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Abstract  Estimation of gecies divergence timesis well-known to be sendtive to violation of the molecular cock assunp-
tion (rate congtancy over time) . However , the molecular dock isamost dways violated in comparioonsof distantly related
gecies, such as different orders of mammas. Thus it is inportant to take into account different rates among lineages
when divergence times are estimated. The maximum likelihood method provides a framework for accommodating rate
variation and can naturally acocommodate heterogeneous datasetsfrom multiple loci and fosdl cdibrationsat multiple nodes.
Previous implementations of the likelihood method require the researcher to assgn branches to different rate classes. In
thispaper , | implement a heurigtic rate smoothing adgorithm (the AHRS agorithm) to automate the asignment of
branches to rate groups. The method combinesfeaturesof previouslikeihood , Bayedan and rate- smoothing methods. The
likelihood algorithmisa s improved to accommodate missng sequences at ©me loci in the combined anayss. The new a-
gorithms are goplied to estimate the divergence times of Maagasy mouse lemurs usng a dataset of mammaian mitochon
drid genes and compared with previous likelihood and Bayesan Markov chain Monte Carlo anayses [ Acta Zoologica Sini-
ca50 (4) : 645- 656, 2004].
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The assumption of molecular clock , that is, cornr
stancy of the evolutionary rate among lineages (Zuck-
erkand and Pauling, 1965) , provides a smple and
powerful way of dating secies divergences. This as
sumption predicts that the expected genetic distance
between geciesisproportiona to the timeof their di-
vergence. Thus the estimated branch lengths or s
guence distances can be converted into absolute diver-
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gence times through fosdl cdibration. While the
clock assumption appears to hold in closly related
ecies, for example, within the hominoids, it is
most often violated in distant comparisons, for exam-
ple, among different orders of mammals ( Hasegawa
et a., 2003; Springer et a., 2003; Yoder and
Yang, 2000) . The efectsof the cdlock assumption on
divergence time estimation is well-characterized (e.
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g. , ArisBrooou and Yang, 2002; Rambaut and
Bromham, 1998) . Inthepast few years, much efort
has been taken to account for such rate variation when
divergence times are estimated. Likelihood methods
account for the rate variation by assgning indepen-
dent rates to brancheson the phylogeny ( Kishino and
Hasegawa, 1990; Rambaut and Bromham, 1998;
Yoder and Yang, 2000) . This approach has recently
been extended to dedl with multiple fossl calibration
points and multiple genes ( Yang and Yoder , 2003) .
In the Bayedan framework , Thorne et a. (1998).
Kishino et a. (2001) usesa stochastic model of evolu
tionary rate change to gecify the prior distribution of
rates, and, together with a prior for divergence
times, caculates the posterior distributions of times
and rates. Markov chain Monte Carlo (MCMC) is
used to make the computation feasble. The algorithm
is recently extended to analyze multiple genes
(Thorne and Kishino, 2002). The Bayesan ago-
rithm followed the semina work of Sanderson (1997 ,
2002) , who developed heurigtic rate smoothing meth-
odsfor joint estimation of times and rates.

A drawback of the likelihood method ( Yang and
Yoder, 2003) is that the researcher has to assgn
branches on the phylogeny to different rate groups;
that is, she has to decide how many rates should be
used and which rate each branch should have. In
Yang and Yoder sanayss (2003) , this was achieved
by examining branch lengths estimated without the
clock assumption and by separating branches into a
few low or high rate groups. Divergence times as well
as rates for the branch groups are then estimated by
maximum likelihood (ML) . In thispaper, | propose
aprocedure to asi st automatic assgnment of branches
to rate groups. The method uses the idea of rate
smoothing (Sanderson, 1997 ,2002) to estimate rates

for branches under a model of stochastic rate change
(Kishino et d., 2001; Thorne et a., 1998) and
then classfies the branchesinto rate groups based on
the estimated rates. | also extend previous likelihood
implementations to accommodate mising ecies at
me loc in combined anadyds of heterogeneous
datasets from multiple loci.

1 Methods

1.1 Data and problem

The data are DNA or protein sequences from
multiple loci for a group of gecies, with sme gecies
possbly mising at 9smeloci. An exampleis shownin
Fig.-1, where pecies A, B, D, E, G, H are &=
guenced at locus 1 (Fig. 1b) , while pecies A B ,C,
E,F are sequenced at locus 2 (Fig. 1c). The rooted
tree topology for al geciesis assumed known and is
referred to as the master tree (Fig. 1la). Gven the
master tree, the subtree at each locus can be conr
sructed, and parameters on the master tree such as
divergence times can be identified , enabling li kelihood
calculation at each locus (Felsenstein, 1981) . | will
refer to the subtree at alocus as & gene’ tree. Yang
and Yoder (2003) emphasized the importance of
combining data from multiple loci in divergence time
estimation usng local clock modes, but their imple-
mentation assumed that all genes are sequenced in ev-
ery gecies. The procedure described here dea s natu-
raly with missng sequences at ome loci.

It isassumed that some nodeson the master tree
have known ages from foss| cdibrations (i. e. , node
ages tz and tgin Fig. 1a) , while the agesof the other
nodes (i.e. , to, t1, t2, t4, tsin Fig. 1a) are to be
estimated from the data. For each locusto be directly
informative about the divergence times, it is required
that at least one node in the gene tree is afosdl cali-

(a) Master tree (b) Locus 1 (c) Locus 2
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Fig.1 Example treesto explain the theory

(a) Master treefor eight gpecies. Two cdibration points are used © that node ages t; and tg are fixed, while the
ages of other nodes are parametersto be estimated. (b) Sx species are sequenced at locus 1, for which the gene tree
iscongructed from the master tree. Different branches may have different evolutionary rates, represented by the
thicknessof the branches, which are accommodated in the likdihood andyss. (c) Fve species are sequenced at

locus 2.
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bration node with known age (such as ages tg at locus
land tzat locus 2 in Fig.1). If the molecular clock
isassumed to hold for every locus, the model parame-
ters will include the unknown divergence timesin the
master tree and one rate for each locus; these are esti-
mated by ML . To accommodate the violation of the
molecular clock , branches on each gene tree can be
classfied into several rate groups. Such rates for
branch groups are then estimated by ML together

with the divergence times (Yang and Yoder , 2003) .

