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BAYESIAN INFERENCE IN MOLECULAR PHYLOGENETICS

Ziheng Yang

The Bayesian method of statistical inference combines the prior for para-
meters with the data to generate the posterior distribution of parameters,
upon which all inferences about the parameters are based. The method has
become very popular due to recent advances in computational algorithms.
In molecular evolution and phylogenetics, Bayesian inference has been
applied to address fundamental biological problems under sophisticated
models of sequence evolution. This chapter introduces Bayesian statistics
through comparison with the likelihood method. I will discuss Markov chain
Monte Carlo algorithms, the major modern computational methods for
Bayesian inference, as well as two applications of Bayesian inference in
molecular phylogenetics: estimation of species phylogenies and estimation
of species divergence times.

3.1 The likelihood function and maximum likelihood estimates

The probability of observing the data D, when viewed as a function of the
unknown parameters 6 with the data given, is called the likelihood function:
L(; D) = f(D | 0). According to the likelihood principle, the likelihood function
contains all information in the data about the parameters. The best point estim-
ate of 6 is given by the 6 that maximizes the likelihood L or the log likelihood
¢(9; D) = log{L(f; D)}. Furthermore, the likelihood curve provides information
about the uncertainty in the point estimate. In this chapter, I use estimation of
the distance between two sequences under the Jukes and Cantor model [23] as an
example to contrast the likelihood and Bayesian methodologies (see Chapter 2,
this volume for more about likelihood methods in phylogenetics).

Suppose = of the n sites are different between the two sequences, with the
proportion of different sites to be z /n. The distance is the expected number of
nucleotide substitutions per site, § = A, where )\ is the substitution rate and ¢ is
the time that separates the two sequences—since rate and time are confounded,
we estimate one single parameter f using the data z. The probability that a site
is different between two sequences separated by distance 6 is

3 i
p= (1~ e, (3.1)
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Thus the likelihood, or the probability of observing z differences out of n sites,
is given by the binomial probability

L(0;z) = f(z | 0) = Cp"(1 —p)" %, (3.2)

where C' = n!/[z!(n — )!] is constant (independent of parameter §) and can
be ignored. By setting dL/df = 0 or df/df = 0, one can determine that the
likelihood is maximized at

3 3 4 =z

Thus 6 is the maximum likelihood estimate (MLE) of 4. This is the familiar
Jukes—Cantor distance formula [23]. In most problems in molecular phylogen-
etics to which maximum likelihood is applied, the solution is not analytical and
numerical algorithms are needed to find the MLEs. :

The MLEs are invariant to transformations or re-parametrizations. The MLE
of a function of parameters is the same function of the MLEs of the parameters:
h(8) = h(f). For example, we can use the expected proportion of different sites
p as the parameter; this is still a measure of distance although it is non-linear
with time. Its MLE is § = z/n from the binomial likelihood (equation (3.2)).
We can then view § as a function of p through equation (3.1), and obtain its
MLE 6, as given in equation (3.3). Whether we use p or § as the parameter, the
same inference is made, and the same log likelihood is achieved: £(p) = £(f) =
zlog(z/n) + (n — z)log((n — z)/n).

As an example, suppose z = 10 differences are observed out of n = 100 sites.
The log-likelihood curves are shown in Fig. 3.1(a) and (b) for parameters # and p,

respectively. The log likelihood is maximized at § = 0.107326 and p = 2/n = 0.1,
with £(9) = £(p) = —32.508.

