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Abstract.—Models of codon substitution have been commonly used to compare protein-coding DNA sequences and are
particularly effective in detecting signals of natural selection acting on the protein. Their utility in reconstructing molecular
phylogenies and in dating species divergences has not been explored. Codon models naturally accommodate synonymous
and nonsynonymous substitutions, which occur at very different rates and may be informative for recent and ancient
divergences, respectively. Thus codon models may be expected to make an efficient use of phylogenetic information in
protein-coding DNA sequences. Here we applied codon models to 106 protein-coding genes from eight yeast species to
reconstruct phylogenies using the maximum likelihood method, in comparison with nucleotide- and amino acid-based
analyses. The results appeared to confirm that expectation. Nucleotide-based analysis, under simplistic substitution mod-
els, were efficient in recovering recent divergences whereas amino acid-based analysis performed better at recovering deep
divergences. Codon models appeared to combine the advantages of amino acid and nucleotide data and had good perfor-
mance at recovering both recent and deep divergences. Estimation of relative species divergence times using amino acid
and codon models suggested that translation of gene sequences into proteins led to information loss of from 30% for deep
nodes to 66% for recent nodes. Although computational burden makes codon models unfeasible for tree search in large
data sets, we suggest that they may be useful for comparing candidate trees. Nucleotide models that accommodate the
differences in evolutionary dynamics at the three codon positions also performed well, at much less computational cost. We
discuss the relationship between a model’s fit to data and its utility in phylogeny reconstruction and caution against use of
overly complex substitution models. [Codon models; divergence dates; maximum likelihood; phylogenetics; phylogenetic

information.]

Models of codon substitution (Goldman and Yang,
1994; Muse and Gaut, 1994) consider a codon triplet
as the unit of evolution and can distinguish between
synonymous (silent) and nonsynonymous (replacement)
substitutions. They are widely used in analysis of
protein-coding DNA sequences to detect natural se-
lection acting on the protein, with the nonsynony-
mous/synonymous substitution rate ratio (w) used as
an indicator of selective pressure. The basic models
have been extended in a number of ways, for exam-
ple, to account for variation in selective pressure among
branches on the phylogeny (Seo et al., 2004; Yang, 1998),
among sites in the protein (Huelsenbeck and Dyer, 2004;
Nielsen and Yang, 1998; Yang et al., 2000), or among both
branches and sites (Bielawski and Yang, 2004; Forsberg
and Christiansen, 2003; Guindon et al., 2004). The ex-
tended models are particularly effective in identifying
genes or amino acid residues that are affected by pos-
itive Darwinian selection. However, it is unclear how
useful codon models are for phylogenetic tree recon-
struction. Codon models consider the genetic code and
naturally accommodate synonymous and nonsynony-
mous substitutions. In almost all protein-coding genes,
synonymous substitutions occur at high rates and are
informative about recent divergences, whereas nonsyn-
onymous substitutions occur at low rates and may be
useful for resolving early divergences. By accounting for
both types of substitutions, codon models may be ex-
pected to make an efficient use of information in the data,
leading to high accuracies in phylogeny reconstruction.
Even though nucleotide models can be formulated to ac-
commodate differences in the evolutionary dynamics at
the three codon positions (e.g., Yang, 1996), they can at
best do an awkward job of describing the substitution
process in protein-coding genes.

In this paper we apply codon models to 106 protein-
coding genes from eight yeast species (Rokas et al., 2003)
to reconstruct maximum likelihood (ML) phylogenies.
Rokas et al. (2003) used the ML method to analyze
the nucleotide sequences and the maximum parsimony
method to analyze both the nucleotide and amino acid
sequences. They emphasized the considerable phyloge-
netic conflicts among genes in separate analysis and the
universal congruence among methods in analysis of the
concatenated sequences. The same data have been re-
analyzed in several recent studies (Holland et al., 2004;
Phillips et al., 2004; Taylor and Piel, 2004). Taylor and
Piel (2004) pointed out that Rokas et al.’s use of 70%
bootstrap proportion as a cutoff for strong clade sup-
portled to an exaggerated assessment of conflicts among
gene trees. Phillips et al. (2004) found that use of the
minimum-evolution criterion without accommodating
rate variation among sites produced a different tree for
the concatenated data, suggesting that the congruence
among methods was not universal even for the large
concatenated data set. They suggested that differences
in base compositions among species may have misled
the minimum evolution criterion and cautioned that ex-
amination of model assumptions and exploration of sys-
tematic errors is important even in genome-scale data
sets. Here we use the data of Rokas et al. (2003) to com-
pare analyses at three different levels, i.e., amino acid—
based, nucleotide-based, and codon-based analyses. All
the 106 genes are protein-coding, and can be analyzed us-
ing either amino acid-, nucleotide-, or codon-substitution
models. It is interesting to gain insights into the ad-
vantages and limitations of the different analyses of the
same data. The only such study comparing analyses at
all three levels we are aware of is that of Chang et al.
(2002), who reconstructed ancestral protein sequences.
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Those authors found that analyses using amino acid,
nucleotide, and codon models produced very similar re-
constructions. Here our main focus is reconstruction and
test of the phylogeny. In addition, we examine the utility
of the different models in estimating species divergence
times under the assumption of a molecular clock. We are
also interested in the relationship between the goodness
of fit of a model and its utility for phylogenetic analysis.