The main objective of thispaper isto develop an algo-

rithm for automatic assgnment of branches on the

gene tree into such rate groups.

1.2 Overview of the AHRSalgorithm
The ad hoc rate-smoothing algorithm for ML es

timation of divergence times implemented here in-

volves three steps:

Step 1: estimation of branch lengthson the gene tree
at each locus by ML under the no-clock model
and caculation of their variances.

Step 2: heurigtic rate smoothing to estimate substitu-
tion rates for branches (or nodes) on the gene
trees together with the divergence times on the
master tree. Clasdfication of branches on each
gene tree into severa rate groups acoording to
their estimated rates.

Step 3: egtimation of divergence times and the rates
for branch groups by ML.

In Step 1, maximum likelihood estimates

(ML Es) of branch lengths on each gene tree are cal-

culated under the no-clock model. The likelihood is

caculated usng the pruning agorithm of Fesengten

(1981). One branch length is updated at a time

(‘YYang, 2000) , and the second derivatives of the log

likelihood with regect to branch lengths are calculat-

ed anadyticaly , usful for calculating the variances of

estimated branch lengths (see below). In Step 2, a

model of stochastic rate change over time isfitted to

the ML Esof branch lengthson al gene treesobtai ned
from Step 1 to estimate subdtitution rates for the
brancheson the gene trees as well as divergence times
on the master tree. Thisis achieved by attempting to
match the ML Es of branch lengths while minimizing
changes of rates over lineages. The estimated rates
are then used to cdassfy branches into severa rate
groups on each gene tree. In Step 3, the divergence
times are estimated together with the branch group
rates usng ML (Yang and Yoder , 2003) . Intheory,
the asymptotic variances of the ML Es of divergence
times can be caculated numericdly usng the loca
curvature of the likelihood surface at the ML Es.

However, this caculation may serioudy underesti-

mate the uncertainty in the time estimates as it ig-

nores uncertainties in fossl calibrations by assuming
fixed agesand asit ignores uncertaintiesin the assgn-

ment of branchesto rate groups. In thispaper, | fo-
cuson point esimates only. The following describes
Step 2 of the agorithm.

2 Result

2.1 Heurigic rate smoothing for automatic assign-
ment of branches into rate groups
Let the data at locus i be D;, with i = 1, 2,
, gfor g genes. Let t be the vector of unknown
node ages in the master tree ,b; = { by} be the vector
of ML Esof branch lengths under no clock at locus i
(from Step 1) , and r; be the vector of ratesfor nodes
on the gene tree for locus i. To awvoid over
parametrization , the rate at the root of the gene tree
isfixed to be the average rate of its two daughter
nodes, weighted by the time of divergence. Thus2si-
2 ratesareincluded in r;if there are s; oecies at locus
i. The algorithm smoothes the rates by usng the
Brownian motion model of rate change of Thorne et
a. (1998) and Kishino et d. (2001). Timest and
ratesr = {r;} are estimated by maximizing the fol-
lowing likelihood

L(t,r,v;D) = |_'|f(DiI tr) fCrn]t,vi)f(v),

(1)
or log likelihood

I(t,r,v;D) = Zlog{f(Dil t,ri)} +
Zloq{f(ril t,vi)} +
zmg{ f(vi)}. (2)

The product or summation is taken over al the loci.
Asin Thorneet a. (1998) , the datalikelihood at lo-
cus i, f(Di|t,r;) ,isapproximated by a norma dis
tribution to ML Es of branch lengths b; , rather than
by using the pruning agorithm on the sequence aign-
ment (Felsenstein, 1981) . The agorithm of Step 1
caculates andyticaly the second derivative of the log
likelihood with regect to each branch length b, and

. . (|2| -1 . .
itsreciproca , - [ Olbz] is used to goproximate the
i

variance of by. Thisislessreiablethan H | the jj-
th eement in the inverse of the Hessan matrix - H
_d’1
- dbjdb}
the dataset anadyzed here, the two gpproaches are
close (Fig.2). Numericd approximation of the full
Hessan matrix is expendve. Instead | use a diagonal
variance-covariance matrix , ignoring the covariances.
Thus, two gpproximations are used here, the norma
approximation to the data likelihood and the assump-
tion of no correlation between ML Es of branch
lengths; that is,

(Stuart et d. , 1999) . However , for
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log{ f (Di | t,ri}= - %(bi - b)) TS t(bi - BY)
N (by - b..22 3
- Z var ( byj) (3)

Here b; are the ML Esof branch lengthsin gene treei
esimated in Step 1, B are the expected branch
lengths under the rate-evolution model (that is, prod-
uctsof timesand rates) , and S, = H™ 'isthe gprox-
imate variance-covariance matrix. While detailed
comparion is lacking, the first goproximation (nor-
mal approximation to data likelihood) appears to be
more error-prone than the second (assuming no corre-
lation between branch lengths) . It may be noted that
Thorne et a. (1998) and Kishino et a. (2001) used
the norma goproximation to the data likelihood in
their Bayesan MCMC adgorithms. Sanderson's
(1997) use of the Poisn goproximation to the in
ferred number of changes per sequence per branch
should have a dmilar effect as weighting the squared
differencesin branch lengthswith their variances used
here.