Two approaches can be used to calculate a confidence interval for the MLE.
The first relies on the theory that € is asymptotically normally distributed around
the true 6 when the sample size n — oc. This is equivalent to using a quadratic
function to approximate the log likelihood around the MLE. The variance of
the asymptotic normal distribution can be calculated using the curvature of the
log-likelihood surface around the MLE:

an@) — _ (€] _ 9501~ p) ;S

Thus an approximate 95% confidence interval for € can be constructed as

0+1.96 var(é). For our example of x = 10 differences in n = 100 sites, we have

var(f) = 0.001198, and the 95% confidence interval is 0.10733 + 1.96 x 0.06784
or (0.03948,0.17517). Similarly, var(p) = p(1 — p)/n = 0.0009, so that the 95%
confidence interval for p is (0.04120,0.15880). Note that those two intervals do
not match each other.
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Fic. 3.1. Log-likelihood curves for estimation of sequence d_ista.nce 6 or p under
the JC69 model [23]. Log-likelihood curves as a function of the sequence
distance 8 (a) or p (b). The data are two sequences, each of length n = l‘OD
with 2 = 10 different sites. The likelihood interval is constructed by lowering
the log likelihood ¢ from the optimum value by 1.92.

A second approach is based on the result that the likel;hf)od ratio test stflt.—
istic, 2[¢(9) — £(0)], where 6 is the true parameter and 6 1s‘the. MLE{) %1&:, a
x> distribution in large sa.mples”. Thus, we can lowg.r Fhe .Iog hk-EthO? 93, sga}-,
%\%,5% = 3.84/2 = 1.92 from £(9), to construct a 05% likelihood interval (6, 0¢)

(Fig. 3.1(a)). Thus at £ = £(f) — 1.92 = —34.43, the yikelihood in.terval is_fom};l
to be (0.05327, 0.19119) for 6. Note that this interval is asymmetrical anfl is S.hl -
ted to the right compared with the interval based on the pormal a‘pproxunatlon,
due to the steeper drop of log likelihood and thus more mforma‘tlon on the le.fl;
side of # than on the right side. The corresponding likelihopd m?erval for p is
(0.05142, 0.16876). This approach in general gives more _reha.ble intervals than
the normal approximation to MLEs. The normal aPPFOXIm?.thFl worlfs well fo.r
some parameterizations but not for others; the use of the likelihood interval is
equivalent to using the best parametrization. '

The likelihood method may run into problems when the Fuodel involves t..oo
many parameters. If the number of parameters increases without bound with



the increase of the sample size, the MLEs may not even be consistent. Deal-
ing with the so-called nuisance parameters is also a difficult area for likelihood.
For example, if we are interested in the sequence distance under the substitution
model of Kimura [24], we might consider distance # as the parameter of interest,
while the transition/transversion rate ratio « is a nuisance parameter. Similarly,
if our interest is in the phylogeny for a group of species, branch lengths as well as
all parameters in the substitution model are nuisance parameters. Perhaps the
biggest problem for the application of likelihood to molecular phylogeny recon-
struction is the unconventional nature of the tree topology parameter, and the
resulting difficulties in attaching a confidence interval for the maximum likelihood
tree [51] (see Chapter 4, this volume).

3.2 The Bayesian paradigm

The central idea of Bayesian inference is that parameters 6 have distributions.
Before the data are observed, # have a prior distribution f(0). This is combined
with the likelihood or the probability of the data given the parameters, f(D | 6),
to give the posterior distribution, f(# | D), through the Bayes theorem

. ) f(D|e &) f(D

f0| )< L{QID10) _ f0)f(D]0)

i) T TAOD]6)d )

The marginal probability of the data, f(D), is a normalizing constant, to make
f(6 | D) integrate to one. Equation (3.5) thus says that the posterior f(6 | D)
is proportional to the prior f(#) times the likelihood f(D | #). Or equivalently,
the posterior information is the sum of the prior information and the sample
information.

The posterior distribution is the basis for all Bayesian inference concerning 0.
For example, the mean, median, or mode of the distribution can be used as the
point estimate. For interval estimation, one can use the interval encompassing
the highest 95% of the density mass as the 95% highest posterior density (HPD)
interval. This works even if there are multiple peaks in the distribution: the
interval may include disconnected regions. For a single-moded posterior density,
the 2.5% and 97.5% quantiles can be used to construct the 95% equal-tail cred-
ibility interval (CI). In general, the posterior expectation of any function of the
parameters, h(f), is constructed as E[h(0) | D)] = [h(6)f(6 | D)d6.

