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ABSTRACT
The parsimony method of Suzuki and Gojobori (1999) and the maximum likelihood method developed

from the work of Nielsen and Yang (1998) are two widely used methods for detecting positive selection in
homologous protein coding sequences. Both methods consider an excess of nonsynonymous (replacement)
substitutions as evidence for positive selection. Previously published simulation studies comparing the
performance of the two methods show contradictory results. Here we conduct a more thorough simulation
study to cover and extend the parameter space used in previous studies. We also reanalyzed an HLA data
set that was previously proposed to cause problems when analyzed using the maximum likelihood method.
Our new simulations and a reanalysis of the HLA data demonstrate that the maximum likelihood method
has good power and accuracy in detecting positive selection over a wide range of parameter values. Previous
studies reporting poor performance of the method appear to be due to numerical problems in the opti-
mization algorithms and did not reflect the true performance of the method. The parsimony method has
a very low rate of false positives but very little power for detecting positive selection or identifying positively
selected sites.

MUCH attention has recently been devoted to the mony reconstruction of ancestral sequences, and an ex-
detection of positive selection on protein-coding cess of nonsynonymous substitutions is tested indepen-

DNA sequences in molecular evolutionary genomics dently for each site. The two methods differ in that Fitch
(e.g., Swanson and Vacquier 2002; Bernatchez and et al. (1997) (see also Bush et al. 1999) first estimated
Landry 2003; Choisy et al. 2004). The most commonly the average dN/d S ratio along the sequence and then
used criterion for detecting positive selection in protein- compared the nonsynonymous/synonymous rate ratio
coding genes is to compare the nonsynonymous rate at each site against this average, while Suzuki and Gojo-
(dN) with the synonymous rate (d S). When the rate ratio bori (1999) compared the dN/d S ratio at each site inde-
� � dN/d S � 1, the nonsynonymous rate is greater than pendently against the neutral expectation 1. The Suzuki
the synonymous rate and this is interpreted as evidence and Gojobori (1999) method is implemented in the
for the action of positive selection. Adaptsite computer program of Suzuki et al. (2001).

Several methods have been proposed for detecting if Goldman and Yang (1994) and Muse and Gaut
a protein is experiencing an excess of nonsynonymous (1994) were the first to develop codon-based models for
substitution or elevated values of �. The most popular likelihood estimation of �. Nielsen and Yang (1998)
methods are parsimony methods (Fitch et al. 1997; and Yang et al. (2000) extended these methods to allow
Bush et al. 1999; Suzuki and Gojobori 1999) and maxi- variation in � among sites, thereby providing a more pow-
mum likelihood methods (Nielsen and Yang 1998; erful framework for detecting positive selection when sites
Yang et al. 2000). Using these methods, numerous genes undergoing positive selection are interspersed among
have been identified to be evolving under the influence sites dominated by negative selection. They suggested
of positive selection (e.g., Yang and Bielawski 2000; the use of an empirical Bayes approach for identifying
Liberles et al. 2001; Liberles and Wayne 2002). putatively positively selected sites in genes that have

Parsimony methods were independently developed been demonstrated to undergo positive selection. In
by Fitch et al. (1997) and Suzuki and Gojobori (1999). the approach of Nielsen and Yang (1998), a (neutral)
In these methods, substitutions are inferred using parsi- model (model M1) allowing only two categories of sites,

with � � 1 and � � 0, is compared using a likelihood
ratio test (LRT) with a (selection) model (M2), which

1Corresponding author: Department of Biological Statistics and Com- allows an additional category of positively selected sitesputational Biology, Cornell University, Ithaca, NY 14850.
E-mail: sww8@cornell.edu with � � 1. If M1 (neutral) can be rejected in favor of
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M2 (selection), positive selection is inferred. Several hood and parsimony methods for identifying amino acid
sites under positive selection using a data set of humansimilar but more-realistic models were implemented by

Yang et al. (2000). One commonly used pair involves a leukocyte antigen (HLA) alleles. Performance was eval-
uated by examining the number and location, relative tonull model (M7) in which � was assumed to be beta-dis-

tributed among sites and an alternative selection model the antigen recognition site (ARS), of amino acid resi-
dues inferred to be under positive selection. The au-(M8), which allows an extra category of positively selected

sites. The likelihood methods are implemented in the thors discussed a number of problems in the likelihood
approach and concluded that it was inferior to the parsi-codeml program in the PAML package (Yang 1997).