The prior rate likelihood f (ri| t, v;) iscaculat-
ed under the geometric Brownian motion mode of
Thorneet d. (1998) and Kishino et a. (2001).
Conditional on the rate ra of the ancestra node, the
rate r of the current node has a log-normal distribu-
tion with mean ra and variance tvi, where t is the

time sgparating the two nogdes. 5
; -1 log(r/ ra) +‘12‘th }

i 2tv;

r Jat ty; '
0<r< o (4)
Here v; controls how clock-like the tree is, with a
large vi meaning that the rates are variable and the
clock is serioudy violated. The prior rate likelihood f
(ri|t, v;) iscaculated by multiplying dendtiesof the
form of egn 4 across branchesin the gene tree. Fur-
thermore, an exponentia densty with mean 0. 001 is
used for the prior f (v;) to pendize large values for
v;. The averane rate for a hranch is calcilated as the

€X|

f(r] ra) =

0.2 1

SE from ddl

0 0.1 0.2
SE from Hessian matrix

average of the rates at the two end nodes of the
branch.

For the example of Fig. 1, atotal of 25 parame-
ters will be estimated by maximizing eqn. 2:5 diver-
gence timesin the master tree, 10 ratesfor locus1, 8
ratesfor locus 2, and v; and v, for the two loci. A
numerical optimization algorithm is used to estimate
them.

The estimated rates for the same locus are then
collapsed into k categories. One strategy is to use a
clustering algorithm to cluster the rates (and branch-
e into groups. See the Results section for an exam-
ple. Here | implement a smple and somewhat arbi-
trary scheme. Let the range of the estimated rates at
the locus be (a, b). This is broken into k rate

groups usng threshold points a, Ry, Rz, , Rk=
b, where
R =a+(b-aB“’ j=1,2 k(5

B = 0.25 + 0.25log(k) .
Thusfor k= 2, = 0.42, and the cutting point is
at 42 %of the range. For k = 3,B = 0.52, and the
two cutting points are at the 28 % and 52 % of the
range. For k= 4,3 = 0.60, 2 the three cutting
points are at the 21 %, 36 %, and 60 % of the range.

Several concerns may be raised about the AHRS
agorithm. Firgt, the' likelihood function” of egn. 1
isnot a likdihood function in the usua sense of the
word snce the rates r are unobservable random vari-
ablesin the model. Estimatesof rates and timesfrom
egn. 1 are not expected to have the asymptotic prop-
ertiesof conventional ML Es. Nevertheless, amejus
tifications are provided in the satigtics literature for
such a method. It was used in randonreffects modd's
to estimate variance components by Henderson et a.
(1959) and was caled hierarchica likelihood by Lee
and Nelder (1996) . In kerne-densty smoothing, it
is known as pendized likelihood (Slverman, 1986) .
Note that in his pendized-likelihood method for
smoothing rates and estimating times, Sanderson
(2002) penalized the data likelihood by minimizing
changes in rates across brancheson the tree. Here the

Fig.2 Square roots of the approximate variances for ML Es o
branch lengths under no clock ( Sep 1) calculated using two ap-
proaches: the diagonal element in the invers of the Hessian matrix
(the x-axig) and the reciprocal of the second derivative of the Iy
0.1 1 likelihood with respect to the branch length (the y-axis)

The former is expected to be more rdiable but is caculated usng the differ-
ence goproximation. The latter isless reliable but is cadculated andyticdly.
The ML Esof branch lengthsfrom this andyss are shownin Fg. 3.
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use of the rateevolution mode (egns 1 and 4)
achieves the same objective and the method isdo a
penalized likelihood. Second, the rdiability of the
normal approximation to the data likdihood is un
known. Exact calculation on sequence dignment is
not feas ble computationally because of the large num-
ber of rates and the high dimendon of the optimiza
tion problem. Mainly for those reaons, | use the
AHRS dgorithm to help assgn branches into rate
groups, and then use maximum likelihood to estimate
divergence times together with the rates for branch
groups.
2.2 Application to mouse lemur divergences

The mouse lemurs are the world s smallest living
primates, endemic to Madagascar. While initiadly
recognised as only one species Microcebus murinus,
as many as nine ecies have now been identified
based on recent phylogenetic studies usng both mor-
phological and molecular data (see Yoder et a. , 2000
for review) . Yang and Yoder (2003; see a0 Yoder
and Yang, 2004) used Bayesan MCMC agorithms
(Kishino et al., 2001; Thorne et d., 1998) and
likelihood local clock models to estimate divergence
times and suggested that the mouse lemurs diverged
around 7 - 10 million yearsago (M YA) , asold asthe
human-chimpanzee slit. The likdihood anayss in
that paper assumed three rates on the tree, one for
the mouse lemurs, onefor the hominoids, and anoth-
er for all other branches. Here | goply the new algo-
rithm of thispaper to the same dataset , for compari-
on with the previous anayses. The data condst of
two mitochondria protein-coding genes, COIl and
cytochrome b, from nine mouse lemur gecies as well
as 26 other mammalian ecies, with 35 geciesin to-
tal (Yoder et al. , 2000) . There are 1 812 nucleotide
dtesor 604 codons in the sequence. See Yang and
Yoder (2003) for availability of the dignment. The
master eciestreeisshownin Fig. 3 and 4. The ages
of seven ancestral nodes are fixed according to fosdl
data (see Fig-4; Yang and Yoder ,2003) , with 27
node ages to be estimated. The data are analyzed us
ing nucleotide, amino acid, and codon substitution
models. Below | describe the codonr-based anayss,
and include results from the nucleotide and amino
acid based analyses for comparion. While the de-
<cription of the method above referred to multiple loci
or genes, the emphadsison acocounting for large-scale
heterogeneity among ste partitions, and genes and
proteins may not be the most appropriate partitions.
The two genes anadyzed here are on the same strand
of the mitochondria genome and have smilar evolu
tionary dynamics. Thus they are combined into one
big gene. However , the three codon podtions have
very different substitution rates and base compos-
tions, and are treated as different partitions in nu-