Consider estimation of sequence distance § under the JC69 model [23] using
the data of z = 10 differences out of n = 100 sites. Suppose we use an exponential
prior f() = p~te(=%/1) with mean pu = 0.1. The posterior distribution of @ is

o JOI@10)  f®)f]6)
{}I;T}: —_— = — e ity
T ==y = Trof= 6@

where the likelihood f(z | 6) is given in equation (3.2). It seems awkward,
although possible, to calculate the integral for f(z) in equation (3.6) analytically.
Instead I use Mathematica to evaluate it numerically. Figure 3.2 shows the result-
ing posterior density, plotted together with the prior and scaled likelihood. In this
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FiG. 3.2. Prior and posterior densities for sequence distance ¢ under the
JC69 model. The likelihood is also shown, rescaled to match up with the
posterior density. The data are two sequences, each of length n = 100 with
2 = 10 different sites. The 95% highest posterior density interval is (0.04758,
0.17260), indicated on the graph.

case the posterior is dominated by the likelihood. The posterior mean is fnu_ml
to be 0.10697, with standard deviation 0.03290. The 95% equal-tail credibility
interval is (0.05284, 0.18077), while the 95% HPD interval is (0.04758, 0,1.7260},

The Bayesian paradigm also provides a natural way of dealing with nuisance
parameters. Let # = {\,n}, with A to be the parameters of interest an‘d 1
the nuisance parameters. The joint conditional distribution of A and 7 given

the data is
f(An)f(D|An)

f(A\,n|D)==— D)~ JTFmfD] N

from which the (marginal) posterior density of A can be obtained as

f(AN| D)= /f()\,-ir,r | D)dn. (3.8)

3.3 Prior

Specification of the prior distribution for parameters, and indeed tlhlt“ need ‘1‘01‘
such specification is where all controversies surrounding Bayesian interen'c&“. lies.
If the physical process can be used to model uncertainties in the quant..lt.u-rs of
interest. it is standard in the likelihood framework to treat such quantities as
random variables, and derive their conditional probability distribution given the
data. An example relevant to this chapter is the use of the Yule ‘brapch%ng pro-
cess [5] and the birth-death process [34] to specify the probability distributions
of phylogenies. The parameters in the models are the birth and death rates,
estimated from the marginal likelihood, which averages over the tree {.jr:|'mlo—
gies and branch lengths, while the phylogeny is estimated from the conditional




probability distribution of phylogenies given the data. The controversy arises
when no physical model is available to specify the distribution of parameters,
and when subjective beliefs or diffuse distributions are used as “vague” priors.
Modern terminology does not distinguish whether or not the prior is based on
a model of the physical process; in either case the quantities of interest are
considered parameters, the approach considered Bayesian, and the conditional
probability is known as the posterior probability.

Approaches for specifying the prior include (1) use of a physical model, as
mentioned above, (2) use of past observations of the parameters in similar situ-
ations, and (3) subjective beliefs of the researcher. To avoid undue influence of
the prior on the posterior, uniform distributions are often used as vague priors.
For a discrete parameter that can take m possible values, this means assigning
probability 1/m to each element. For a continuous parameter, this means a uni-
form distribution over the range of the parameters. However, saying that distance
0 is equally likely to be any value between 0 and 10 is not the same as saying
that nothing is known about 6, so one should not consider any prior as entirely
non-informative. Another criticism is that unlike the MLEs, the prior is not
invariant to reparametrizations. For example, a uniform prior for parameter p is
very different from a uniform prior for 6 (see below).