The likelihood method in its current form proposes mony method using reconstructed ancestral sequences.
Those results contrast sharply with the analysis of a simi-a two-step procedure in which an LRT is first used to

test for positive selection in a gene as a whole. If this lar HLA data set by Yang and Swanson (2002), in which
the likelihood results were biologically sensible.test indicates statistical evidence for the presence of a

proportion of sites evolving under positive selection, iden- Since the results shown in different studies have been
contradictory, we have conducted a new and more com-tification of putative positively selected sites can then

proceed (Nielsen and Yang 1998; Yang et al. 2000). prehensive simulation study to determine the reliability
and power of the parsimony and maximum likelihoodIn contrast, the parsimony method in the Suzuki and

Gojobori (1999) implementation has been proposed methods. We examine the performance of both methods
in answering two questions: (i) Is a gene under positiveas a test for individual sites. If one’s interest is to de-

tect positive selection in a gene and multiple sites are selection or does it have any sites under positive selec-
tion? and (ii) Which sites in a gene are under positiveanalyzed, a correction for multiple testing is therefore

needed. We wish here to distinguish between the two selection?
different inferential problems of testing for positive se-
lection in a particular gene or section of a gene and of

MATERIALS AND METHODSpredicting which sites are most likely to be under posi-
tive selection. Likelihood and parsimony methods for detecting positive

A number of simulation experiments have been per- selection: In the maximum likelihood method, site-specific
formed to study various aspects of the parsimony and like- models M1 (neutral), M2 (selection), M7 (beta), M8 (beta&�;

Nielsen and Yang 1998; Yang et al. 2000), and M8a (beta&lihood methods for detecting positive selection in pro-
� � 1; Swanson et al. 2003) were used with codeml in thetein-coding genes. Anisimova et al. (2001, 2002) studied
PAML 3.13 package (Yang 2000b). Model M1 (neutral) allowsthe likelihood method. They concluded that the accu- two classes of sites with � 0 � 0 and � 1 � 1 in proportions

racy and power of the LRT and of the Bayes identifica- p 0 and p 1 � 1 � p 0, respectively. Model M2 (selection) has
tion of sites under positive selection depend on the an additional class with � 2, which takes on any nonnegative

value, and applies to a proportion p 2 of sites, now with thedata. Both accuracy and power are low when the data
constraint p 0 � p 1 � p 2 � 1. We test for positive selection bycontain only a few highly similar sequences or when
comparing twice the log-likelihood difference between M1selection is weak. Overall, the method was found to have and M2 with a � 2

2 distribution in the LRT (Yang et al. 2000).
good accuracy and power in data sets of moderate or Model M7 (beta) assumes a �-distribution for 0 � � � 1. Model
large sizes (for example, for �15 or more sequences). M8 (beta&�) adds to M7 an extra category, with proportion p 1

of sites with �1, while the rest of sites (at frequency p 0 � 1 �Suzuki and Gojobori (1999) performed simulations
p 1) have � from the �-distribution between 0 and 1. Here weto examine the performance of their parsimony method.
compare twice the log-likelihood difference between M7 andThey compared the results of the method on analyzing M8 with a � 2

2 distribution to test for positive selection (Yang
two tree topologies (64 and 128 taxa, respectively), with et al. 2000; Anisimova et al. 2001). Model M8a was introduced
various branch lengths (0.01, 0.02, and 0.03 synonymous in Swanson et al. (2003); it is similar to model M8 except that

the category �1 is fixed at �1 � 1. It was argued that twice thechanges per synonymous site for each branch) and vari-
log-likelihood difference between M8 and M8a should be as-ous d N/d S ratios (0.2, 0.5, 1.0, 2.0, and 5.0). The power
ymptotically distributed as a 50:50 mixture of a point mass atof the method was found to increase with increasing 0 and � 2

1 (Swanson et al. 2003). However, this asymptotic
branch lengths and strength of the positive selection. result holds only if all the parameters of the null model are
The study also concluded that the method has a very estimable (Chernoff 1954; Self and Liang 1987), which is

not always the case for the M8a-M8 comparison. Thus besideslow false-positive rate in general.
the 1

2 � 2
0 � 1

2 � 2
1 distribution, to be conservative we use the � 1

2
Suzuki and Nei (2001, 2002) also conducted simula-

distribution as well for comparison with the test statistic. We
tion studies to compare the reliability of the parsimony also use slight variations to M1 (neutral) and M2 (selection),
and likelihood methods. These two studies focused mainly by letting �0 vary freely between 0 and 1 rather than fixing it

at 0. These models are referred to below as M1a and M2a.on predicting positively selected sites. It was argued that
These two models were implemented in a modified versionthe parsimony-based method was robust against the as-
of codeml. Notice that the M0 vs. M3 test that was used insumptions of the models and tends to be conservative,
Suzuki and Nei (2001, 2002) and Anisimova et al. (2001,

whereas the likelihood method gave numerous false- 2002) is a test of heterogeneity in � among sites and not really
positive results with certain parameters in the simula- a test for positive selection. We did not include this test here

since our primary interest is identifying positive selection.tion. Suzuki and Nei (2001) also compared the likeli-