cleotide-based anayss.
2.2.1 Codomrbased anayss The modd of codon
subgtitution of Gldman and Yang (1994) is used for
ML egtimation. The F3x4 mode is used to account
for unequal codon usage, with the observed base fre-
guencies at the three codon postions used to calculate
the expected codon frequencies. First, the codon
model was used to estimate the branch lengths with-
out the clock (Step 1) . The ML E of the trandtion/
transverson rate ratio isk* = 5.437 and that of the
nonsynonymous/ synonymous rate ratio is® = 0. 032.
The very low W ratio reflects the strong selective con-
graints acting on those mitochondria genes. As the
ML Es of those substitution parameters vary little
whether or not the molecular clock is assumed, those
estimates are fixed later in Step 3. In Step 2, the 27
(= 34 - 7) divergence times, 68 subgtitution rates
(for 68 branches) , as well as parameter v are esti-
mated by maximizing the likelihood of eqn 1. The es
timate of parameter v is ¥ =0.0537. The estimated
divergence timesfrom this step are shown in Table 1
(column f' codon Step 2). The estimated rates for
branches have the distribution shown in Fig. 5a and
rangefrom 1. 18 to 4. 06 ( x 10" ® nucleotide substitur
tions per codon per year) . With egn 5 used for parti-
tioning branches, thisrangeis separated into four cat-
egories usng B = 0.597: rate group O with rate <
1.79 (14 branches) , group 1 with rate <2.20 (3
branches) , group 2 with rate <2.90 (15 branches) ,
and group 3 with rate <4.06 (36 branches). This
grouping of branchesis shownin Fig.3a. In Step 3,
the 27 divergence times and the four ratesfor the four
branch groups are estimated by ML (Yang and Yo-
der , 2003) . In this sep, the likelihood is calculated
exactly usng the sequence alignment. The estimated
divergence times are shown in Fig.4a and Table 1
(columnf) . The estimated rates for the four branch
groups are 1. 41, 2. 05, 2.30, and 3.55 ( x 10" & nu-
cleotide substitutions per codon per year). The log
likelihood under this modd is | = - 25 041. 8.

For comparison, the molecular clock modd is a-
9 fitted to the data under the model of codon substi-
tution. The Sngle rateisestimated to be 2. 30 x 10”8
nucleotide subgtitutions per codon per year. The esti-
mated divergence times for important nodes are
shown in Table 1 (columnc). The log likelihood un-
der the modd is | = - 25,160. 6, in comparion with
| = - 24,978.9 without the clock. The clock as
sumption is grosdy violated , as is apparent from the
estimated branch lengths (Fig. 3) .
2.2.2 Amino acid-based andyss The trandated
protein sequences were anaysed usng the mtmam +
F+ G modd , uing the empirica subgtitution rate
matrix estimated from 20 ecies of mammals ( Yang
et d., 1998). A discretegamma model with 5 rate
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Fig. 3 The rooted tree topology for estimating divergence timesfor the mouse lemurs used in this paper
The branch lengths, defined as the expected number of nucleotide subgtitutions per codon, are estimated under the codon mode of
Goldman and Yang (1994) assuming no clock (Step 1) . The no-clock andys's can estimate only one branch length around the
root , but the root is used for later andyssand shown herefor clarity. The ML Esof branch lengths are used to fit a rate-evol ution
model to estimate rates (Step 2) . The estimated rates have a distribution shown in Fg. 5a. They are clasdfied into four rate

groups' automaticaly” usng egn. 5 (a) and* manualy” according to figure 5b (b) . Thick branches represent high rates and thin
branches low rates.
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Fig- 4 Therooted tree topology showing the ML Es of divergence times under the local clock modes
represented by Fig. 3aand b

Seven fosdl| cdibration nodes are marked by filled circles. The node ages and divergence events are 10 MY for hu-

mar/ gorilla, 35 MY for monkey/ ape, 77 MY for basd primates, 54 MY for horse/ rhinoceros, 37 MY for toothed/

baeen whaes, 56 MY for whae/ hippo , 55 M Y for felid/ canid (see Yang and Yoder , 2003 for references) . Diver-

gence time estimates for twelve numbered nodes are listed in tables 1 and 2. Anadyssin Table 2 uses an eighth cdi-

bration: 40M Y for lorig gaago.
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Table1 Maximum likelihood estimates of divergence times (in MY) for 12 nodes in the tree of Fig. 4 under clock and local-clock
model s

Clock Locd dock
Node @ ®» © (@ © ®) ® @ (d) ©)
base AA codon base AA codon codon codon base Bayes
4RA 4RM Step 2 3R