MATERIALS AND METHODS
Sequence Data

The sequence data are 106 protein-coding genes from
seven Saccharomyces species and one outgroup yeast Carn-
dida albicans, published by Rokas et al. (2003). See Rokas
et al. (2003) for details of the data and GenBank ac-
cession numbers. We either concatenated all genes into
one “super-gene,” ignoring possible differences among
genes, or analyzed the 106 genes separately. Amino acid-
based analysis made use of the protein sequences trans-
lated from the encoding DNA sequences. The sequence
alignments are available at the Systematic Biology Website
(www.systematicbiology.org).

Substitution Models Assumed in Likelihood Analyses

A number of continuous-time Markov-process mod-
els have been developed to model substitutions between
nucleotides, amino acids, and codons (Lio and Goldman,
1998). We had two considerations in our choice of models
for analysis. First we wanted to use models that are re-
alistic for the data. Second, we wanted the models at the
nucleotide, amino acid, and codon levels to be similar so
that the results obtained at the three levels of analysis in-
dicate differences in the information content rather than
inadequacies of models. Table 1 lists the models that are
used in this paper to analyze the yeast data sets.

In nucleotide-based analysis, we used several vari-
ations of the HKY model (Hasegawa et al.,, 1985),
which accounts for different transition and transver-
sion rates and unequal nucleotide frequencies. The basic
HKY model involves four free parameters: the transi-
tion/transversion rate ratio « and three equilibrium base
frequencies. This model captures the major features of
the substitution pattern but is highly unrealistic as it
ignores differences among the three codon positions.

TABLE 1. Substitution models used in this study and the number

of parameters.
For amino acids For nucleotides For codons
WAG+F (19) HKY (4) F3x4 (11)
WAG+F+G (20) HKY+G (5) F3x4MG (11)
FromCodon (21) HKY+C (14) F3x4MG+M3 (16)
FromCodon+G (22) HKY+C+G (17)

GTR (8)

GTR+G (9)

GTR+C (26)

GTR+C+G (29)

Note.—The number of parameters (in parentheses) includes only those in the
substitution model and does not include branch lengths. The three most similar
models at the three levels are underlined.

TABLE 2. Base frequencies, transition/transversion rate ratios, and
tree lengths at the three codon positions.

Position T C TTA TG K Tree length
1 0.24 0.15 0.31 0.30 2.18 0.889
2 0.31 0.21 0.34 0.14 1.54 0.454
3 0.34 0.20 0.28 0.19 7.95 4.584
All 0.30 0.18 0.31 0.21 3.53 1.369

Note.—There are 42,342 nucleotide sites at each codon position in the concate-
nated data. Tree length is the sum of branch lengths, the number of substitutions
per site throughout the tree. Parameter « and branch lengths are estimated under
the HKY model on tree T; of Figure 1 for the three codon positions separately.

The HKY+G model combines HKY with the discrete-
gamma model of variable rates among sites, with five
rate categories (Yang, 1994b). The HKY+C model ac-
counts for different transition/transversion rate ratios,
different base compositions, and different substitution
rates at the three codon positions, assuming proportional
branch lengths among codon positions (Yang, 1996). This
model involves 14 parameters: two relative rates for
codon positions, three «s, and nine base frequency pa-
rameters. Basic statistics for the three codon positions are
listed in Table 2, which show huge differences in the evo-
lutionary dynamics among the codon positions. In the
HKY+C+G model, the “C” component accommodates
large-scale differences among codon positions, whereas
a gamma distribution is used for each codon position
to account for any remaining rate variation within each
codon position. Ithas 17 parameters. We also replaced the
basic substitution model HKY with the general time re-
versible model (GTR or REV) (Tavare, 1986; Yang, 1994a),
leading to models referred to as GTR, GTR+G, GTR+C,
and GTR+C+G (Table 1). Each « parameter in HKY is
replaced by five rate parameters in GTR. From previous
studies (e.g., Sullivan and Swofford, 2001; Yang, 1994a),
we expect the HKY and GTR models to have similar per-
formance. We did not use models of invariable sites plus
gamma (the “I4+G” models), as they appear somewhat
pathological due to the strong correlation between the
proportion of invariable sites and the gamma shape pa-
rameter (Sullivan and Swofford, 2001; Yang, 1993).

In the codon-based analysis, the model incorporates
the transition/transversion rate ratio («) and the nonsyn-
onymous/synonymous rate ratio (w), and accounts for
different nucleotide compositions at the three codon po-
sitions. To make the codon model as similar to nucleotide
models HKY and HKY+C as possible, we use the fol-
lowing specification. Suppose codon i (triplet i1ii3) and
codon j (triplet jj j» j3) have one difference at position k
(k =1, 2, 3). The relative substitution rate from codons i
to jis
0, if the two codons differ at

2 or 3 position,
@

i for synonymous transversion,
L= k ..
qij = KJT](-k), for synonymous transition, 1)
k .
a)nj(.k ), for nonsynonymous transversion,

k g
wxn](»k), for nonsynonymous transition,
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where n; is the frequency of the target nucleotide ji at

position k. The Markov process of codon substitution is
time-reversible with equilibrium frequency = ; for codon
j proportional to 71](1) ](22) ](-f), because the rate can be writ-
teninthe formg;; =s;; x 7 j, withs;; =s;;, foralli # j. For

