if uniform rather than gamma priors are used for N and µ.
Although specifying priors for both parameters is a natural way of accounting for uncertainties in µ when
we are estimating N, I wonder to what extent we are simply obtaining what we put in (both through the
prior and through the model that is assumed). Overparameterization may produce slow convergence in the
MCMC algorithm and strong correlation between parameters in the posterior, in which case the marginal
credibility intervals are not an adequate summary of the joint posterior. The problem should be more
serious under more sophisticated models of population growth and structure. I would like to see some
comments on those issues. A way forward seems to be a combined analysis of data from multiple loci
(nuclear, mitochondrial and Y-chromosome) to estimate the shared parameters such as the population
growth rate and splitting times, while accommodating differences between loci (in mutation rate, popula-
tion size, etc.).

My second comment concerns the proposal algorithm. We must make many quite arbitrary decisions,
and it is often unclear which make an efficient algorithm. I am particularly interested in how the authors’
data augmentation approach, which averages over ancestral states (at ancestral nodes in the genealogy)
during the MCMC run, compares with the alternative approach of calculating that average directly by
using the peeling or pruning algorithm (Felsenstein, 1981). The latter computation is linear with the sam-
ple size n even though the space of the ancestral states grows exponentially with n. A further saving
is achieved if the proposal alters only parts of the genealogical tree, as duplicated computation in the
unchanged parts is avoided. The posterior distribution of the ancestral states, if needed, can easily be
recovered as well, at least for the root. Let the data be x, the ancestral states be y and the parameters in
the model be θ. p.y|x, θ/ is easily calculated from the pruning algorithm (Yang et al., 1995), and

p.y | x/ =
∫
p.y, θ | x/dθ =

∫
f.y | x, θ/ f.θ | x/dθ

can be calculated by averaging over the MCMC sample. I can see that for microsatellite data (short tandem
repeats) the authors’ use of ancestral states to generate proposals may increase the acceptance rate and the
efficiency of the algorithm. However, this is less straightforward to implement for sequence data, and tying
the proposal step (to change trees) with the mutation model or data type might complicate the algorithm.
I would be delighted to hear any comments on the relative efficiency of those two strategies.

To conclude, the authors have produced a powerful and versatile program package that can accommo-
date different types of genetics data under several important population genetic models. I congratulate
the authors for this achievement and have great pleasure in proposing the vote of thanks.

David Stephens .Imperial College London/
This is a very interesting paper that draws together aspects of many of the previously published methods of
analysis and describes the implementation of the authors’ own software in the analysis of some common
types of DNA sequence data. The authors use extensions of the standard coalescent model and use a
Markov chain Monte Carlo (MCMC) algorithm to analyse a variety of human-derived DNA data sets,
thus extending the ground breaking paper of Wilson and Balding (1998). The modelling extensions in
particular are very important, and the authors demonstrate that their algorithms can cope with the more
complex models, albeit at some increased computational burden. The authors are to be congratulated on
the major achievement of the development of a robust, accessible and efficient computational package.

I think that several important issues are raised by the paper.

The models
Models for the different data sets, in increasing order of complexity, the genealogical models used, are
the standard coalescent (fixed population size, with population growth) or splitting–coalescent (with and
without populations growth), the coalescent with population splitting and the coalescent with population
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splitting and growth. Thus we have a rich and comprehensive treatment set of (nested) models, within
which some key parameters are interpretable across all models. The prior specification for parameters in
the models appears, however, to be quite problematic: for example, it is not clear that the prior specifica-
tions under the different growth models are sufficiently comparable to allow a straightforward posterior
interpretation; contrast, for example, the prior and posterior for the TMRCA value for each model. Is it
possible routinely to calibrate the priors for ease of comparison?

The algorithm
The algorithm that is used is an MCMC algorithm implemented through the BATWING package, using
standard approaches to such MCMC problems. The authors clearly prefer the augmented likelihood ap-
proach, where the MCMC algorithm traverses the joint parameter–coalescent tree space, and it is clear
that this offers a broader range of modelling possibilities. Do the authors have an opinion on the inferential
and algorithmic performance of their method compared with non-MCMC methods?

Model selection and validation
The results that are presented for the various data sets raise the question of model selection and validation.
For example, for Table 2, and given the results presented, what should the geneticist infer about TMRCA
for the C96 data? We have the results for a range of models, but which set of results is most appropriate?
Can population growth models be verified independently, with some form of time-stamped data?