40 dog/ bear 39.1 30.5 39.1 42.7 41.6 40.8 45.5 41. 4 43.2 45.2
43 human/ chimp 7.2 7.6 8.0 6.5 6.6 6.9 6.9 7.0 6.5 7.1
45 hominoid 17.3 18.3 16.3 14.4 13.8 13.0 13.1 14.2 14.2 15.2
47 anthropoid 61.9 66. 3 61.8 57.5 63.2 58.7 58.7 58.1 57.6 61.1
48 lorisform 33.8 26.7 33.3 20.1 22.3 32.7 32.7 311 38.9 40.5
51 Lemuridae 28.0 26.6 26.7 17.0 16.2 25.3 25.3 22.0 33.3 35.3
52 outhern clade 6.5 6.6 7.9 4.1 3.4 5.2 5.2 4.6 5.2 7.6
58 northern clade 6.9 6.7 9.0 4.3 3.4 5.9 5.9 5.2 5.5 8.0
59 mouse lemurs 8.8 8.9 11.2 5.5 4.5 7.4 7.4 6.5 7.1 10.0
61 Cheirogdeidae 26.6 20.9 25.6 16. 3 11.0 18.2 18.2 16.2 28.6 30.3
65 lemuriform 57.9 59.2 57.1 41.7 41.0 49.5 49.5 49.8 64.8 66. 9
66 Strepsrrhine 63.3 62.1 62.4 51.2 48.8 58.2 58.2 57.8 69.9 73.3

Note: Node numbers arefrom Yang and Yoder (2003) and arefor Fig. 4. The andysisisperformed usng the nudeotide (base) , amino acid (AA) and
codon (codon) sequences and assuming clock and loca-clock models. Seven fosdl cdibrations are used (Fig- 4) . (') isfrom a manud four-rate model
ecified acoording to Fig. 5b. (f") isfrom Step 2 in the codon-based andyss. (d) are ML estimates under athree-rate modd and (g) are Bayesan es-
timates; both are from Yang and Yoder (2003) and arefor nucleotide sequences. Estimated divergence timesfor (f) and (f') are d showninfigures
4a and b.

(a) 12 (b)
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§ i
= 6
o .
g
£ 4]
Z ]
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24 & 5
18 : L B ¢
0 - i
<1 145 195 245 295 345 395 =
Rate <2.0 <29 <35 <4.1

Fig-5 (a) Didribution of subgtitution ratesfor branches esimated from S 2 under the model of codon substitution.
(b) A clugering algorithm ( UPGMA) isused to cluster the estimated rates intofour groups: A, B, C, D, withrates <
2.0, <2.9, <3.5,and <4.1x10 ®nucleotide substitutions per codon per year , respectively

The rates are measured as the number of nucleotide subgtitutions per codon per 100 million years. They are estimated by fitting a modd of
rate evolution to the branch lengths shown in FHg. 3.

Note that the tipsof the phylogram are estimated ratesfor branches.
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categories (Yang, 1994) is used to account for rate
variation among stes. The estimatedd parameter un-
der no clock (Step 1) is0.362, whichisused later in
Step 3. Egn 5 is used to casdfy the rates estimated
from Step 2 into four categories, producing ML esti-
matesof divergence times shown in Table 1 (column
€. Smilarly, estimated divergence times under the
clock are shown in Table 1 (column b). The sngle
substitution rate is estimated to be 0.240 x 1078
amino acid replacements per amino acid ste. Again
the molecular clock is rgected by a likdihood ratio
test (results not shown) .

2.2.3 Nucdleotideebased andyss The F84 + G
model (Felsenstein, 2002; Yang, 1994) is used,
with different trandtion/ transverson rate ratios, dif-
ferent gamma shgpe parameters, and different base
frequencies assumed for the codon podtions. The base
frequencies are estimated usng the observed frequen-
ciesin the sequence data. The estimatesof the trans-
tion/ transvergon rate ratiosk are 3. 763, 3. 186, and
17. 684 for the three codon postions, while the esti-
mates of the gamma shgpe parameter a are 0.292,
0.164, and 1. 247. The total log likdlihood over the
three postionsis | = - 24 846.2. Step 2 of the ago-
rithm optimizes 27 divergence times, 68 x 3 rates,
and 3 v parameters, with a total of 234 parameters.
The estimatesof v are 0. 0544, 0. 0434, 0. 0421 for
the three codon postions. Branches at each codon po-
gtion are classfied into four rate groups according to
their estimated rates. In Step 3, atotd of 39 parant
eters (27 times and 4 x 3 branch group rates) are egti-
mated by ML. The edimated divergence times are
shown in Table 1 (column d). The log likelihood un-
der the modd is | = - 24 986. 5.

For comparion, the clock modd is a2 gplied
to the nucleotide sequences. The estimated rates for
the three postions are 0. 242 x 10" %, 0.084 x 10" 8,
3.936 x 10" ® nudeotide substitutions per dte. The
estimated divergence times are shownin Table 1 (col-
umn a). Those are very close to the esimated ob-
tained by Yang and Yoder (2003 ; Table 4 columnj) ;
the minor differences are due to the use of dightly
different subgitution parameters. Note that the
molecular clock assumption is rejected by the likeli-
hood ratio test for every codon postion (Yang and
Yoder , 2003) .

2.3 Age of mouse lemur divergence

Table 1 lists estimates of divergence timesfor 12
nodesin the gecies tree (Fig. 3) under various clock
and loca-clock models. The sequence data and fossl
caibration information used are the same asin Yang
and Yoder (2003) , dthough Yang and Yoder per-
formed nucleotide-based anadyss only. Thus the dif-
ferences in estimates of divergence times in Table 1
are due to estimation methods, and in particular , to