Another class of priors is the conjugate priors. Here the prior and the posterior
have the same distributional form, and the role of the data or likelihood is
to update the parameters in that distribution. Well-known examples include
(1) the binomial (n,p) distribution of data with a beta prior for the probability
parameter p; (2) poisson()) distribution of data with a gamma prior for the rate
parameter A; and (3) normal distribution of data N(u,c?) with a normal prior
for the mean y. In our example of estimating sequence distance under the JC69
model, if we use the probability of different sites p as the distance, we can assign
a beta prior beta(a, 3). When the data have z differences out of n sites, the
posterior distribution of p is beta(a + z,8 + n — z). This result also illustrates
the information contained in the beta prior: beta(a, 8) is equivalent to observing
« differences out of o + 3 sites. Conjugate priors are possible only for speciaci
combinations of the prior and likelihood. They are theoretically convenient as
the integrals are tractable analytically, but they may not be realistic models
for the problem at hand. Conjugate priors have not found a use in molecular
phylogenetics (except for the trivial one above), as the problem is typically too
complex. )

When the prior distribution involves unknown parameters, one can assign
priors for them, called hyper-priors. Unknown parameters in the hyper-prior
can have their own priors. This is known as the hierarchical or full Bayesian
approach. Typically one does not go beyond two or three levels, as the effect will
become unimportant. For example, the mean p in the exponential prior in our
example of distance calculation under JC69 in equation (3.6) can be assigned a
hyper-prior. An alternative is to estimate the hyper-parameters from the mar-
gin.al likelihood, and use them in pc?sterior probability calculation for parameters
of interest. This is known as the empirical Bayesian approach. For example, u
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can be estimated by maximizing f(z | u) = [f(0 | p)f(z | 6)df, and the
estimate can be used to calculate f(6 | z) in equation (3.6). Empirical Bayesian
approach has been used widely in molecular phylogenetics, for example, to estim-
ate evolutionary rates at sites [55], to reconstruct ancestral DNA or protein
sequences on a phylogeny [52], to identify amino acid residues under positive Dar-
winian selection [31], to infer secondary structure categories of a protein sequence
[13], and to construct sequence alignments under models of insertions and
deletions (46, 47].

An important question in real data analysis is whether the posterior is sens-
itive to the prior. It is always prudent to assess the influence of the prior. If the
posterior is dominated by the data, the choice of the prior is inconsequential.
When this is not the case, the effect of the prior has to be assessed carefully and
reported. Due to advances in computational algorithms (see below), the Bayesian
methodology is now very powerful and allows the researcher to fit sophisticated
parameter-rich models. As a result, the researcher might be tempted to add
parameters that are barely identifiable [33], and the posterior may be unduly
influenced by some aspects of the prior even without the knowledge of the
researcher. In our example of distance estimation under the JC69 model, identi-
fiability problems will arise if we attempt to estimate both the substitution rate
A and time ¢ instead of one parameter 6. It is thus important for the researcher to
understand which aspects of the data provide information about the parameters,
what parameters are knowable and what are not, to avoid overloading the model

with parameters.

3.4 Markov chain Monte Carlo

Until recently, computational difficulties had prevented the use of the Bayesian
method as a general inference methodology. For most problems, the prior and the
likelihood are easy to calculate, but the marginal probability of the data f(D),
that is, the normalizing constant, is hard to calculate. Except for trivial problems
such as cases involving conjugate priors, analytical results are unavailable. We
have noted above the difficulty of calculating the marginal likelihood f(D) (in
equation (3.6)) in our extremely simple problem of distance estimation. More
complex Bayesian models can involve hundreds or thousands of parameters and
high-dimensional integrals have to be evaluated (see equations (3.7) and (3.8)).
For example, to calculate posterior probabilities for phylogenetic trees, one has to
evaluate the marginal probability of data f(D), which is a sum over all possible
tree topologies and integration over all branch lengths in those trees and over
all parameters in the substitution model. The breakthrough is the development
of Markov chain Monte Carlo (MCMC) algorithms, which provide a powerful
method for achieving Bayesian computation.