3 n_(2_@
example, grca - TCcG = KNG) =( (1;( 7)) X n% )né )n((;)
(1) ()0

qTCG—>TCA—K7TA —( o (z>) X 'y

and

Equation (1)

is slightly different from the F3x4model of Goldman and
Yang (1994) in thatbothrates g;; and g j; are divided by the
frequencies of the two unchanged nucleotides, whereas

under F3 x 4, for example, g1ca - tcc = Kn%l)na)n@) nd

4TCG—TCA = Kﬂ%l)ﬂéz)ﬂf). Equation (1) is similar to and

more general than the model of Muse and Gaut (1994),
which ignores the transition/transversion rate ratio and
different base compositions among codon positions.
Equation (1) is referred to as F3x4MG in the PAML
documentation (Yang, 1997b) and is also available in
the HyPhy package (Kosakovsky Pond et al., 2005).
The F3x4 and F3x4MG models have exactly the same
number of parameters and are not nested within each
other. We used both models F3x4 and F3x4MG, but
focused on F3x4MG as it is closer to the nucleotide
model HKY+C. Note that F3x4MG and HKY+C would
be nearly identical (a) if there were no stop codons,
and (b) if there were no rate differences among codon
positions (when HKY+C became HKY and w = 1 in
F3x4MG), or (b’) if all codons were fourfold degen-
erate. Codon models incorporate the genetic code and
the rate ratio w, naturally leading to different substitu-
tion rates and different transition/transversion rate ra-
tios at the three codon positions. The model involves
11 free parameters: «, w, and nine base frequency pa-
rameters. We also use an extension of F3x4MG, in
which the w ratio varies among sites according to a dis-
crete distribution with three categories. This is model
M3 in Yang et al. (2000) and involves five additional
parameters.

For amino acid sequences, we used the empirical
WAG matrix of relative amino acid substitution rates
(Whelan and Goldman, 2001), with the equilibrium
amino acid frequencies replaced by the frequencies
observed in the data (Adachi and Hasegawa, 1996).
The model is referred to as WAG+F. When the sub-
stitution rate is assumed to vary among sites accord-
ing to the discrete gamma model (Yang, 1994b), the
model is denoted WAG+F+G. Whelan and Goldman
(2001) found that the WAG matrix fitted most data sets
better than other empirical models such as Dayhoff
(Dayhoff et al., 1978) and JTT (Jones et al, 1992).
We also used a codon-based “mechanistic” model of
amino acid substitution described by Yang et al. (1998).
This uses a model of codon substitution to construct
an amino acid substitution model. The codon model
uses the amino acid chemical distances of Miyata
et al. (1979) to modify nonsynonymous substitution
rates, so that the acceptance rate w between amino
acids i and j is inversely related to their chemical

TABLE 3. The number of genes out of 106 supporting each node in
tree T; of Figure 1.

Node1l Node2 Node3 Node4 Node5 Whole tree

Amino acid

WAGF 71 50 45 105 89 25
WAGF+G 68 51 42 104 91 27
FromCodon 76 54 48 105 93 28
FromCodon+G 69 52 42 104 91 27
Base
HKY 98 81 54 104 76 53
HKY+G 92 71 45 103 78 45
HKY+C 95 79 57 105 88 55
HKY+C+G 89 74 53 102 85 52
GTR 98 82 57 104 79 56
GTR+G 95 73 46 103 77 46
GTR+C 96 82 58 105 91 56
GTR+C+G 93 81 53 104 88 52
Codon
F3x4 88 73 59 106 90 51
F3x4MG 86 78 59 104 89 54
F3x4MG+M3 93 74 54 105 90 52

distance d;;:
Wij = exp{— bdi]'/dmax}/ (2)

where dpax is the maximum value, and parameter b is
estimated from the data. Note that parameter a in equa-
tion 11 in Yang et al. (1998) is removed as amino acid
sequences do not allow estimation of synonymous rate
(see also table 3 in that paper). A reversible amino acid
substitution model is constructed by collapsing states in
the Markov chain, that is, by aggregating synonymous
codons into the same amino acid. See Yang et al. (1998) for
details. This model involves 21 parameters: «, b and 19
amino acid frequencies. We refer to this model as From-
Codon. It was also combined with a gamma distribution
of rates amonyg sites, to form the FromCodon+G model.

FromCodon for amino acids, HKY+C for nucleotides,
and F3x4MG for codons are expected to be the most
similar models formulated at the three levels. Thus when
we compare the amount of phylogenetic information in
amino acid, nucleotide and codon sequences, we focused
on those three models.