the assumptions made about the rates. Note that all
the sven cdibration nodes are far away from the
mouse lemur clade (Fig.-4) , rendering the dating
problem very difficult. Compared with estimates un-
der the molecular clock , the locad clock models pro-
duced much younger estimates for the ages of mouse
lemur divergences (nodes 52, 58, and 59) . For ex-
ample, the age of the mouse lemur clade was estimat-
edto be 8.8, 8.9, or 11.2MY under the clock in
anayses of nucleotide, amino acid, and codon s=
guences, regectively, while the correponding esti-
mates under the 4-rate models are 5.5, 4.5, and
7.4. The loca cock modds interpreted the long
branchesin the mouse lemur clade as reflecting high
rates rather than ancient divergences (see Fig. 3a) .
Interestingly , the human-chimpanzee divergence be-
came only dightly younger when the clock is relaxed
even though the hominoids clearly have high rates;
that is, 7.2,7.6,and 8. 0M Y under the clock in the
three analyses compared with 6.5, 6.6, and 6.9 &-
ter relaxation of the clock. This seems to be due to
thefact that the local clock models use a Sngle rate to
the whole anthropoid clade, with the same rate ex-
tending almost to the root of the tree (Fig. 3a). The
three analyses usng nucleotide, amino acid , or codon
sequences produced osmewhat different ages for some
nodes. For example, the codon-based estimate of the
mouse lemur clade age is older than the nudeotide or
amino add-based edimates. The reaons for such differ-
ences are undear. Sme dfferences are notable between
the edimates obtained by Yang and Yoder (2003) from
the nudeotide based andys's under a 3-rate nodd (Tadle
1 oolumn d) and the esimates obtained here when eqgn.
5 was used to asign branchesto four rate groups. In par-
ticuar, the mouse lemur age is 5.5MY compared with
the previous etimate 7. IM Y.

The automatic asignment of rates or branches
into four groups usng eqn 5 seems to have placed too
many high rates into the same category, judged by
the rate distribution of Fig. 5a for codon sequences.
Thus another® manua” scheme is thus used to anar
lyze these data, with four branch groups determined
from cugering the estimated rates usng UPGMA
(Fig- 5b) , with the following cutting points: 2.0,
2.9,3.5 (x10 8 nudeotide subgtitutions per codon
per year). Clasdfication of branches under this
schemeis shown in Fig. 3b. Step 3 of the dgorithm
then egtimates 27 divergence times and 4 branch
rates. The log likelihood under the modd is | =
- 24 978.9. While formal testing comparing such
rate modds is difficult as the modes are not nested
and as they are derived from the data, thislog likeli-
hood is much higher than that achieved under the

“ automatic” four-rate model (- 25 041.8). The es
timated divergence times under the model are shown
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in Table 1 (column f 4RM). The estimated age of
mouse lemur divergence is 4.9M Y, compared with
7.4MY from the automatic four-rate mode .

Recently a new foss! waspublished by Seiffert et
a. (2003) with a date of 38-42M Y for the sgparation
of dow loris and the galago (node 48 in the tree of
Fig-4). Thus, the esimated divergence times for
this clade under the local clock modds, which range
from 22 to 33M Y (Table 1 columnsd, e, f,f ,f"),
are al too young. It seems that the use of only one
loris and one gaago ecies makes it difficult to de
duce reliably the gppropriate rates within the clade.
Increased species sampling may help dleviate this
problem. To see how egtimates of the mouse lemur
divergence times are afected, the same anayss was
conducted by fixing the age of the lorisgalago diver-
gence at 40MY (Fig. 4) , in addition to the seven cal-
ibrations used in Table 1. The time egimates are
shownin Table 2. Adding the new fosdl caused the
agesof Strepdrrhine and lemuriform clades (nodes 66
and 65in Fig. 4) to becomeolder. However , the ages
of other nodes remain largely unchanged. The results
obtained from fitting the four-rate manua modd
(4RM) to the codon sequences are listed in Table 2
(column ') . The mouse lemur divergence is dated to
about 4.9M Y. Asthe codon model accommodates the
magjor features of the evolutionary process, and the
analyds incorporates al eight calibrations with four
branch rates, this estimate might be consdered the
best from this andyds. However , the discrepancies

in time estimates among model s and methods and the
sengtivity of time estimates to the assumed rate mod
e highlight the difficulty of divergence time estima
tion when the molecular clock is violated.

3 Discussons

3.1 Comparison with previous methods

The AHRS algorithm implemented here has a
number of dmilarities with the penalized likelihood
approach of Sanderson (1997 ,2002) and the Bayesian
MCMC dgorithm of Thorne and colleagues ( Kishino
et a.,2001; Thorne et d.,1998). All three ap-
proaches estimate the branch lengths without assunr
ing the clock ,and then estimate times and rates by
minimizing the discrepanciesin branch lengths and by
minimizing rate changes over branches. While dll
those methods use the same basc idea and attempt to
extract the same kind of information from the data,
the agorithm implemented here differs from
Sanderon s method in severa ways. First ,the ago-
rithm of this paper accommodates multiple loci with
different evolutionary characterigics. S multaneous
analyssof gene sequences from multiple loci may be
expected to improve estimates of divergence times,
which are shared across loci , and the improved time
estimates may be expected in turn to improve rate es
timates. The ability to properly accommodate missng
gecies at me loci a0 enables joint anayss of as
much sequence data as possble. Second, the criteria
used are different. In Sanderson s method , a Poison

Table 2 Maximum likelihood estimates of divergence times using an additional calibration

Clock Locd clock
Node (a) base (b) AA (c) codon (d) base (e) AA () ) ()]

codon codon codon
4RA 4RM 4RA

40 dog/ bear 39.4 311 39.4 42.8 41.9 41.9 45.6 43.9

43 human/ chimp 7.3 7.6 8.0 6.3 6.5 6.8 6.9 7.1

45 hominoid 17.4 18.4 16.5 14.2 13. 6 12.9 13.0 13.5

47 anthropoid 62.0 66. 3 61.8 57.7 63.1 58.0 58.5 58.7

48 lorisform 40 40 40 40 40 40 40 40

51 Lemuridae 28.4 27.5 27.2 18.9 22.6 24.8 25.4 20.1

52 outhern clade 6.7 6.8 8.0 4.6 3.5 51 3.4 NA

58 northern clade 7.0 6.9 9.1 4.9 3.4 5.8 3.8 NA

59 mouse lemurs 8.9 9.2 11.4 6.2 4.7 7.3 4.9 7.0

61 Cheirogdeidae 26.9 21.6 26.0 18.1 14. 2 17.9 13.9 17.1

65 lemuriform 58.8 61.7 58.3 49.0 57.4 54.9 55.7 48. 4

66 Strepdrrhine 64.9 65.7 64.3 59.6 64.5 62.8 63.6 60. 6

Note: Same as Table 1 except that one additiond fossl cdibration (40M Y for lorisform) isused. Columnf” isfor a reduced dataset incuding only two