Overall, for all the data sets, there is little or no discussion of model validity or comparison for the
various models proposed; there is now the facility to fit sophisticated population genetics models to such
sequence data but no real guide on how to compare the adequacy or otherwise of the utilized models
a posteriori. When presented with, for example, the wealth of results in Tables 2, 4 or 6, what inference
should the practitioner draw? The subjective Bayesian approach is, of course, completely coherent and to
be recommended, but this does not remove the need for a thorough investigation of the effect of a range
of prior specifications, or a post hoc model validation or assessment exercise. Although prior parameters
are carefully chosen in each example, often on the basis of genuine prior opinion or historical data, the
sensitivity of inference

(a) to the prior specification and
(b) any individual datum sequence

is not really discussed. In addition, the posterior behaviour as the sample size n changes may be of some
interest, especially when n is small. Could the authors comment on, for example, the utility of bootstrap
resampling—which is common in phylogenetics—or leave-one-out validation, population subsampling
etc. to examine the stability of the posterior?

At the moment I am left with the feeling that I have no real idea about which of the models proposed
(population structures and prior specifications) best represents the data. Much attention is given to under-
standing the convergence properties of the MCMC algorithm; I would regard the validity of the inference
to be equally important. Current simulation-based Bayesian inference provides several different methods
for assessing and comparing the fits of different models. First (approximations to) marginal likelihood
quantities, the calculation of which for coalescent models are discussed and described in Stephens and
Donnelly (2000) for example, can be used, and the model with the highest marginal likelihood preferred.
Secondly, variable dimension MCMC methods can be used to compute posterior model probabilities.
Neither method would impose a tremendous computational burden (with a slightly amended algorithm),
but, I suspect, would detect any serious inconsistencies in prior or model specification.

The issue of identifiability—which parameters are inferable from the data—is not discussed at any length
in the paper, but it is widely acknowledged that some parameters will always be estimated poorly (as they
are only technically and not practically identifiable from the data alone). Apart from two parameters
that are well known to be aliased (N and µ), are there any other parameters that display a similar strong
dependence? This would be detected by inspection of joint posterior sample plots; none are included in
the paper, but I assume that the authors have used such plots—if, for example, the TMRCA parameter is
strongly correlated with other parameters in the posterior, reporting marginal results is questionable.

The simulation study is an attempt to verify consistency of the posterior, i.e. whether or not Bayesian
posterior analysis regularly derives the correct result. The answer seems, generally, to be yes. What may
be informative here would be to study performance for varying sample size; presumably (one hopes), in
these simulations (taking, for example, n= 30 or n= 120 for the sample size), the principal reason that the
posterior interval does not include the true value of the parameter is that the sample size is quite small. In
the absence of technical results describing the asymptotic behaviour of the posterior it may be useful to
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see what happens when the sample size is gradually increased beyond the practically realistic values that
are selected in the paper.

In summary, I congratulate the authors on their significant contribution; the paper draws together sev-
eral previously proposed methods of MCMC analysis for DNA sequence data and makes modelling and
some algorithmic advances. Geneticists now have an array of models and computational algorithms with
which to analyse their data. At this stage, there is little guidance on how to assess whether their inferences
about the unobserved parameters of interest are credible in the light of the observed data, and conditional
on all aspects of their model specification. Nevertheless, the work will be of considerable use and interest
to geneticists and statisticians; I gladly second the vote of thanks to the authors.

The vote of thanks was passed by acclamation.

Kevin J. Dawson .Rothamsted Research, Harpenden/
The authors have extended the earlier approach of Wilson and Balding (1998) and Beaumont (1999) to
allow for data sets where individuals have been sampled from separate populations and have incorporated
the ‘phylogeny’ of these subpopulations, the ‘supertree’, as a parameter of the model. The assignment of
individuals to contemporary subpopulations is also treated as a parameter of the model, about which we
are uncertain. Each branch of the supertree is also associated with an effective population size. Migration
between branches of the supertree (i.e. between ancestral subpopulations) is not allowed under the present
model. I hope that this aspect of reality will be incorporated in the model in the near future.

The effect of selection on the genealogical process at loci which are tightly or loosely linked, or even
unlinked, to the targets of selection (Barton, 1998) means that parameters of the genealogical process are
no longer strictly determined by demography and should be treated as locus-specific parameters, or at
least as parameters specific to tightly linked regions of the genome. It makes sense to combine information
across marker loci on the Y-chromosome, as the authors have done, since these completely linked loci share
the same gene genealogy. The assumption of complete linkage probably also applies to the mitochondrial
genome. In contrast, the gene genealogies at unlinked or loosely linked autosomal (and X-chromosome)
genes can be assumed to be statistically independent (unless the sample is drawn from a very small or
otherwise closely inbred population). Here we should be much more cautious about assuming common
values for effective population sizes across loci. The discrepancy between the inferences based on the
Y-chromosome loci and the (autosomal) β-globin locus illustrate this point. Frequentist methods have
been developed for identifying loci which have outlying genealogical histories (Bowcock et al., 1991;
Beaumont and Nichols, 1996; Vitalis et al., 2001). It would be preferable to make these decisions within
a Bayesian framework to make full use of the information provided by the data.