Reconstruction and Tests of Phylogenetic Trees

Most models examined in this paper are not yet imple-
mented in efficient tree-reconstruction programs such as
PAUP (Swofford, 1999) or PHYLIP (Felsenstein, 2004).
The PAML package (Yang, 1997b) was thus used, with
the BASEML program for nucleotide-based analysis, and
CODEML for amino acid- and codon-based analyses.
We used a stepwise-addition algorithm implemented in
PAML as well as a strategy of evaluating candidate trees.
In the latter approach, each gene or protein was ana-
lyzed using a variety of fast tree reconstruction algo-
rithms implemented in PHYLIP, including parsimony,
neighbor joining, and ML under the simple Jukes and
Cantor (1969) model. Those analyses produced 51 dis-
tinct tree topologies, which were compared under more
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FIGURE 1. Three tree topologies (Ty, T, T;) for seven Saccharomyces species and the outgroup yeast species Candida albicans. The trees are
unrooted but the root is placed along the branch to the outgroup for clarity. (a) Tree T, is the ML tree in ML analyses of the concatenated data.
(b) T; is the minimum evolution tree for the concatenated data inferred by Phillips, Delsuc, and Penny (2004). (c) T is another tree inferred
in some genes. The branch lengths, measured by the expected number of nucleotide substitutions per codon, are estimated under the codon
model F3x4MG. The log-likelihood values under the model are —627,584.96, —627,951.27, and —628,006.97 for Ty, T, T;, respectively. The MLEs
of parameters under the codon model are& = 2.403 and @ = 0.051 for all three trees. The three numbers at each internal node of T; (a) are the
numbers of genes or proteins (out of 106) that support the clade in the following three analyses: (i) analysis of the amino acid sequences under
the FromCodon model; (ii) analysis of the nucleotide sequences under the HKY+C model; and (iii) analysis of the codon (nucleotide) sequences
under the codon model F3x4MG. Results for other models and analyses are given in Table 3.

sophisticated models using PAML programs. Three of
those trees are shown in Figure 1. For some models, both
approaches were used and were found to produce iden-
tical results; that is, the ML tree from the heuristic tree
search was always among the 51 candidate trees. Because
the data sets are small with only eight species and most
of the nodes are well resolved, tree search for those data
sets were concluded quickly.

To assess uncertainties in the estimated phylogenies,
the bootstrap method (Felsenstein, 1985) was used. Un-
der nucleotide models with the “C” component, sites at
the three codon positions do not follow the same dis-
tribution, and stratified sampling is used; that is, the
same number of sites are always sampled at each posi-
tion. When comparing the 51 candidate trees, we applied
an approximate bootstrap method, which used maxi-
mum likelihood estimates (MLEs) of parameters from
the original data set to evaluate the log likelihoods of
the trees rather than re-estimating parameters from each
bootstrap pseudo-sample. The method, known as the
RELL bootstrap (for Resampling Estimated Log Like-
lihoods) (Kishino et al., 1990), appears to approximate

the bootstrap method of Felsenstein (1985) very well
(Hasegawa and Kishino, 1994). Although controversies
exist concerning interpretation of the bootstrap (and its
RELL approximation), we suggest that the measure is
adequate for our purpose of evaluating relative support
levels for the tree and the amount of phylogenetic infor-
mation when the data are analyzed at the three different
levels. For example, if the amino acid— and codon-based
analyses produce the same ML tree but the codon-based
analysis provides stronger clade support, the result may
be interpreted as the codon sequences having more phy-
logenetic information.

RESULTS
Analyses of the Concatenated Data

The 106 genes (or proteins) were concatenated as one
super-gene (or super-protein) and analyzed under the
models of Table 1. The stepwise addition algorithm pro-
duced tree T; of Figure 1 as the ML tree in every anal-
ysis/model. The bootstrap method (Felsenstein, 1985)
was used to calculate support values for clades, with 100
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bootstrap replicates for the nucleotide- and amino acid-
based analyses, and 50 replicates for the codon-based
analyses. Every clade in tree T; received 100% bootstrap
support. Those results are similar to the findings of Rokas
et al. (2003).

The approach of evaluating candidate trees was also
applied to the concatenated data sets. As mentioned in
Materials Methods, application of fast tree reconstruc-
tion methods to analyze the 106 genes or proteins pro-
duced 51 candidate trees, which are assumed to include
all reasonable trees that are likely to be correct. Compari-
son of those candidate trees using the concatenated data
sets under the models of Table 1 produced tree T; as the
ML tree in every analysis, with 100% support for every
node in tree Ty according to the RELL bootstrap (Kishino
etal., 1990). The results are consistent with those obtained
using the heuristic tree search in combination with the
proper bootstrap, discussed above.

Analyses of Separate Genes

Each gene or protein was analyzed using the models
listed in Table 1 to compare the 51 candidate trees, and
the RELL bootstrap method was used to calculate their
support values. First we summarize the ML trees ob-
tained in the separate analysis. As T; is most likely the
correct tree for those genes (Phillips et al., 2004; Rokas
et al., 2003), the number of genes or proteins in which
T; is recovered as the ML tree may be used to indicate
the performance of the model/analysis. The amino acid
models estimated T; as the ML tree in 25 to 28 proteins
(Table 3). In nucleotide-based analysis, the “G” models
recovered T; as the ML tree in 45 to 46 genes, whereas
all other nucleotide models performed better and recov-
ered T; in 52 to 56 genes, similar to codon-based analysis,
in which the number is 51 to 54. The poor performance
of the amino acid models is due to loss of phylogenetic
information when the DNA sequences are translated
into proteins. This interpretation receives more support
when we consider the numbers of genes that support
individual clades (defined by nodes 1 to 5) in tree T; of
Figure 1, shown in Table 3. Clade 4 is defined by a long
branch and is recovered in almost all analyses and mod-