gecies of mouse lemurs.
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approximation to the estimated number of changes per
branch is assumed to fit branch lengthswhile | used a
normal approximation to ML Es of branch lengths.
The inaccuracies in the two gpproximations are not
well understood. However , variance calculationin the
normal gpproximation uses the gppropriate substitu-
tion moded (Yang, 2000) while Sanderson s Poison
approximation does not consder the model used ini-
tidly to estimate the branch lengths, and may thus be
less accurate if branch lengths are large or if the sub-
gitution model is complex. Sanderson used the sum
of sguared rate diff erences to penalize changesin rates
while | use a stochastic model of rate change. Model-
based rate smoothing appears advantageous: (a) it
takes time into acoount : for example, a change in
rate should be more likely over a long time period
than over a short one and thisis taken into account in
caculationof f(ri|t, vi) (seeqgn. 4); (b) it pro-
vides a natura way of combining data across genes
which may have drasticdly different rates; and (c) it
avoids the need for crossvalidation to esimate the
smoothing parameter. Third, the rate-smoothing &-
gorithm plays a less dgnificant role in the method of
thispaper as it is used only to partition branches on
each gene tree into different rate groups, with diver-
gence times estimated by a proper maximum likeli-
hood calculation usng sequence aignments. An ad-
vantage of Sanderson s implementation is that it can
ecify fosdl calibrations as lower or upper boundson
node ages. The optimization agorithm used in paml
(Yang, 1997) does not ded with such consraints
and usesonly fixed node agesfor fosdl cdibration. As
a result , standard errors caculated for estimated di-
vergence times are serious underestimates. The inr
portance of accounting for uncertainties in fosdl cali-
brations has been emphaszed by Graur and Martin
(2004) .

While the AHRS agorithm makes use of the
rateevolution model of Thorne et al. (1998) and
Kishino et d. (2001) , that use is not fully judtified
gsatigicaly. The Bayes method of Thorne and col-
leagues averagesover the ratesin the MCMC. Inthe
ory this can be achieved in a likelihood agorithm for
divergence time estimation, but it does not seem fear
sble computationaly. Instead the AHRS agorithm
optimizes rates, together with divergence times,
rather than averaging over them. Another difference
between the two methodsisthat the AHRS agorithm
does not need a prior for divergence times, which
might be conddered an advantage. Thereis ome evi-
dence that time estimation by the Bayes method may
be sendtive to the prior modd of divergence times.
Yoder and Yang (2004) reported a case in which the
posterior time esti mates changed cons derably depend-
ing on whether two or nine mouse lemur ecies were

included in the dataset , with the larger dataset pro-
ducing substantially older ages for mouse lemurs.
They attributed the effect to the uniform branch
lengthsin the prior distribution of divergence times
assumed by the Bayes agorithm. The likeihood
method, without the need for a prior for times,
sems less sengtive to such gecies sampling. A re
duced dataset including only two mouse lemur ecies
(M. berthae and M. murinus) was anayzed in table
2 (column " 4RA). The estimated age for mouse
lemur divergence is 7. 1M Y, dmilar to 7.3M Y, the
estimate obtained from the complete dataset ( Table 2
ocolumn f) .

The performance of those different methods in
red data andyds is not well-understood, as those
methods are only beginning to be widdy used. A re
cent nice study published by PererLosada et d.
(2004) compared divergence time estimatesfrom var-
ious methods with the fosdl records. Beddes such
analyssof empiricd datasets, it will < be interest-
ing to perform computer Smulations to examine the
performance of various estimation methods, egpecialy
when their assumptions about rates, times and the
subgtitution process are violated.

3.2 Implementation detailsand program availabil-
ity

The dgorithm described in this paper has been
implemented in the baseml and codeml programs in
the paml package (Yang, 1997). For nucleotide
based andyss (baseml) , the HKY85+ Gor F84 + G
models (Hasegawa et a. , 1985; Yang, 1994) and
their gpecid cases are implemented , and the parame-
tersin the model can be different among genes, codon
podtionsor other partitions of stes. For amino acic
based andlyss (codeml) , different proteins can have
different shgpe parametersin the gamma distribution
of variable rates among dtes and can have different
subgtitution rate matrices. Thus nuclear and mito-
chondria proteins can be anayzed jointly. The codornr
based analyss (codeml) usesthe substitution mode of
®oldman and Yang (1994) and alows the use of dif-
ferent genetic codes and different substitution param-
eters for different genes (such as the transtion/
transverdon rate ratio K , the nonsynonymous syn-
onymous rate ratio @ , and codon frequencies). Nu
clear and mitochondria genes can thus be andyzed
jointly. My current implementation does not alow
joint analyds of DNA and protein sequences. The
programs output trees with branch lengths and esti-
mated divergence times suitable for viewing and
printing usng the TreeView program (Page, 1996) .

Acknowledgments | thank Ying Cao and Carlos
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gorithm, and Anne Yoder and two anonymous refer-



656

50

eesfor many constructive comments.

Ref erences

ArisBroou S, Yang Z, 2002. The efects of modds of rate evolution
on estimation of divergence dates with a gecid reference to the
metazoan 18S rRNA phylogeny. Syst. Biol. 51: 703 - 714.