I presume that we should take the TMRCA of 29000 years BP for the Y-chromosome, based on the most
general model, as being the more reliable estimate. The problem of reconciling this with the much earlier
data for the colonization of Australia (between 40000 and 30000 years BP) is intriguing. The solution
offered by the authors appears to be a selective sweep at the Y-chromosome, which could have extended
worldwide, reaching Australia some time after 29000 years BP. This seems plausible. Have the authors
considered how long it might have taken for such a selective sweep on the Y-chromosome to spread world-
wide, or whether several geographically more restricted selective sweeps could have been responsible? How
committed are they to such a recent TMRCA for the Y-chromosome?

Alexei Drummond (University of Oxford) and Geoff Nicholls .University of Auckland/
In elaborating a Bayesian Metropolis–Hastings Markov chain Monte Carlo (MCMC) framework for
coalescent-based inference the authors provide an attractive alternative to both importance sampling
(Griffiths and Tavare, 1994) and maximum likelihood MCMC methods (Kuhner et al., 1995). Our com-
ments arise from insight gained from our own published work on coalescent-based Bayesian MCMC
kernels (Drummond et al., 2002). The authors used data augmentation of sequences at internal nodes
rather than the standard analytical peeling algorithm (Felsenstein, 1981). Data augmentation allows more
complicated models of mutation and likelihood calculations are simplified. They studied small data sets,
with only 13 variable sites in the H97 data set, leading to a small state space of ancestral sequences to sam-
ple. However, for larger more variable data sets, peeling will certainly be preferable, especially if ancestral
sequences are nuisance parameters. Roughly speaking, MCMC sampling is slowed by diffuse distributions.
When mutation rates are low, the distribution over ancestral sequences on a fixed tree is concentrated on
a small set. At high mutation rates the MCMC algorithm must explore a relatively large set of ancestral
sequences on each tree. In contrast the work in peeling is fixed. In our studies on temporally spaced leaf
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data, we made comparable MCMC programs with and without peeling. Peeling had a clear advantage on
large data sets. For sequences on a tree, it is straightforward to implement peeling so that local MCMC
tree operations generate likelihood calculations that have O{log.n/} time complexity rather than O.n/
(where n is the number of leaves). Therefore, peeling is not as slow per update as might be expected.

A second consideration involves the separation of Θ into effective population sizeNe and mutation rate
µ. For contemporaneous sequences with no external calibrations of time, Ne and µ are confounded. This
is true in the authors’ work, and all information about Ne and µ beyond their product derives from the
priors. Hence, their posterior of µ is almost identical to their prior (Tables 3, 4 and 7).

Finally, there is often doubt about what our state of knowledge actually is (so which prior we should
use) and doubt about how to represent our knowledge mathematically (for high dimensional priors it
is easy to write down a prior which, when sampled, produces typical realizations that are dramatically
unrepresentative of our prior knowledge). Because of the conflation ofNe and µ, the primary achievement
of this study is to give a method for converting prior knowledge aboutNe and µ into knowledge about the
timing of human origins, with an explicit quantification of uncertainty.

R. C. Griffiths .Oxford University/
The Melanesian data set that is considered by the authors is interesting in that it conforms to the infinitely
many sites model of mutation with no recombination. The data are then equivalent to an essentially unique
gene tree, constructed as a perfect phylogeny, whose vertices are labelled by mutations. Labelling of verti-
ces is unique up to permutations of mutation labels along single edges. There is mathematical detail about
the tree nature of this data set and ages of mutations in Griffiths and Tavaré (1999). Questions relating to
the stochastic nature of the ancestral gene tree back in time can then be asked and answered by simulating
trees back in time conditional on the topology of the gene tree by using computationally intensive methods
with a combination of sequential importance sampling, Markov chain Monte Carlo or Bayesian methods.
Fig. 6 shows an average gene tree from the Melanesian data using sequential importance sampling on
coalescent histories with a proposal distribution of Stephens and Donnelly. The gene trees are drawn to
scale with mean ages of mutations and TMRCA calculated as weighted means with likelihood weights on
each simulation run. In this method each simulation run is independent. Assuming a 25-year generation
time and an effective population size of 20000, the TMRCA estimates in the two trees are 1.08 million and
3.01 million years. Of interest are the mean ages of clades underneath mutations, such as the mutation at
site 1358. Fig. 6(a) is constructed with θ = 2:55 and Fig. 6(b) is constructed by assuming that the data are
single-nucleotide polymorphism data as an illustration to see the effect. In Fig. 6(b) there is no mutation

(a) (b)

Fig. 6. Melanesian gene trees drawn to scale with expected TMRCA, ages of mutations and ages of clades:
in (a) the mutation rate is θ D 2:55 and in (b) the data are assumed to be single-nucleotide polymorphism
data and the tree times are computed conditional on the mutant sites segregating, with no assumption about
the mutation rate
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parameter θ, with the tree being calculated conditional on the segregating sites, supposing that these are
the only sites sampled. The tree is approximately three times higher than the tree in Fig. 6(a) because there
is no assumption that sites other than those sampled are non-segregating. Lower parts of the tree may be
reasonable but an estimate of 3.01 million years seems too high for TMRCA in a biological sense. Although
this type of computation can take substantial time, this is a small gene tree and the computing time on a
modest personal computer was 260 s with 3 million runs for Fig. 6(a) and 864 s with 10 million runs for
Fig. 6(b).