els. Nodes 1, 2, and 3 represent recent divergences. The
amino acid models were far poorer at recovering these
nodes than the nucleotide or codon models. For exam-
ple, node 1 was recovered in only 68 to 76 proteins (out
of 106) in amino acid-based analyses, whereas it is re-
covered in 89 to 98 or 86 to 93 genes in nucleotide- or
codon-based analyses. HKY and GTR were slightly more
efficient than the more complex “C” or “G” models at re-
covering this node, consistent with previous simulation
studies in which simplistic models were found to per-
form better than more complex and realistic models in
recovering recent divergences (e.g., Tateno et al., 1994).
In contrast, node 5 represents a deep divergence. It was
recovered in 89 to 93 proteins by amino acid models and
in 89 to 90 genes by codon models. In nucleotide-based
analysis, the simplistic models HKY and GTR recovered
this node in only 76 and 79 genes, much worse than the
amino acid and codon models. However, the “C” models
recovered node 5 in 88 and 91 genes and performed as
well as the amino acid and codon models. The gamma
models (“G”) were much poorer than the “C” models in
recovering this node. In sum, the results suggest that the
poor performance of amino acid models in recovering
the whole tree Tj, discussed above, was due to their poor
performance in recovering recent nodes. The results sup-
port the intuitive expectation that amino acid or nonsyn-
onymous substitutions are informative concerning deep
divergences whereas nucleotide or silent substitutions
are informative for recent divergences. The codon mod-
els performed well and appeared to make a good use of
both kinds of information. The “C” nucleotide models
also performed well, at much less computational cost.
Next we counted the number of genes or proteins (out
of 106) in which two analyses produced the same ML
tree (Table 4). The larger this number is, the more similar
the two analyses are. In this analysis only HKY is used
because GTR performed similarly and because HKY is
expected to be closer to the codon models. If we consider
amino acid—, nucleotide-, and codon-based models as
three different types of models, the most conspicuous
pattern in Table 4 is that models of the same type are
much more similar to each other than they are to models
of different types. The only exception to this pattern is the

TABLE 4. The number of genes out of 106 in which two analyses produced the same best tree in comparison of the 51 candidate trees.

WAGF WAGF+G FromCodon FromCodon+G HKY HKY+C HKY+C+G F3x4 F3x4MG

Amino acid

WAGF

WAGF+G 59 (19)

FromCodon 67 (22) 69 (24)

FromCodon+G 61 (19) 103 (27) 69 (24)
Base

HKY 18 (14) 17 (15) 20 (17) 18 (15)

HKY+C 29 (19) 30 (22) 36 (23) 30 (22) 43 (36)

HKY+C+G 27 (19) 32 (22) 32 (23) 32 (22) 43 (34) 83 (47)
Codon

F3x4 37 (20) 40 (22) 49 (25) 40 (22) 38 (34) 63 (40) 56 (39)

F3x4MG 36 (21) 40 (22) 47 (25) 41 (22) 42 (36) 64 (42) 59 (41) 86 (48)

F3x4MG+M3 33 (20) 35 (20) 36 (22) 36 (20) 37 (31) 59 (41) 51 (36) 66 (41) 72 (45)

Note—The number in parentheses is the number of genes in which Tj is the best tree for both methods/analyses.
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nucleotide model HKY, which appears to be the least re- more similar to the codon or amino acid models than
alistic model considered here and which was most differ- HKY was. Overall, the differences between the analyses
ent from all other models (Table 4). Models FromCodon  appeared rather large.

for amino acids, HKY+C for nucleotides and F3x4MG We calculated the RELL bootstrap support values for
for codons, are expected to be the most similar at the the 51 candidate trees under each model of Table 1. In
three levels, and they did show the greatest similarity = Figure 2, the bootstrap proportions (P;) for T; were com-
between model types. For example, HKY+C was much pared across several analyses. We used P; as a measure
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of information content, with higher P; indicating greater
amount of information. The following observations can
be made. First, P; calculated from nucleotide or codon
models tend to be higher than under amino acid models,
indicating that the nucleotide (or codon) sequences con-
tain more phylogenetic information than the amino acid
sequences. For example, the nucleotide model HKY+C
and the codon model F3x4MG produced higher P; val-
ues than the amino acid model FromCodon in 88 and
91 genes, respectively (Fig. 2a and b). Second, in most
genes, P; was not very extreme (for example, not greater
than 95%) in most analyses. Thus the substantial differ-
ences in the ML trees estimated in the separate analyses,
as described above and by Rokas et al. (2003), reflect
more a lack of information to resolve the phylogeny
with confidence than genuine conflicts among gene trees.
As pointed out by Taylor and Piel (2004), Rokas et al.
(2003) overstated phylogenetic conflict among genes as
they considered bootstrap support values of >70% as in-
dicating significant clades. Third, the correlation in P
between analyses or models was not very strong. For ex-
ample, even though applied to the same data, the two
nucleotide models HKY and HKY+C showed consider-
able differences (Fig. 2c). The two codon models F3x4
and F3x4MG are nevertheless very similar (Fig. 2d).
Fourth, incorporation of the gamma model for rates at
sites did not seem to improve the accuracy of phylogeny
reconstruction for those data. For example, P; in most
proteins decreased when the gamma model is added to
the amino acid model FromCodon (Fig. 2e), even though
it improved the model’s fit enormously (see below). The
poorer performance of the gamma models, relative to
both the “C” models and the plain HKY and REV mod-
els, is somewhat surprising and may be particular to the
data analyzed here. For other data sets not partitioned by
codon positions, use of the gamma model may well im-
prove phylogenetic accuracy, as demonstrated in numer-
ous previous studies (e.g., Takezaki and Gojobori, 1999).