3.4.1  Metropolis—-Hastings algorithm
Here we describe the algorithm of Metropolis et al. [30]. The goal is to generate
a Markov chain, whose states are the parameters @, and whose steady-state



(stationary) distribution is () = f(¢ | D), the posterior distribution of 6.
Suppose the current state of the Markov chain is . The algorithm proposes
a new state 8° through a proposal density or jumping kernel g(6* | @), which
is symmetrical: q(6* | 8) = (@ | 6*). For example, one can use a uniform
distribution around #, so that 8* = U(6 — w/2,0 +w/2), with w controlling the

size of steps taken. This is a sliding window with window size w. The candidate.

state 6* is accepted with probability

@ = min (1, ?;(g))) ‘ (3.9)

If the new state 6* is accepted, the chain moves to #*. If it is rejected, the
chain stays at the current state 6. Both acceptance and rejection are counted
as an iteration, and the procedure is repeated for many iterations. The values
of # over iterations generated this way form a Markov chain, as they satisfy
the Markovian property that “given the present, the future is independent of
the past.” This Markov chain has m(f) as the stationary distribution as long as
the proposal density g(. | .) specifies an irreducible and aperiodic chain. In other
words, ¢(. | .) should allow the chain to reach any state from any other state,
and that the chain should not have a period.

Intuitively, one may think of the algorithm as describing a wanderer climbing
a hill, the height at location @ being the target density 7(f). A random step in
a random direction is chosen from the current location. If the step is uphill,
that is, if 7(6*) > 7(0), it is always taken. However, if the step is downhill, it is
not rejected straightaway but instead accepted with probability #(6*)/x(0) < 1.
If the wanderer is allowed to wander around for a very long time, he will explore
the hill extensively and spend time in each location € in proportion to the height
of that location w(@). Thus a sample of his visits can be used to estimate the
target distribution 7 (@).

Hastings [18] extended the Metropolis algorithm to allow the use of asym-
metrical proposal densities, that is, if (6" | 8) # ¢(6 | 8*). This involves a simple
correction in calculation of the acceptance probability

o = min w
| (1’ (6)a(6* | 6) ) ' (3.10)

We might suppose that the wanderer has a tendency to move north, and takes
a northward step three times as likely as a southward step. Then by accepting
northward moves only % times as often as southward moves, the Markov chain
will still recover the correct target distribution () even if the proposal density
is biased. The correction term, q(# | 8*)/q(0* | 8), is called the proposal ratio or
the Hastings ratio.

When the MCMC algorithm is used to approximate the posterior distribution
of parameters 8, we have w(0) = f(0 | D) = f(0)f(D | 8)/f(D), so that

(") f(6*)F(D |67
0 ~ JO)J Do)
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Importantly note that the normalizing constant f(D) in equation (3.5)
cancels. The acceptance probability is thus

e (1 67 f(D167) a0 6*))
e A T N T ) I A )

= min(1, prior ratio x likelihood ratio x proposal ratio). ~ (3.11)

In typical applications of MCMC algorithms to molecular phylogenetics, the prior
ratio £(6%)/f(0) is easy to calculate. The likelihood ratio f(D | 0*)/f(D | 6)
is often easy to calculate as well even though computationally expensive. The
proposal ratio q(@ | 6*)/q(0* | 6) affects greatly the efficiency of the MCMC
algorithm. So much of practical effort is spent on developing good proposal
algorithms.

Here we use the example of distance estimation under the JC69 model to
explain MCMC algorithms. Those who have not written any Bayesian MCRI'IC
program are invited to implement the algorithm below, using any programming
language such as C/C++, Java, Basic, or Mathematica. The data are z = 10
differences out of n = 100 sites. We use an exponential prior

501 )= om0

with g = 0.1. The proposal algorithm uses a sliding window of size w.

Initialize: n = 100, z = 10, w = 0.01.

Initial state 8 = 0.5.

3. Propose a new state as 0* ~ U(f—w/2,0+w/2). That is, generate a U(0,1)
random number 7, and set 8* = 8 —w/2 +wr. If 6* <0, set 6* = —6*.

4. Calculate the acceptance probability, using equations (3.1) and (3.2) to

calculate the likelihood f(z | 8).