1043Comparison of Methods for Detecting Selection

To predict which sites are under positive selection in the
likelihood framework, the empirical Bayes method described
in Nielsen and Yang (1998) and Yang et al. (2000) was ap-
plied. A site is predicted as positively selected if the (empirical
Bayes) posterior probability that it belongs to the positive
selection category is greater than a predetermined cutoff value
Pb. It is worth mentioning here that this method is not designed
to control the frequentist type I error, that is, the probability
of inferring positive selection when the null hypothesis is true
(i.e., the site is not under positive selection). Suzuki and Nei
(2001, p. 1866) incorrectly suggest that this error rate is ex-
pected to be (1 � Pb) when the cutoff is Pb. In the empirical
Bayes method, Pb is the probability that a site inferred to be
positively selected is truly under positive selection (termed
the accuracy by Anisimova et al. 2002), and what should equal
(1 � Pb) is the proportion of sites inferred to be positively
selected that are not under positive selection. However, we
will here concentrate on evaluating the false-positive rate (fre-
quentist type I error rate) of the empirical Bayes method,
using Pb � 0.95 or Pb � 0.99.

The maximum parsimony approach to detecting positive
selection in protein coding nucleotide sequences was de-
scribed in Suzuki and Gojobori (1999; see also Fitch et al.
1997; Bush et al. 1999). Given a set of aligned sequences and
assuming that each codon site is independent, the method first
infers the ancestral codon states using either the parsimony
method (Fitch 1971; Hartigan 1973) or the empirical Bayes
method (Yang et al. 1995), with parameters estimated from pair-
wise distances rather than using maximum likelihood (Zhang
and Nei 1997; Zhang et al. 1998). Second, for each codon site,
the method counts the numbers of synonymous and nonsyn-
onymous sites and the numbers of synonymous and nonsynon-
ymous differences. Finally, for each site, a test of neutrality is
conducted to see whether d N � d S or � � 1. A one-sided test
for positive selection is used in this simulation study, with the
significance level set at 5 or 1%. If the test is significant, the
method concludes that the site is undergoing positive selec-
tion. We compare this test of selection at each site with the
empirical Bayesian identification of sites under positive selec-
tion (Nielsen and Yang 1998; Yang et al. 2000), as did Suzuki
and Nei (2001, 2002).

We also use the procedure of Suzuki and Gojobori (1999)
to test whether there is any site under positive selection in the
whole protein, for comparison with the likelihood ratio test of
Nielsen and Yang (1998) and Yang et al. (2000). For such a
test of positive selection in a protein, a correction for multiple
testing is needed since each site is tested for positive selection

Figure 1.—Phylogenetic trees used for simulating the data.independently. We use the Simes’ improved Bonferroni pro-
(A) A 5-taxon tree; (B) a 30-taxon tree. Branch lengths arecedure (Simes 1986). That is, we rank the P-values of the test
scaled so that they sum to three nucleotide substitutions peron each site, from the lowest to the highest. If any site has a
codon.P-value smaller than the designated type I error 	 divided by

its rank, we claim that the data set is significant for positive
selection. Simulation studies showed that the Simes’ improved

Simulated data: Data sets were simulated using evolver in theBonferroni procedure has better power than the traditional
PAML 3.13 package (Yang 2000b), on a 5-taxon tree (FigureBonferroni procedure (Simes 1986) and hence it is used in
1A) and a 30-taxon tree (Figure 1B). The following parame-this study.

Real and simulated data sets analyzed in this article: HLA ters are common in all sets of simulations: (1) the transition/
data used in Suzuki and Nei (2001): To understand why drasti- transversion rate ratio 
 � 1, (2) the stationary frequencies
cally different conclusions were reached by Yang and Swan- of each of the 61 sense codons is 1/61, (3) the number of co-
son (2002) and Suzuki and Nei (2001) in the analysis of two dons in each sequence is 500, and (4) the tree length (the ex-
similar data sets, we reanalyzed the data of Suzuki and Nei pected number of nucleotide substitutions per codon along
(2001) using codeml. Following Suzuki and Nei (2001), we fixed all branches in the phylogeny) is 3. For each of the two tree
branch lengths at estimates obtained under a nucleotide-based topologies, six sets of different �-values were simulated, as follows.
model on a neighbor-joining tree (Saitou and Nei 1987). As

Data sets that contain only neutrally or negatively selected sites:in Suzuki and Nei (2001), the F61 model was used to account
for codon usage bias, with the equilibrium codon frequencies 1. � � 0 for all codon sites; 100 replicates.
estimated by the observed frequencies in the data (Goldman 2. (a) � � 0 for 50% of the sites, and � � 1 for 50% of the

sites; 100 replicates.and Yang 1994).
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(b) � � 0 for 90% of the sites, and � � 1 for 10% of the 1. Given the topology of the tree, models M0, M1, M2, M1a,
M2a, M7, M8, and M8a are used, with 
 fixed at 1 in allsites; 100 replicates.