The Fit of Models to Data and Their Utility
in Phylogeny Reconstruction

We use three likelihood-based criteria to evaluate the
fit of models to data. The likelihood-ratio test (LRT)
can be used to compare two nested models. The AIC
(Akaike, 1974) and the BIC (Schwaz, 1978) criteria pe-
nalize parameter-rich models, applying the parsimony
principle of model building. AIC considers one extra pa-
rameter as being worthy of 1 log-likelihood unit. BIC
penalizes parameter-rich models more severely, and one
parameter is considered to be worthy of 14 In(n) log-
likelihood units, or 3 to 4 units, as the sequence length
ranges from n = 390 to 2994 sites among the 106 genes.
We used tree T; for the likelihood calculation, although
use of other reasonable trees led to the same conclusions.
This is because model assumptions considered here had
far greater impact on the log likelihood than the tree
topologies (e.g., Yang et al., 1995).

For both the empirical amino acid substitution model
WAG+F and the mechanistic model FromCodon, incor-

TABLE 5. Range of log-likelihood differences across 106 genes be-
tween nucleotide models.

Model 1 Model 2 Range of €,—¢; Difference in P
HKY HKY+G 70.2-586.8 1
HKY HKY+C 161.9-1316.2 10
HKY+G HKY+C 90.1-766.7 9
HKY+C HKY+C+G 5.1-86.1 3
HKY GTR 2.3-159.6 4
HKY+G GTR+G 2.6-93.6 4
HKY+C GTR+C 12.7-167.8 12
HKY+C+G GTR+C+G 11.6-160.3 12
GTR GTR+G 67.9-544.8 1
GTR GTR+C 172.6-1342.4 18
GTR+G GTR+C 99.7-812.1 17
GTR+C GTR+C+G 6.3-167.0 3

poration of the gamma model of rates among sites leads
to significant improvement in the model’s fit. The log-
likelihood difference Af ranges from 14.9 to 237.4 among
the proteins for WAG+F and from 12.8 to 266.3 for From-
Codon. Substitution rates are clearly variable among
amino acid sites. Such rate variation has been well doc-
umented and was expected. Also WAG+F was found
to fit the data much better than FromCodon in every
protein, with the log-likelihood difference A¢ ranging
from 24.3 to 308.6. The two models are not nested so
we cannot use the x? approximation to the LRT. How-
ever, because FromCodon involves more parameters
than WAG+F (Table 1), use of both AIC and BIC led to
rejection of FromCodon in every protein.

The ranges (across the 106 genes) of log likelihood dif-
ferences between the nucleotide models are listed in Ta-
ble 5. By all three criteria, substitution rates are highly
variable among sites and adding the “G” and “C” com-
ponentsimproved the fit of both HKY and GTR models in
every gene. Both AIC and BIC preferred the “C” models
to the “G” models, reflecting the huge differences in the
substitution patterns among the three codon positions
(Table 2). The “C+G” models are the best according to
all three criteria. The GTR models are preferred to the
corresponding HKY models in most genes, but they pro-
duced very similar results in the analyses, as mentioned
earlier.

The relative fit of the two codon models, F3x4 and
F3x4MG, depends on the gene, with F3x4MG being
better in 79 genes and F3x4 being better in 27 genes.
Estimates of parameters ¥ and » were almost identical
between the two models. The performance of the two
models in phylogeny reconstruction was also highly sim-
ilar, as noted earlier. Thus, despite our initial concern
that F3x4MG should be closer to the nucleotide model
HKY+C than is F3x4, the differences between the two
codon models appeared rather insignificant. The codon
and nucleotide models are not nested, so we cannot use
the x?2 distribution for the LRT. Both codon models F3x4
and F3x4MG fitted the data better than the nucleotide
model HKY+C in every gene. The log-likelihood differ-
ence (Af) ranged from 51.1 to 614.6 among genes for
F3x4 and from 40.3 to 594.8 for F3x4MG. As HKY+C in-
volve more parameters (Table 1), both AIC and BIC favor
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FIGURE3. Histogram of MLEs of the w ratio under the codon model
F3x4MG across 106 genes. Tree T; of Figure 1 was used in the ML
analysis.

the codon models. By incorporating the genetic code, the
codon models fitted the data much better than the nu-
cleotide model HKY+C, with three fewer parameters.
The single nonsynonymous/synonymous rate ratio w in
the codon models was able to account for the large differ-
ences among codon positions in the substitution rate and
in the transition/transversion rate ratio. The MLEs of »
calculated using tree T; of Figure 1 are shown in Figure 3.
The estimates ranged from 0.010 to 0.136, with more than
10-fold differences among genes. The very small o ratios
indicate that all the 106 genes are highly constrained.
Although it seemed easy to decide which of the mod-
els fitted the data better, it is much less straightforward to
decide which of them was better at reconstructing phy-
logenetic trees. The unconventional nature of the esti-
mation problem (Yang et al., 1995) makes it possible for
a simple and incorrect model to outperform the more
complex true model, as discovered in computer simu-
lation studies (Yang, 1997a). The goodness of fit of a
model was known not to translate directly into good per-
formance in tree reconstruction (Gaut and Lewis, 1995).
Overall, simple models tend to perform better when the
tree is easy to recover, whereas more complex and realis-
tic models are critical for recovering difficult trees, for ex-
ample, for avoiding long-branch attraction (Felsenstein,
1978; Huelsenbeck, 1997). In the yeast data, the gamma
model of rates for sites, in the amino acid models
WAG+F+G and FromCodon+G and in the nucleotide
model HKY+G and HKY+C+G, did not improve the
accuracy of tree reconstruction although it significantly
improved the model’s fit to data. We note that in the liter-
ature, simple-minded use of LRT and AIC for model se-

lection (Posada and Crandall, 1998) almost invariably led
to overly complex models such as GTR+I+G. We warn
against such a practice, as such parameter-rich models
may not produce more reliable phylogenies. Besides the
fit of the model to data, one should also consider the
biological interpretations of the models and the robust-
ness of the analysis to model assumptions. Similar points
were made by Minin et al. (2003), who chose models to
achieve best performance in estimating branch lengths.