Hilde M. Wilkinson-Herbots .University College London/
The interpretation of mitochondrial DNA evidence in court has long been a problem of considerable
practical interest, and the method described by Wilson, Weale and Balding is a substantial step forward.
However, the mitochondrial DNA ‘minisequences’ to which their method is applied are mainly useful to
exclude suspects quickly and cheaply. Before taking a defendant to court on the basis of mitochondrial
DNA evidence, a match for a much longer mitochondrial DNA sequence would normally have been estab-
lished. For example, the forensic mitochondrial DNA database published by Piercy et al. (1993) consists
of mitochondrial DNA sequences of approximately 800 nucleotide sites in length. If the authors’ method
can be readily applied to such ‘long’ sequences, then their work is of significant practical interest indeed.
If however, the analysis of a substantial set of such long sequences proves computationally too demand-
ing at present, then it may be possible to reduce the computational complexity of the problem by taking
account of information about the genealogical structure of the mitochondrial DNA gene pool obtained
by other methods. Various researchers have studied the major haplogroups that are present in the UK
white Caucasian population or the European population as a whole (see for example Wilkinson-Herbots
et al. (1996) and references therein). Each haplogroup corresponds to a major branch of the genealogical
tree and its frequency can be estimated directly from relevant mitochondrial DNA databases. I plan to
investigate whether it is possible to use a modified version of the authors’ method to estimate the match
probability of any individual mitochondrial DNA haplotype, given the frequency of the haplogroup to
which it belongs, and focusing primarily on the reduced data set for the haplogroup concerned (although
correlations between haplogroups may cause additional difficulties).

Another point where it would be useful to take into account findings from other studies concerns the
relative mutation rates of the different nucleotide sites that are included in the minisequence. Whereas part
of the polymorphism at the mitochondrial DNA minisequence is due to a few stable, ancient mutations
(three of the single-nucleotide polymorphisms characterize major branches of the genealogical tree for the
UK white Caucasian mitochondrial gene pool), six of the single-nucleotide polymorphisms included in
the minisequence are known to have very high mutation rates (see Wilkinson-Herbots et al. (1996) and
references therein for evidence at some of these sites). If the authors’ method is to be used to evaluate mito-
chondrial DNA evidence in court cases, then it is important to take this known mutation rate heterogeneity
into account, as it may affect the estimates of the match probabilities of uncommon haplotypes.

Mark A. Beaumont .University of Reading/
This study provides a significant advance on the original ground breaking paper by Wilson and Balding
(1998) and is currently the only approach to allow Bayesian inference of parameters in a model with both
population structure and population growth. Methods developed by Wakeley (1999) and Wakeley et al.
(2001) allow for likelihood-based inference with population structure and growth, and highlight the need
to model both aspects jointly. In addition to the effects of population structure there are other phenomena
that have the potential to vitiate conclusions drawn about historical changes in population size. These
include the effects of ascertainment (where polymorphic loci are deliberately chosen) (Beaumont, 1999;
Wakeley et al., 2001), selection at linked sites and the effects of initial population contractions followed by
growth (Calmet, 2003). The potential effect of these on inferences from Y-chromosome data are reviewed
in Beaumont (2003).

In genealogical modelling there is a general problem of non-identifiability of parameters in the likeli-
hood, which has traditionally been avoided through the use of scaled parameters such as θ. An important
innovation in Tavaré et al. (1997) and Wilson and Balding (1998) was the use of background information
on mutation rates and population sizes to allow for inference on all the parameters of interest. However, it
seems to me that only on mutation rates are there grounds to use strongly informative priors. The current
and ancestral population sizes and growth rates in the model are unlikely to bear any relation to any
estimate of current of historical population size because of their sensitivity to historical metapopulation
structure (Wakeley, 2001), the intricate details of which we cannot hope to include directly in our models.
In models of population growth, even with proper priors for the mutation rate, improper priors on other
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parameters lead to improper posterior distributions (Beaumont, 1999). Therefore, even though we know
little about N in the demographic models, it is necessary to impose some limitation on population sizes,
and there is a temptation for this to be motivated by the need to obtain good convergence of the Markov
chain Monte Carlo algorithm. Yet inferences about changes in population size are sensitive to the priors
for N. For example, with the model described in Storz and Beaumont (2002) and Storz et al. (2002), if
the prior assumes current and ancestral population sizes that are too high the posterior distribution tends
to support a model of population growth. This sensitivity could be straightforwardly examined by using
several different priors. However, given the difficulties in obtaining convergence, this aspect is probably
the most weakly developed part of current Bayesian approaches in population genetics. In conclusion, it
seems to me that a period of consolidation is needed in which the sensitivity to model assumptions and
specification of the priors is evaluated.