3. � � 0.5 for 50% of the sites, and � � 1 for 50% of the models. Under models M2, M2a, M7, M8, and M8a, the
same analysis is conducted multiple times using differentsites; 100 replicates.

Data sets that contain positively selected sites: initial values, to investigate possible problems with conver-
gence of likelihood optimizations or multiple local maxima

4. � � 1.5 for 50% of the sites, � � 1 for 50% of the sites; of the likelihood function (Yang 1997; Yang et al. 2000).
100 replicates. 2. Log-likelihood values from each data set and the putative

5. � � 0 for 45% of the sites, � � 1 for 45% of the sites, and positively selected sites inferred by codeml are obtained.
� � 1.5 for 10% of the sites; 50 replicates. For a data set analyzed with different initial values, the

6. � � 0 for 45% of the sites, � � 1 for 45% of the sites, and result with a higher likelihood value is used, in accordance
� � 5 for 10% of the sites; 50 replicates. with standard theory (Stuart et al. 1999).

3. LRTs were performed to compare models M1 with M2,
Note that the �-values in three of the above schemes M1a with M2a, M7 with M8, and M8a with M8.

(schemes 2, 3, and 4) were identical to those used in Suzuki
and Nei (2002). Schemes 1, 5, and 6 are designed to mimic When interpreting the results we distinguish between tests
pseudogene evolution, weakly positively selected evolution, of positive selection (the LRT and the parsimony-based test
and highly positively selected evolution, respectively. We note using a Bonferroni correction) and prediction of sites under
that some of the simulation schemes used here are highly positive selection.
unrealistic for real data sets, such as scheme 4. However, they
provide difficult test cases, useful for evaluating detection
methods.

RESULTSAnalysis of simulated data: The simulated data were ana-
lyzed using the parsimony method with Adaptsite 1.3 (Suzuki Analysis of the HLA data set: The log-likelihood val-et al. 2001) and the maximum likelihood method with co-

ues and parameter estimates of the HLA data set ofdeml in the PAML 3.13 package (Yang 2000b).
Suzuki and Nei (2001) under various models are shownThe procedure for data analysis with Adaptsite is as follows:
in Table 1. The results for M0 (one-ratio) are the same

1. Since Adaptsite cannot estimate the branch lengths of the as those of Suzuki and Nei (2001; Table 1). However, thetree, we used Bn-Bs (Zhang et al. 1998) to estimate the syn-
results for all other models—that is, M1 (neutral), M2onymous branch lengths of the tree, with the true topology
(selection), M3 (discrete), M7 (beta), and M8 (beta&�)—given.

2. Adaptsite-p was applied to the data, using the true tree are different, and those in Suzuki and Nei (2001) are in-
topology and estimated branch lengths, to estimate the correct. Models M2 (selection), M3 (discrete), and M8
total and average numbers of synonymous and nonsynony- (beta&�), which allow for sites under positive selection,mous sites for the phylogenetic tree with user-given muta-

all suggest presence of such sites (Table 1). Those mod-tion rates between the four nucleotides. The mutation rates
els also fit the data significantly better than the corre-between any two nucleotides were set to 1, since 
 � 1 in

the simulated data. sponding null models, namely M1 (neutral), M0 (one-
3. Given the output from adaptsite-p, we used adaptsite-t to ratio), and M7 (beta), respectively. A number of sites are

compute the P-values of one-sided and two-sided neutrality identified by the models to be under positive selection.tests independently for each codon site.
For example, model M8 identified 24 sites at the 95%4. Since Adaptsite is not capable of analyzing some of the
probability level. Of these, 20 sites are on the list of 57sites in the data sets (e.g., those that have �10,000 combina-

tions for possible ancestral codons over all nodes), upon amino acids within the ARS (Bjorkman et al. 1987a,b).
the program’s author’s recommendation, we excluded those The other 4 sites identified (45M, 83G, 94T, and 113Y;
sites in calculating the summarized results. site numbering refers to the PDB structural file 1AKJ)

5. Tests of neutrality (� � 1 for all sites) were then completed
are not on the list but are all located in the same region.using Simes’ improved Bonferroni procedure (Simes 1986)
The sites are very similar to those identified by Yangas described earlier.
and Swanson (2002) from a similar data set. Three of