Estimation of Relative Divergence Times

Here we studied a more conventional estimation prob-
lem in phylogenetics, i.e., molecular clock dating of
species divergences, to characterize the information loss
when DNA sequences are translated into proteins. We
used the molecular clock to estimate the relative node
ages, defined as the ratio of the age of the internal node
to the age of the root in the rooted tree T; of Figure 1.
If the evolutionary process is clock-like, both amino acid
substitutions and codon substitutions will accumulate at
constant rates, and the relative node ages will have the
same biological definitions under amino acid and codon
models. Tree T; has six non-root internal nodes, so we es-
timated six relative node ages. The analysis was achieved
by treating the root as a “fossil” calibration node, fixing
its age at 1. Results obtained from the concatenated data
are presented in Table 6. Model assumptions are known
to be much more important for estimation of divergence
dates than for tree topology reconstruction (e.g., Yoder
and Yang, 2000). Indeed, considerable differences exist
among node ages estimated under different models. In
particular, HKY is highly unrealistic as it fails to account
for differences among codon positions or for variable
rates among sites and produced serious underestimation
of large branch lengths around the root. As nodes 1 to 6
are all younger than the root (the calibration node), all
their ages are overestimated by the model (Yang, 1996).
The differences in estimates between models with and
without gamma rates for sites (Table 6) can be explained
in the same way. The GTR models were used in the anal-
ysis as well, and produced very similar results to those
obtained under the corresponding HKY models (results
not shown).

We compared the codon model F3x4MG and the
amino acid model FromCodon to assess the information
loss when the gene sequences are translated into pro-
teins. The MLEs of relative node ages were similar be-
tween the two models, although the recent divergences
were slightly younger under the amino acid model
(Table 6). We calculated the asymptotic variances of the
age estimates by inverting the Hessian matrix, the ma-
trix of the second derivatives of the log likelihood with
respect to the parameters (Efron and Hinkley, 1978), and
defined V. / V,, as the efficiency of amino acid-based anal-
ysis relative to the codon-based analysis. The proportion
of information loss is then measured by 1 — V./ V,a. This
was calculated tobe 0.30, 0.36, 0.48,0.42,0.49, and 0.66 for
nodes 6 to 1, respectively (see Fig. 1). Thus, translation of
the DNA sequences into proteins caused an information
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TABLE 6. MLEs of relative divergence times in tree T; of Figure 1 under different models using concatenated data.
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
Amino acid
WAGF 0.0386 £ 0.0011 0.0653 £0.0013 0.0897 £0.0015 0.1136 +0.0018 0.4117 £ 0.0042 0.5469 £ 0.0049
WAGF+G 0.0291 £ 0.0008 0.0495 £0.0011 0.0684 £ 0.0012 0.0847 £0.0015 0.3441+0.0041 0.4481 £0.0049
FromCodon 0.0314 £ 0.0009 0.0529 £0.0011 0.0735 £0.0012 0.0943 £0.0015 0.3768 £0.0036 0.5087 £0.0044
FromCodon+G 0.0162 £ 0.0005 0.0276 £ 0.0006 0.0390 £ 0.0008 0.0482 £0.0010 0.2520 £0.0036 0.3307 £0.0044
Nucleotide
HKY 0.1177 £0.0012 0.1880 £0.0015 0.2478 £0.0017 0.2889 £0.0019 0.6072 £0.0034 0.7227 £0.0039
HKY+C 0.0631 £0.0008 0.1026 £0.0011 0.1351£0.0014 0.1555£0.0015 0.4623 £0.0034 0.5777 £0.0040
HKY+G 0.0455 £ 0.0008 0.0745 £0.0011 0.0995 £ 0.0014 0.1114 +0.0016 0.3602 £ 0.0041 0.4281 £0.0048
HKY+C+G 0.0380 £ 0.0006 0.0648 £ 0.0009 0.0882 £0.0012 0.1011£0.0013 0.3721 £0.0037 0.4500 £ 0.0044
Codon
F3x4 0.0374 £ 0.0006 0.0613 £ 0.0009 0.0807 £0.0011 0.0925 £0.0012 0.3723 £0.0034 0.5011 4 0.0041
F3x4MG 0.0419 £0.0006 0.0687 £0.0009 0.0897 £0.0012 0.1021£0.0013 0.3720 £0.0034 0.4993 £0.0041
F3x4MG+M3 0.0231 £0.0005 0.0380 £ 0.0007 0.0501 £ 0.0009 0.0555+0.0010 0.2468 £ 0.0033 0.3201 £0.0041

loss of from 30% for the deep node to 66% for the most
recent node. Similar patterns were observed in separate
analyses of individual genes or proteins, although there
was considerable variation among genes, especially for
the recent nodes (results not shown).