The following contributions were received in writing after the meeting.

Stuart J. E. Baird .University of California, Berkeley/
Wilson, Weale and Balding develop a flexible class of Metropolis–Hastings algorithms for drawing infer-
ences about population histories and mutation rates from DNA sequence data. Population structure is
generalized to allow splitting of an ancestral population into any number of separate panmictic units. The
class of models of population structure that are applicable for inferring human population history is a
tiny subset of those that are interesting for making inferences about evolution. Motivated by an interest in
broader scale evolutionary inference, inspired by earlier work by two of the authors (Wilson and Balding,
1998), and in consultation with Ian Wilson, a complementary set of algorithms has recently been devel-
oped (Baird, 2003) which allows generalization over a wider class of models of population structure. The
approach achieves this generality with a trade-off against computation time. A Markov chain Monte Carlo
simulation is created with a state consisting of a tree of paths through discrete space and time (Fig. 7).
Movement is on a two-dimensional stepping-stone lattice. Between discrete opportunities for movement
demes are undisturbed by migration events, and so coalescent probabilities can be described following
standard coalescent theory. Proposed transition on the chain state can most succinctly be described as a
series of dance steps allowing nodes and paths on the tree to be moved in space and time. The transitions
are designed such that change in the tree state is localized, bounded by the nodes connected to the part
of the tree being moved and consistent with the stepping-stone paradigm. The process of the Markov
chain Monte Carlo simulation can be visualized by iterating the chain and sampling the positions of the
lineage paths that make up the tree. Animating the resulting snapshots of the state suggests a label for this
approach: the dancing trees algorithm.

Past

North

East

Fig. 7. Example of the explicit state of a genealogy in discrete space–time:cubes represent demes occupied
by one lineage; circles represent demes occupied by two lineages
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A comparison of inference involving the authors’ and dancing trees approaches will be mutually infor-
mative. The dancing trees algorithm can be used to define better the set of lineage trees in nature whose
history is well approximated by the population splitting model. Conversely this set and others involving
islands of panmixis are intrinsically computationally intensive for the dancing trees algorithm. In summary
the current work has wide implications: the authors’ approach and its complements pave the way towards
a sounder understanding of population structure and the evolutionary process.

Martin Lascoux .Uppsala University/
In the paper the authors state that ‘the present paper is addressed in part to statisticians’ and, as the paper
is being published in the Journal of the Royal Statistical Society, this is undoubtedly true. However, I hope
that the ‘in part’ will turn out to be correct as I feel that evolutionary biologists would perhaps benefit most
from reading this excellent paper, for which I would like to congratulate the authors. The evolutionary
biologists whom I have in mind here are primarily those working with phylogeography, as the coalescent
has so far had only a limited influence on this area (at least when humans are not considered). Inter-
estingly, the limited effect that it has had so far can be, at least in part, attributed to precisely the com-
puter program described in the present paper, BATWING, and its predecessor, MICSAT. This is hardly
surprising as both programs were tailored for the type of data that are generally produced by phylogeog-
raphers, namely variation in non-recombining DNA (chloroplast DNA, mitochondrial DNA, the non-
recombining-part of the Y-chromosome). This might also turn out to be one of the main limitations of
these programs as only the coalescent analysis of the variation at large numbers of independent loci can
lead to more precise inferences for the demographic parameters.

I have two questions for the authors. First, in the light of what has just been said, could their data
augmentation approach be extended to include recombination? Second, as shown recently by Ptak and
Przeworski (2002), sampling can have an important effect on inferences on the demographic history of
species. Interestingly, in his discussion of the paper by Stephens and Donnelly (2000), Ian Wilson has
already pointed out that the design and analysis of surveys of different populations have been somewhat
neglected by statisticians and geneticists working on the inference of past demographics from molecular
variation. Also, in a paper written almost 10 years ago by the first author with N. Barton (Barton and
Wilson, 1995) the stage was set for further studies on modelling the coalescent in continuous environments
(isolation-by-distance models for instance), i.e. on how to consider jointly the geographical location of in-
dividuals and their genotype. How would the authors proceed to find the best sampling strategy to increase
our chances of obtaining good estimates of past demographic parameters, given that the sampling strategy
depends precisely on knowing something about these parameters? Does this not imply that non-genetics
data should explicitly be included in our models?