We ranked only those sites that Adaptsite was able to analyze. the 4 non-ARS sites (45M, 94T, and 113Y) were identi-
Regarding step 1 above, Suzuki and Gojobori (1999) used

fied to be under positive selection by Yang and Swan-the neighbor-joining method for constructing the tree topol-
son (2002) as well.ogy and then used the Nei and Gojobori (1986) method for

estimating the number of synonymous substitutions. Since Multiple runs using different starting values identi-
these two steps were implemented in one program included fied a suboptimal local maximum of the likelihood func-
in the Adaptsite 1.3 package (Suzuki et al. 2001), we used the tion for model M2 (selection) at p̂ 0 � 0.578, p̂ 1 � 0.101,
Bn-Bs program (Zhang et al. 1998) so that we can feed

and �̂2 � 0.125, with � � �8229.64. Model M8 (beta&�)Adaptsite with the true tree topology. The Bn-Bs program
also has a local optimum, at p̂ 0 � 0.555, p̂ � 0.031, q̂ �implements a modified method from the original Nei and

Gojobori (1986) to take into account the transition bias for 0.102, �̂ � 0.046, with � � �8228.63. These likelihood
estimating synonymous and nonsynonymous substitutions values are much lower than those in Table 1, and we
along the branches of a given tree. Steps 2–4 above are the use the results of Table 1 corresponding to the higher
standard procedures described in the README file included

peaks. Note that if � in M8 and �2 in M2 are constrainedin the Adaptsite 1.3 package (Suzuki et al. 2001).
to be �1, as suggested by Swanson et al. (2003), thereThe procedure for data analysis for codeml in PAML is as

follows: will be only one peak under those two models. Model
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TABLE 1

MLEs of parameters and sites inferred to be under positive selection for the HLA data set

Model p � 
 Estimates of parameters Positively selected sites

M0: one-ratio 1 �9114.23 2.0 �̂ � 0.557 None
M1: neutral 1 �8497.19 1.8 p̂ 0 � 0.661 ( p̂1 � 0.339) Not allowed
M2: selection 3 �8045.42 1.9 p̂ 0 � 0.620, p̂1 � 0.316 9F 24A 45M 63E 67M 70H 71S 73T

( p̂ 2 � 0.064), �̂ 2 � 7.687 77N 80T 81L 82R 83G 94T 95I
97I 99Y 113Y 114R 116D 151H
152A 156R 163R 167G

M1a: nearly neutral 2 �8260.21 1.7 p̂ 0 � 0.878 ( p̂1 � 0.122) Not allowed
�̂0 � 0.038

M2a: positive selection 4 �7983.71 1.9 p̂ 0 � 0.795, p̂1 � 0.148 9F 24A 63E 67M 70H 71S 73T 77N
( p̂ 2 � 0.057), 80T 81L 82R 83G 95I 97I 99Y

�̂ 0 � 0.049, �̂ 2 � 5.379 114R 116D 152A 156R 163R
M3: discrete 5 �7983.70 1.9 p̂ 0 � 0.794, p̂1 � 0.149, 9F 24A 45M 63E 67M 70H 71S 73T

( p̂ 2 � 0.057) 77N 80T 81L 82R 83G 95I 97I
�̂ 0 � 0.048, �̂1 � 0.982, 99Y 114R 116D 152A 156R 163R

�̂ 2 � 5.344
M7: beta 2 �8258.28 1.7 p̂ � 0.064, q̂ � 0.333 Not allowed
M8: beta&� 4 �7981.31 1.9 p̂ 0 � 0.943, p̂ � 0.132, 9F 24A 45M 63E 67M 70H 71S 73T

q̂ � 0.611 77N 80T 81L 82R 83G 94T 95I
( p̂1 � 0.057), �̂ � 4.905 97I 99Y 113Y 114R 116D 151H

152A 156R 163R

p, the number of free parameters in the �-distribution. Sites inferred to be under positive selection at the 99% level are
underlined and those at the 95% level are in italic. The reference sequence is A-0101 in Suzuki and Nei (2001), and the site
numbering is the same as in the structural file 1AKJ, used by Yang and Swanson (2002). The F61 model is used, with branch
lengths fixed at three times the estimates from the Kimura (1980) substitution model.

M7 (beta) seems also to have a local maximum at p̂ � results under the simulation conditions investigated
here. However, they differ dramatically in their power0.018, q̂ � 0.130, with � � �8267.39.

Simulation results: Hypothesis tests: Table 2 shows the to detect positive selection. Note that under schemes 4,
5, and 6, sites under positive selection with � � 1 exist,number of data sets detected by the two methods to

have significant evidence for the presence of positive so that a method that detects positive selection more
often has higher power. Adaptsite detected no positiveselection, for each set of parameter values. Note that

under schemes 1, 2a, 2b, and 3, no sites are under posi- selection even when � � 5 in 10% of the sites (scheme 6)
or when half of the sites were undergoing weak positivetive selection with � � 1, so that any data sets in which

positive selection is claimed are false positives (type I selection (scheme 4). In contrast, in scheme 4, the LRT
between M7 and M8 (5% significance level) identifiederrors). The improved Bonferroni procedure combined

with Adaptsite did not detect positive selection in any positive selection in 72 and 98% of the cases when the
numbers of taxa were 5 and 30, respectively. In scheme 6of the data sets simulated under those schemes and thus

had zero false positives. In general, the false-positive rate all the LRTs had power close to 100%. While Adaptsite
essentially has zero power to detect positive selectionof the LRT with codeml is lower than or equal to the

nominal significance level. In particular, the false-posi- under all of the conditions studied, the power of the LRT
can be quite high even for five sequences, without inflat-tive rates for the M7 vs. M8 comparison were all below