FesenseinJ, 1981. Evolutionary treesfrom DNA sequences: a maxi-
mum likelihood approach. J. Mol. Ewvol. 17: 368 - 376.

FelsengeinJ, 2002. Phylip: Phylogenetic Inference Program, Verson
3.6. Univerdty of Washington.

Goldman N, Yang Z, 1994. A codon-based mode of nucleotide substi-
tution for proteén-coding DNA sequences. Mol. Biol. Evol. 11:
725 - 736.

Graur D, Martin W, 2004. Reading the entralsof chickens: molecular
timescaes of evolution and theilluson of precison. Trends Genet.
20: 80- 86.

Hasegawa M, Kishino H, Yano T, 1985. Dating the humarrgpe lit-
ting by a molecuar clock of mitochondrid DNA. J. Mol. Evol.
22: 160- 174.

Hasegawa M, Thorne JL , Kishino H, 2003. Time scde of eutherian
evolution estimated without assuming a congtant rate of molecular
evolution. Genes Genet. Syst. 78: 267 - 283.

Henderson CR, Kempthorne O, Searle SR, Krosgk CM von, 1959.
The egtimation of environmenta and genetic trends from records
subject to culling. Biometrics 15: 192 - 218.

Kishino H, Hasegawa M, 1990. Converting distance to time: gpplicar
tion to human evolution. Methods Enzymol. 183: 550 - 570.
Kishino H, ThorneJL , Bruno WJ, 2001. Performance of a divergence
time estimation method under a probabilistic mode of rate evolu-

tion. Mol. Biol. Evol. 18: 352 - 361.

Lee Y, Nelder JA , 1996. Hierarchica generdized linear modes. J. R.
Satis. Soc. B. 58: 619 - 678.

Page RDM , 1996. TREEV IEW : an application to digplay phylogenetic
treeson perona computers. Comput. Appl. Biosti. 12: 357 -
358.

PererLosada M , HoegJT, Crandal KA , 2004. Unrevaling the evo-
lutionary radiation of the Thoracican barnacles usng molecular and
morphologica evidence: acomparion of severd divergence time es
timation approaches. Syst. Biol. 53: 244 - 264.

Rambaut A, Bromham L, 1998. Esimating divergence dates from
molecular sequences. Mol. Biol. Evol. 15: 442 - 448.

Sanderson MJ, 1997. A nonparametric goproach to estimating diver-
gence timesin the absence of rate constancy. Mol. Biol. Evol. 14:
1218- 1 232.

Sanderson MJ, 2002. Estimating ablute rates of molecular evolution
and divergence times: a pendized likelihood approach. Mol. Biol.
Evol. 19: 101- 109.

Sdiffert ER, Smons EL |, Attia Y, 2003. Fosdl evidence for an ancient
divergence of lorises and gdagos. Nature 422: 421 - 424.

Slverman BW , 1986. Densty Estimation for Statistics and Data Andy-
§s. London: Chapman and Hall , 110 - 119.

Springer MS, Murphy WJ, Bzrik E, OBrien SJ, 2003. Pacentd
mamma diversfication and the Cretaceous Tertiary boundary.
Proc. Natl. Acad. Sci. USA. 100: 1 056- 1 061.

Stuart A, Ord K, Arnold S, 1999. Kenddl's Advanced Theory of
Statigtics, 6 edn. London: Arnold, 46 - 116.

ThorneJL , Kishino H, 2002. Divergence time and evol utionary rate es
timation with multilocus data. Syst. Biol. 51: 689 - 702.

ThorneJL , Kishino H, Painter IS, 1998. Estimating the rate of evolu-
tion of the rate of molecular evolution. Mol. Biol. Evol. 15:
1647 - 1657.

Yang, Z. 1994. Maximum likeihood phylogenetic estimation from
DNA sequences with variable rates over Stes: approximate meth-
ods. J. Mol. Evol. 39: 306 - 314.

Yang Z, 1997. PAML : aprogram package for phylogenetic anadyss by
maximum likelihood. Comput. Appl. Biosti. 13: 555 - 556
(http: //abacus. gene. ud. ac. uk/oftware/ paml. html).

Yang Z, 2000. Maximum likelihood estimation on large phylogenies and
analyssof adaptive evolution in human influenza virus A. J. Mol.

Evol. 51: 423 - 432.

Yang Z, Nidsen R, Hasegawa M , 1998. Moddsof amino acid substi-
tution and gpplications to mitochondria protein evolution. Mol. Bi-
ol. Evol. 15: 1600- 1 611.

Yang Z, Yoder AD, 2003. Comparion of likdihood and Bayesan
methods for estimating divergence times usng multiple gene loci
and cdibration points, with goplication to a radiation of cute-look-
ing mouse lemur species. Syst. Biol. 52: 705- 716.

Yoder AD, Raloarion RM, Goodman SM, Irwin JA, Atsdis S,
Ravosa MJ, Ganzhorn JU , 2000. Remarkable species diversty in
Maagasy mouse lemurs (primates, Microoebus) . Proc. Natl. A-
cad. Si. USA 97: 11 325- 11 330.

Yoder AD, Yang Z, 2000. Estimation of primate speciation dates usng
locd molecular docks. Moal. Biol. Evol. 17: 1 081 - 1 090.
Yoder AD, Yang Z, 2004. Divergence datesfor Mdagasy lemurs egti-
mated from multiple geneloci : geologicd and evol utionary context.

Mol. Ecol. 13: 757 - 773.

Zuckerkand E, Pauling L , 1965. Evolutionary divergence and conver-
gencein proteins. In: Bryon V, Vogd HJ ed. Evolving Genes
and proteins. New York: Academic Press, 97 - 166.