Raphaël Leblois and Arnaud Estoup .Centre de Biologie et de Gestion des Populations, Montferrier–Lez/
We congratulate the authors on their excellent paper. Their methodology represents an important advance
towards the goal of fully likelihood-based methods for analysing complex evolutionary scenarios. The
treatment of increasingly complex models raises the problem of the validation of methods and programs.
Analytical results for the likelihood of a sample of two genes for various population and mutational models
can be obtained to check the accuracy of such complicated algorithms (e.g. Nagylaki (1982) and Rousset
(1996)). Another important issue is the robustness of algorithms to violations of both the mutation and the
demographic assumptions of the model. Simple generation-by-generation coalescence algorithms allow
the simulation without approximation of molecular data under virtually any demographic and mutational
model and hence can be used to test the robustness and precision of any inferential method.

Because increasingly more models can now be considered, it is crucial to develop criteria for comparing
models rather than relying on inferences, from a given model, that fit our beliefs. Did the authors compute
the relative likelihood of their four evolutionary models?

The surprisingly low values obtained here for the time since the most recent common ancestor, TMRCA,
raise several questions. To what extent could low TMRCA values reflect inappropriate prior assumptions
for the mutation rate of microsatellites? More importantly, the possibility of migration between popu-
lations is expected to reduce TMRCA substantially as well as time split estimations in a model with no
migration. Moreover, since the possibility of homogenizing selection acting on the Y-chromosome may
also explain low TMRCA values, it would be worth performing similar analyses on independent and
presumably neutral microsatellite loci on autosomal chromosomes.

Finally, in agreement with Fu and Li (1999), our analysis of particularly complex evolutionary histories
indicates that, in such cases, inferential methods that are not fully likelihood based still appear to be the
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best option available (e.g. Pritchard et al. (1999), Estoup et al. (2001) and Beaumont et al. (2002)). These
methods combine the computational convenience of summary statistics with the advantages of the Baye-
sian paradigm and can handle complex models provided that the simulation of data under the model is
feasible. Simulation results have shown that the computational and statistical efficiency of such methods
compares favourably with those of the Markov chain Monte Carlo method described here (Beaumont
et al., 2002). However, the Markov chain Monte Carlo based method still appears consistently superior
to the summary-statistic-based methods, highlighting that it is well worth making the effort to obtain full
data inferences if possible.

Rasmus Nielsen .Cornell University, Ithaca/ and Jody Hey .Rutgers University, Piscataway/
Several likelihood-based methods for analysing data from multiple populations have been developed in
recent years. The methods differ with respect to population genetic assumptions and with respect to the
type of data that they are applicable to. Wilson, Weale and Balding have chosen a demographic model
of population splitting with no migration between populations. Other likelihood-based methods for esti-
mating parameters in demographic models with population splitting have been proposed by Nielsen et al.
(1998), Nielsen (1998) and Nielsen and Slatkin (2000). In contrast, the likelihood methods of Beerli and
Felsenstein (1999, 2001) and Bahlo and Griffiths (2000) assume infinite divergence times among popula-
tions but allow for arbitrary levels of migration between populations. The method of Nielsen and Wakeley
(2001) allows for both finite divergence and migration but is only applicable to pairs of populations. The
method of Wilson, Weale and Balding also differs from these methods by incorporating population growth.
Although all the models naturally are simplifications of the true model, the question arises which of these
models is most appropriate. There are undoubtedly organisms in which the authors’ model is adequate;
however, in the human genetics community there appears to be growing concern that human evolution
cannot be described by using models that ignore migration. Evidence of gene flow between human pop-
ulations has been found at local scales (see for example Papiha et al. (1997), Lum et al. (2002) and Fix
(1999)), across continents (Bandelt et al., 2001; Sokal et al., 1991), as well as between continents (Hammer
et al., 1998).

To illustrate the effect of migration, we reanalysed the β-globin data set of Harding et al. (1997) for
46 European and 24 Asian individuals, using the method in Nielsen and Wakeley (2001) which incorpo-
rates both population splitting and migration. In Fig. 8 we present the marginal posterior distribution
of the scaled migration parameter M, assuming uniform priors for all parameters. Note that very little
of the probability mass is located around M = 0. The marginal posterior distribution for the splitting
time T is a strictly increasing function of T (not shown). The data appear to be compatible with a model
of equilibrium migration as in Beerli and Felsenstein (1999, 2001) and Bahlo and Griffiths (2000), but
not with a model of population splitting without migration. Although we consider the authors’ method
a great improvement on previous methods for estimating population splitting times in the absence of
migration, methods that incorporate migration may be more applicable to the analysis of human genetics
data.