5%, much lower than the error rates reported by Suzuki ing the type I error rate of the test.
Prediction of positively selected sites: The accuracy ofand Nei (2002). However, the type I errors of M8a-M8

comparison using the mixture of � 2 distributions sug- Adaptsite and codeml in predicting positively selected
sites in data sets that do contain positively selected sitesgested by Swanson et al. (2003) were about twice the

desired level. The LRT comparing M8a vs. M8 using a is shown in Table 3. Adaptsite detected �1% of the posi-
tively selected sites when either 10% (scheme 4) or 50%� 2

1 distribution performed better. None of the original
tests suggested by Nielsen and Yang (1998) and Yang (scheme 5) of the sites were under weak positive selec-

tion (� � 1.5). However, for 30 sequences when 10%et al. (2000) had elevated levels of falsely significant
results. of the sites are under strong positive selection (� � 5

in scheme 6), Adaptsite identified 8% of those sitesIn sum, neither Adaptsite nor the LRT implemented
in codeml suffers from an excess of falsely significant and had no false positives before Simes’ improved Bon-
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TABLE 2

Percentage of significant tests for positive selection on the whole gene with Adaptsite and codeml on the simulated data

5 taxa (tree A) 30 taxa (tree B)

% of % of % of % of
significant significant significant significant

Scheme Test tests 0.05 level tests 0.01 level tests 0.05 level tests 0.01 level

Scheme 1 Bonferronia 0 0 0 0
(100 replicates, 100% � � 1) LRTb M1 vs. M2 0 0 1 0

M1a vs. M2a 2 0 2 0
M7 vs. M8 3 0 2 0
M8a vs. M8 12 2 9 3
M8a vs. M8 (1 d.f.) 3 2 5 1

Scheme 2a Bonferroni 0 0 0 0
(100 replicates, 50% � � 0, LRT M1 vs. M2 2 0 0 0
50% � � 1) M1a vs. M2a 2 0 0 0

M7 vs. M8 1 0 2 2
M8a vs. M8 10 2 9 1
M8a vs. M8 (1 d.f.) 7 0 4 0

Scheme 2b Bonferroni 0 0 0 0
(100 replicates, 90% � � 0, LRT M1 vs. M2 0 0 0 0
10% � � 1) M1a vs. M2a 0 0 0 0

M7 vs. M8 5 1 0 0
M8a vs. M8 5 1 0 0
M8a vs. M8 (1 d.f.) 3 1 0 0

Scheme 3 Bonferroni 0 0 0 0
(100 replicates, 50% LRT M1 vs. M2 0 0 0 0
� � 0.5, 50% � � 1) M1a vs. M2a 2 0 1 0

M7 vs. M8 2 0 2 1
M8a vs. M8 4 2 6 1
M8a vs. M8 (1 d.f.) 3 1 2 1

Scheme 4 Bonferroni 0 0 0 0
(100 replicates, 50% LRT M1 vs. M2 56 32 78 70
� � 1.5, 50% � � 1) M1a vs. M2a 78 52 94 82

M7 vs. M8 78 52 92 82
M8a vs. M8 92 79 99 95
M8a vs. M8 (1 d.f.) 87 71 99 88

Scheme 5 Bonferroni 0 0 0 0
(50 replicates, 45% � � 0, LRT M1 vs. M2 8 2 28 12
45% � � 1, 10% � � 1.5) M1a vs. M2a 8 2 28 14

M7 vs. M8 52 28 76 38
M8a vs. M8 28 10 70 38
M8a vs. M8 (1 d.f.) 20 8 52 24

Scheme 6 Bonferroni 0 0 0 0
(50 replicates, 45% � � 0, LRT M1 vs. M2 100 100 100 100
45% � � 1, 10% � � 5) M1a vs. M2a 100 100 100 100

M7 vs. M8 100 100 100 100
M8a vs. M8 100 100 100 100
M8a vs. M8 (1 d.f.) 100 100 100 100

Schemes 4–6 are simulation conditions that include positive selection.
a Bonferroni procedure applied to the results obtained by Adaptsite.
b Likelihood ratio test performed at 0.05 significance level.