Di1sCUSSION
Information Content in Amino Acid and Codon Sequences

We note that several factors may complicate our ef-
fort to quantify the amount of phylogenetic informa-
tion in amino acid, nucleotide and codon sequences.
First, the yeast genes are real data, for which none of
the models considered in this article can be expected to
be true. Thus differences among the analyses or mod-
els may reflect not only different precisions but also
systematic biases due to model inadequacies. Ideally
we would like to use the “true” model at each level
of the data, so that the phylogenetic precision is accu-
rately measured and the differences in the results reflect
the information content at each level. In that case, the
nucleotide- and codon-based analyses should produce
identical results since the data are the same. Usually
computer simulation can be used to avoid the prob-
lem of not knowing the truth, as in a simulation, the
model is under the control of the investigator and the
same model can be used both to simulate and to ana-
lyze the data. However, it is difficult or impossible to
construct amino acid or nucleotide models to accurately
describe codon evolution in protein-coding genes, so
that this “ideal” situation is not achievable even in sim-
ulations. Nevertheless, the similarity of results among
models used at each level of the data suggests that this
problem may not be too serious. Admittedly, HKY and
GTR are very unrealistic for coding sequences. How-
ever, the “C” and “C+G” models appear to capture, even
though in ad hoc ways, the major features of the evolu-
tionary process in coding sequences. The similarities be-
tween amino acid models WAG+F and FromCodon, and
between codon models F3x4 and F3x4MG, were even
greater, implying that our conclusions about the utility of
codon models, and about the phylogenetic information
content in amino acid and nucleotide sequences, etc., are

unlikely to be affected by minor changes to the assumed
models.

A second complication is the unusual nature of the
phylogeny if viewed as a parameter to be estimated,
and the resulting difficulty of defining the “variance”
or some other measure of the sampling error for the es-
timated tree. When the amino acid and codon models
infer different ML trees, it is not straightforward to mea-
sure their difference. This difficulty is conceptual and
appears to arise in every comparison of tree reconstruc-
tion methods (Yang et al., 1995). In this study, we used
the RELL bootstrap proportion for tree T; of Figure 1
as a measure of phylogenetic information, so that both
failure to infer T as the ML tree and a lower support
for T; will be considered poor performance. Our results
appeared to be consistent across the different analyses
and also with previous simulation studies. For exam-
ple, several analyses we conducted serve to demonstrate
the loss of information when gene sequences were trans-
lated into proteins: (a) amino acid models recovered tree
Ty in fewer genes or proteins than codon models or nu-
cleotide models HKY+C and GTR+C, mainly due to
poor performance of amino acid models in recovering re-
cent nodes; (b) the RELL bootstrap support values for Ty
were lower in amino acid-based analyses than in codon-
or nucleotide-based analyses; and (c) estimates of diver-
gence times had larger sampling errors under amino acid
models, especially for recent nodes.

The approach we took in this study is the same as
those of Cummings et al. (1995), Russo et al. (1996),
and Zardoya and Meyer (1996), who evaluated the per-
formance of mitochondrial protein-coding genes and of
different tree reconstruction methods to recover mam-
malian or vertebrate phylogenies. Even though such em-
pirical studies suffer from limitations including those
discussed above, we suggest that they are highly valu-
able for furthering our understanding of advantages and
limitations of various models in solving real-world phy-
logenetic problems.

Utility of Codon Models in Phylogeny Reconstruction

Our analysis of the yeast genes in this study suggests
that codon models may be useful for phylogenetic tree
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reconstruction. However, codon models involve much
heavier computation than nucleotide or amino acid-
based models, because of the expanded character state
space: the number of characters or the number of states
in the Markov process under the nucleotide, amino acid,
and codon models is 4, 20, and 61, respectively. The com-
putational burden means that codon models will not be
feasible for heuristic tree search in large data sets. Clearly,
the utility of codon models will be greatly enhanced by
implementing efficient tree search algorithms under such
models. However, we suggest that they may be used
to evaluate candidate phylogenies collected using other
faster methods, as in this study. Likelihood calculation
under codon models on fixed trees is currently feasible
for data sets of a few hundred sequences (Yang, 2000).
Second, for distantly related species, the base composi-
tions at the third codon positions may differ among se-
quences, indicating that the substitution process is not
homogeneous, and thus an assumption of the codon
models is violated. Previous studies on nucleotide-based
analysis suggest that nonhomogeneous base composi-
tions may mislead tree reconstruction methods (e.g.,
Galtier and Gouy, 1998). Similar problems may be ex-
pected under codon models. In such cases, analysis of
amino acid sequences may be advantageous (Kishino
etal., 1990). Some of the 106 yeast genes appear to exhibit
nonhomogeneous base compositions at the third codon
positions. However, results of this study suggest that the
problem is not serious enough to mislead ML analysis
under the nucleotide and codon models as long as the
heterogeneity among the three codon positions is accom-
modated. Deep nodes 4 and 5 (Fig. 1a) might be expected
tobe affected by nonhomogenous base compositions, but
they were recovered in most genes by the codon or nu-
cleotide “C” models (Table 3). The poorer performance
in recovering recent nodes 2 and 3 (Table 3) appeared
to be due to the short internal branch lengths or lack
of phylogenetic resolution, as base compositions among
the recent species are quite homogeneous. Instead, loss
of information in the amino acid sequences appears to be
a more serious concern for those data. It is worthwhile to
analyze more data sets, either real or simulated, to exam-
ine the robustness of phylogenetic analysis under codon
models to such violations of assumptions.
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