Fig. 8. Marginal posterior distribution for the scaled migration rate M for the β-globin data
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(a) (b)

Fig. 9. Genealogy of a sample from a population, assuming (a) constant population size or (b) population
growth (note that evolution under constant population size is expected to result in more haplotypes at inter-
mediate frequencies than under a growing population scenario): �, mutations

Michael P. H. Stumpf and Hilde M. Wilkinson-Herbots .University College London/
In Section 5.4.2, the authors comment that no appreciable differences in the match probabilities of the
mitochondrial DNA minisequences were found when they used the coalescent model with population
growth (for which they do not show their results) rather than the standard coalescent model with constant
population size. This is surprising, as these two demographic scenarios are expected to lead to different
haplotype frequency distributions. Genealogies of populations that have experienced growth tend to be
star like. If the mutation rate is not too high compared with the timescale that is involved, this is expected
to lead to a very common haplotype and some rare haplotypes, as is illustrated in Fig. 9(b).

In a constant-sized population, by contrast, we expect to obtain more haplotypes at moderate frequen-
cies, giving a different haplotype frequency distribution (see Fig. 9(a)). If a coalescent model with constant
population size is used as a prior when estimating match probabilities of haplotypes that actually evolved in
an expanding population, we would therefore expect the match probability of the most common haplotype
to be underestimated; conversely match probabilities of rare haplotypes may be overestimated. This may
at least in part explain the low estimates obtained by the authors (Table 11) for the match probability of the
most common haplotype in each of the three ethnic groups considered, compared with the ‘naı̈ve’ estimate
(which is the observed relative frequency of the haplotype)—for a common haplotype we would expect
the latter estimate to be reasonably accurate. An inappropriate use of the coalescent model with constant
population size might also explain the relatively high estimates that the authors obtained for the match
probabilities of the ‘similar’ and the ‘dissimilar’ haplotypes that are listed in Table 11 for the Caucasian
population, where population growth is believed to have been particularly strong (see also Section 5.2.1.3).

We have verified the above-described effect of population growth on the expected haplotype frequencies
by a large number of coalescent simulations under constant population size versus population growth (our
results are not shown).

The authors replied later, in writing, as follows.

We are gratified by the positive and constructive contributions, and we thank all the discussants for their
comments. There is considerable overlap of the questions and comments, and we focus on issues raised by
several discussants.

More complex demographic models
Geographical structuring of, and migration between, populations is thought to underlie many observed
patterns in human DNA data. Lascoux mentions the importance of sampling strategies: our allowance of
different population sizes gives some flexibility to incorporate these effects. Nielsen and Hey report evi-
dence of migration in a superset of the H97 data, Leblois and Estoup suggest that ignoring migration may
have reduced our TMRCA estimates, and several other contributors mention the desirability of modelling
migration within BATWING. We agree. However, the problem of the number of migration parameters
rising quadratically with the number of subpopulations (Section 3.1.3) would have been substantial for
the 13-subpopulation data set, and an assumption of a common migration parameter would have been
suspect. Our splitting model for population structure is unrealistic in some respects but captures some
principal aspects of structured data while being computationally relatively unburdensome.
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Although computer-intensive methods such as Markov chain Monte Carlo (MCMC) methods permit
the analysis of complex models, often generality of model structure is acquired at the expense of efficiency
of the algorithm. Inevitably our choice of models was restricted by the computer power that was available
at the time: migration would have considerably increased the computational burden. With further increases
in computer power, this approach may now be feasible and we shall make efforts to incorporate migration
in a future version of BATWING.

Lascoux and Baird want to draw inferences about phylogeography—using the joint information about
location and genotype to draw inferences about the processes of evolution. These models are very much
more complex. Baird gives an account of his methodology—the coalescent on a two-dimensional grid. He
employs auxiliary variables liberally, to try to reduce the computations required for each change in the tree.
We commend the approach but note that many auxiliary variables can lead to more problems with mixing.

Yang mentions the similarity of our model to a model for the estimation of ancestral population sizes
in closely related species. Our population supertree model is well suited to this application, and it would
be interesting to compare results.

Parameterization
Several contributors mention the confounding of effective population size Ne with rate parameters such
as µ. This reflects the fact that, if we know only that k events have occurred in an unknown time period, we
cannot distinguish a low rate–large time scenario from high rate–small time. For this reason population
geneticists have traditionally been limited to working only with θ = 2Neµ, a severe limitation since the
timescale parameter Ne is required to convert coalescent time units into practically useful units such as
generations or years.

Drummond et al. (2002) overcame the confounding problem by using time-stamped data, a possibil-
ity that is also mentioned by Stephens. Time-stamped data are rarely available for humans, although
archaeological evidence can give some help.

BATWING allows users to work either with θ or with Ne and µ separately. As noted by Beaumont,
this constitutes a major advance, but it carries the inevitable consequence of sensitivity to the prior: the
data are informative about θ, but the ‘allocation’ of this information betweenN and µ depends entirely on
the prior. Although we agree that there are difficulties with interpreting the available information, there is
nevertheless substantial background information about bothNe and µ. Our approach has been to use this
information as best we can, making explicit our choice of priors and the evidence on which they are based.