ferroni procedure. Codeml performs even better on the more, Adaptsite was not able to identify any positively se-
lected sites with the same distribution of � on the five-same data sets, correctly identifying over 75% of the posi-

tively selected sites without wrongly categorizing any of taxon tree, whereas codeml detected nearly 20% of them.
In the weak positive selection data sets (schemes 4the neutral sites as being positively selected. Further-



1047Comparison of Methods for Detecting Selection

TABLE 3

Performance of Adaptsite and codeml in inferring positive selection sites in simulated data

5 taxa (tree A) 30 taxa (tree B)

Simulation Proportion of Proportion of Proportion of Proportion of
scheme Test true positives false positives true positives false positives

Scheme 4 Adaptsite 0.00 0.00 0.00 0.00
(100 replicates, Codeml (before LRT) M2 0.08 0.08 0.27 0.24
50% � � 1.5, M2a 0.45 0.42 0.32 0.28
50% � � 1) M8 0.38 0.36 0.19 0.16

Codeml (after LRT) M1 vs. M2 0.07 0.06 0.23 0.21
M1a vs. M2a 0.34 0.32 0.29 0.25
M7 vs. M8 0.28 0.26 0.16 0.14
M8a vs. M8 0.35 0.33 0.19 0.16
M8a vs. M8 (1 d.f.) 0.35 0.33 0.19 0.16

Scheme 5 Adaptsite 0.00 0.00 0.00 0.00
(50 replicates, Codeml (before LRT) M2 0.41 0.20 0.20 0.10
45% � � 0, M2a 0.44 0.21 0.30 0.14
45% � � 1, M8 0.13 0.05 0.09 0.03
10% � � 1.5) Codeml (after LRT) M1 vs. M2 0.00 0.00 0.02 0.01

M1a vs. M2a 0.04 0.02 0.04 0.02
M7 vs. M8 0.10 0.04 0.09 0.03
M8a vs. M8 0.05 0.04 0.06 0.01
M8a vs. M8 (1 d.f.) 0.05 0.04 0.06 0.01

Scheme 6 Adaptsite 0.00 0.00 0.08 0.00
(50 replicates, Codeml (before LRT) M2 0.19 0.00 0.76 0.00
45% � � 0, M2a 0.18 0.00 0.75 0.00
45% � � 1, M8 0.20 0.00 0.76 0.00
10% � � 5) Codeml (after LRT) M1 vs. M2 0.19 0.00 0.76 0.00

M1a vs. M2a 0.18 0.00 0.75 0.00
M7 vs. M8 0.20 0.00 0.76 0.00
M8a vs. M8 0.20 0.00 0.76 0.00
M8a vs. M8 (1 d.f.) 0.20 0.00 0.76 0.00

The proportion of true positives is defined as the number of sites that are correctly classified as positively selected divided by
the total number of positive selection sites simulated. The proportion of false positives is defined as the number of sites that are
falsely classified in the positively selected category divided by the total number of sites that are not positively selected.

and 5), the empirical Bayes methods predict an almost M1a vs. M2a and M7 vs. M8; �10% for M8a vs. M8) in
the pseudogene set (scheme 1) after the LRT.equal amount of neutral and positively selected sites to

belong to the positive selection category. The proportion
of sites evolving neutrally that are predicted to be under

DISCUSSION
positive selection can be as high as 36% with M8. The
high error rates are due to inaccuracies in maximum The erroneous results published by Suzuki and Nei

(2001) on the HLA data set appear to be due to the uselikelihood estimates of parameters in the �-distribution.
Adaptsite predicts no positively selected sites in either of an earlier version (3.0a) of the codeml program in the

PAML package (Yang 1997), which worked for relativelycategory. None of the methods are capable of discrimi-
nating between sites in which � � 1 and � � 1.5 with small data sets only. For large trees, multiplication of

small transition probabilities across branches can causeany confidence. Clearly, differentiating between sites
evolving under such similar values of � is very hard. underflow, a problem dealt with in Yang (2000a; p. 426)

and in later versions of PAML. The errors in the resultsTable 4 shows the proportion of neutral sites that
are falsely predicted to be under positive selection by of Suzuki and Nei (2001) are obvious as simpler models

had substantially greater likelihood than more complexcodeml in the data sets without positive selection. Re-
sults from Adaptsite are not included in Table 4, since models and multiple runs led to very different parame-

ter estimates and log likelihoods (see also Sorhannusit did not have any false positives. Again note that the
distributions of � in schemes 2a, 2b, and 3 are the same 2003, p. 1328). Indeed, these errors were pointed out

to the authors before publication by one of us (Z.Y.),as those used in Suzuki and Nei (2002). We did not find
any false positives after the LRTs in these sets. However, although the reasons for the errors were unknown at

that time. Nonetheless, the erroneous results were pub-there were still some false positives (�5% of cases for
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lished and interpreted as evidence against the likelihood to consider the posterior probabilities only if the LRT
is significant.method. Our simulations under conditions similar to

those used by Suzuki and Nei (2001, 2002) did not pro- In sum, results of this simulation study suggest that
the LRT of positive selection does not generally lead toduce an excess of falsely significant results by the LRT.