Beaumont and Drummond and Nicholls seem happy with our choice of prior for µ but mention possible
problems with priors for N. Our gamma prior is reasonably diffuse, but we agree that it could have some
influence on growth rate estimates. We distribute a program with BATWING that allows users to simulate
from their prior to explore some of its implications, e.g. about TMRCA.

BATWING works with identifiable parameters internally, so non-identifiable parameters do not cause
problems with mixing. Stephens raises the related problem of ‘weakly identifiable’ parameters: a subset
of the parameters such that changes in some members of the subset can be largely compensated (so that
the likelihood is almost unchanged) by changes in other members. Weakly identifiable parameters are
both sensitive to prior assumptions and potentially problematic for mixing. We highlight one case in the
paper: the growth rate and time since the start of growth. Since we work with complex models, involving
typically hundreds of parameters, sets of weakly identifiable parameters are practically inevitable, and it
is infeasible to diagnose them all. Our approach has been to formulate priors as carefully as possible, and
to check mixing as much as we can.

Combining information across loci may help with some cases of weak identifiability. However, Dawson
makes the point that selection can affectNe, and that we should be careful about using the sameNe-values
for different loci, even allowing for the difference in the number of chromosomes for Y and nuclear DNA.

Efficiency issues
Stephens asks how our inferential methods compare with other strategies. The importance sampling meth-
od of Stephens and Donnelly (2000) works well with one or two linked short tandem repeats but performs
less well when there are many linked short tandem repeat loci. We agree with Leblois and Estoup that,
because fully likelihood-based methods remain in a phase of development, non-likelihood methods may
still be the best option in many settings. The rejection sampling methods that they highlight, briefly de-
scribed in Section 6, have advantages and there is scope for improving these methods (Beaumont et al.,
2002). However, there are no general principles for finding the good summary statistics that are needed, or
for assessing the resulting approximation. We also concur with Leblois and Estoup that likelihood-based
methods are preferred when available.
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Our experience does not accord with Drummond and Nicholls’s view that peeling is preferable to the use
of auxiliary variables for highly variable data sets. Early versions of BATWING used a peeling algorithm,
but the auxiliary variable approach was found to be much better for highly variable short tandem repeat
data. We agree that peeling may be preferable for sequence data with low mutation rates, since mixing of
auxiliary variables may then be poor. Standard auxiliary variable approaches are unlikely to be efficient
for monomorphic sites, but these can be treated separately. We have found that our auxiliary variable
approach works well at least for the H97 sequence data set, and computation time is linear in sequence
length for both approaches.

Stephens is concerned about model checking, which was not a focus of our paper. We expect that our
most general model (splitting with growth) is substantially superior to simpler models that are in wide-
spread use, yet it is still inadequate to capture all important features of the data. We have reported informal
model validation via comparison across our models and with the results of other researchers. Neverthe-
less we agree that quantitative model comparison and assessment are a priority for the future. Under the
standard coalescent, increasing the sample size often has little effect of inferences; thus there may be little
loss in reserving some data to be used for model testing only, not model fitting.

Mitochondrial DNA match probabilities
Stumpf and Wilkinson-Herbots suggest that a high growth rate should influence the match probability
in forensic inference on mitochondrial DNA data. We concur that evidence for growth has been reported
from mitochondrial DNA data sets (Excoffier, 2002), and this should indeed have some effect on match
probabilities. However, the effect of growth on inference from an observed data set may be much less than
its effect on simulations that are not constrained by data.

Wilkinson-Herbots notes that much longer mitochondrial DNA sequences would nowadays be rou-
tinely typed, and also that mutation rate heterogeneity is found in such sequences. We explored the effect
of a variable mutation rate in a simple way by allowing for different rates at each single-nucleotide poly-
morphism and also by splitting single-nucleotide polymorphisms into ‘high’ and ‘low’ rate categories
according to published evidence, but we admit that a more sophisticated rate heterogeneity model would
be preferable. It will be worth investigating the proposal of Wilkinson-Herbots to perform BATWING
within subclades only (we suggest that fitting an exponential growth model will compensate in part for
the different genealogical structure of subclades relative to the whole tree). Because of the relatively high
mutation rate of the mitochondrial DNA control region, this would provide an interesting test of the
relative merits of peeling algorithms and auxiliary variable approaches.

We do not propose our algorithm for the routine calculation of mitochondrial DNA match probabili-
ties, because of the remaining questions about model validity and because of the computation time that is
required for each calculation. Instead, our goals in undertaking the mitochondrial DNA match probability
were

(a) to indicate some of the possibilities that genealogical modelling opens and
(b) to check the validity of the naı̈ve estimator against a more sophisticated approach in at least some

settings.

We found that, although not providing a bound, the naı̈ve estimator is likely to be adequate in practice
for the scenarios that we considered.
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