We suspect that the discrepancies are due to numerical an excess of false positives, when the models are applied
correctly and optimization problems are eliminated,problems in the optimization algorithm in the codeml

software in the studies of Suzuki and Nei (2001, 2002). consistent with the simulation studies of Anisimova et al.
(2001, 2002). Previous claims of excessive false-positiveFailure of optimization routines can lead to erroneous

results. Indeed, the iteration algorithm was found to be rates for the ML method were based on results either
known to be incorrect (Suzuki and Nei 2001) or mostproblematic in this study as well, especially when the

parameter estimates were at the boundary of the param- likely caused by numerical optimization problems or
simulation errors (Suzuki and Nei 2002).eter space, and we had to run the program multiple times

using different starting values to obtain reliable results. In contrast, Adaptsite was unable to identify positive
selection in virtually all of the simulated data sets ana-Hence we want to emphasize the advice given in the

PAML documentation (Yang 2000b) that it is important lyzed here. Even in scheme 6 with strong positive selec-
tion (� � 5), when the LRT detected positive selectionto compare outcomes from analyses using different

models and different initial parameter values to confirm with �100% power for both small and large trees and
the empirical Bayes method distinguished between neu-results. In our experience, multiple local optima often

occur in different parts of the parameter space with tral and positively selected sites with great accuracy (Ta-
bles 2 and 3), Adaptsite essentially predicts all sites toquite different log likelihoods and are thus easy to iden-

tify. In such cases, one should consider only the one be neutral. Similarly, in a real data set of the tax gene
of a human T-cell lymphotropic virus, Adaptsite failed towith the highest likelihood and ignore the suboptimal

local peaks. We also note that the modified tests M1a vs. detect positive selection even when the �-ratio averaged
over all sites and all branches is much greater than 1M2a and M8a vs. M8 are less prone to the problem than

the original tests M1 vs. M2 and M7 vs. M8. When those (Suzuki and Nei 2004). The lack of power of the method
makes it unusable for testing positive selection exceptguidelines above are followed, existing likelihood-based

methods appear to have good performance in terms of in large data sets with many sequences. This conclusion
is consistent with the original study of Suzuki and Gojo-both accuracy and power. We acknowledge that such

error checking requires extensive and difficult computa- bori (1999), who recommended its use in large data
sets. While the method has been successful in severaltions in large-scale simulation studies. However, a dis-

tinction can and should be made between a method large data sets, of HLA alleles (Suzuki and Nei 2001)
and viral genes such as HIV-1 env (Yamaguchi-Kabataand a computer program implementing the method.

In evaluations of analytical methods, one should try to and Gojobori 2000), it is in general unknown how large
the data set should be for the method to have any power.obtain correct results rather than use obviously incor-

rect results as evidence against the method. Clearly there We suggest that failure of the method to detect positive
selection should not be taken as evidence for absenceis a need for implementing more robust iteration algo-

rithms. For the moment, we suggest it is feasible for of positive selection and that the method be used for
exploratory data analysis only, to provide a heuristic as-biologists studying individual data sets to apply multiple

runs under multiple models using the PAML software sessment of synonymous and nonsynonymous changes
at individual sites (see also Fitch et al. 1997).on desktop computers even with a few hundred se-

quences in the data. It is quite possible that the likelihood models used
for detecting positive selection can be violated such thatPredicting which sites are under positive selection is

a very hard statistical problem, especially when the value the rate of false positives of the LRT is increased over
the nominal level. Identification of such cases is anof � is low at the positively selected sites. None of the

examined methods could reliably distinguish between important step toward improving the methods, and we
encourage researchers to continue the quest to find con-sites evolving at � � 1 and those evolving at � � 1.5.

Caution should thus be exercised against drawing strong ditions under which the likelihood method fails. We
also note that the empirical Bayes prediction can beconclusions when the estimated � is only marginally

�1, particularly if the estimated standard error of � improved, for example, by integrating over the uncer-
tainty in the parameters in the �-distribution. Likewise,is large relative to � � 1. Furthermore, the current

implementation of the empirical Bayes approach fails T. Massingham and N. Goldman (unpublished obser-
vations) have proposed a related likelihood procedureto accommodate the sampling errors in the maximum

likelihood estimates of model parameters (such as pro- that may accurately control the false-positive rates. Fu-
ture studies examining the properties of the method forportions of sites and the �-ratios), and as a result, poste-

rior probabilities calculated from small data sets may identifying positively selected sites may help to further
improve and refine them.be inflated if they are based on inaccurate parameter

estimates (Anisimova et al. 2002). It is then important Furthermore, the limitations of detection methods
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