GO f(IW*)) _
fO1p) — flx]6)
5. Accept or reject the proposal 8*. Draw r ~ U(0,1). If r < o set §=:8"

Otherwise set 0 = 6.
6. Go to step 3.

| S

a = min (1,

Figures 3.3(a) and (b) show the first 500 iterations of five independent
chains, starting from different initial values and using different window sizes.
Figure 3.3(c) shows the posterior probability density estimated from a lgng
chain with 10 million iterations. This is indistinguishable from the distribution
calculated using numerical integration (Fig. 3.2).

A number of variations to the general Metropolis-Hastings algorithm exist.
Below we mention three commonly used ones: the single-component Metropolis—
Hastings algorithm, the Gibbs sampler, and Metropolis-coupled MCMC or MC3.



(2 BAYESIAN INFERENCE

(a) 0.3 4

0.2+

0.1+

| | L | | 1
0 i['IIIIIIIIIIJIIIIIllllllliTIIlII[IillllEII[I:IIIII

0 50 100 150 200 250 300 350 400 450 500

. !'; AP, ALY LT AT

0 ||I|=fT||:I||['II||II|[II1II|!|=Il|l=||||:ll|llflllll
0 50 100 150 200 250 300 350 400 450 500
(c) 15+
101
ol
Z
=
5
0

T T I T I
0 005 01 015 02 025 013
[t

FIG. 3.3. MCMC runs for estimating sequence distance # under the JC69
substifution model. The data consists of # = 10 differences between
two sequences of n = 100 sites. (a) Two chains with the window size either
too small (w = 0.01) or too large (w = 1). Both chains started at 6 = 0.1.
The chain with w = 0.01 has an acceptance rate of 97%. so that almost every
proposal is accepted. However, this chain takes tiny baby steps and mixes
very poorly. The other chain, with w = 1, has an acceptance rate of 20%.
so that 80% of proposals are rejected. The chain often stays at the same
state for many iterations without a move. This window size is slightly too
large. Further experiment shows that the window size w = 0.2 leads to an
acceptance rate of 48%, and is near optimum (see text). (b) Three chains
started from 6 = 0.01,0.5, and 1. The window size is 0.1, with an accept-
ance rate of 70%. It appears-that after about 120 iterations, the three chains
become indistinguishable and have reached stationarity, so that a burn-in
of 200 iterations should be sufficient for those chains. (c) Posterior density
estimated from a long chain (with 10,000,000 iterations) with window size
w = 0.1, estimated by kernel density smoothing [40]
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3.4.2  Single-component Metropolis—Hastings algorithm

Simple single-parameter problems are straightforward to deal with using the like-
lihood methodology. The advantage of Bayesian inference mostly lies in the ease
with which it can deal with sophisticated multi-parameter models. In particular,
Bayesian “marginalization” of nuisance parameters (equation (3.8)) provides an
attractive way of accommodating variation in the data that we are not really
interested in. In MCMC algorithms for such multi-parameter models, it is often
unfeasible or computationally too complicated to update all parameters in f sim-
ultaneously. Instead, it is more convenient to divide € into components or blocks,
of possibly different dimensions, and then update those components one by one.
Different proposals are often used to update different components. This is known
as “blocking.” Many models have a structure of conditional independence, and
blocking often leads to computational efficiency.

A variety of strategies are possible concerning the order of updating the com-
ponents. One can use a fixed order, or a random permutation of the components.
There is no need to update every component in every iteration. One can also
select components for updating with fixed probabilities. However, the probabil-
ities should be fixed and not dependent on the current state of the Markov chain,
as otherwise the stationary distribution may no longer be the target distribution
7(-). It is advisable to update highly correlated components more frequently. It
is also advantageous to group into one block components that are highly correl-
ated in the posterior density, and update them simultaneously using a proposal
density that accounts for the correlation (see below).

3.4.3 Gibbs sampler

The Gibbs sampler [11] is a special case of the single-component Metropolis—
Hastings algorithm. The proposal distribution for updating the ith component is
the conditional distribution of the ith component given all the other components.
This proposal leads to an acceptance probability of 1; that is, all proposals are
accepted. The Gibbs sampler has been widely used, especially in linear models
involving normal prior and posterior densities. However, it has not been used in
molecular phylogenetics as it is in general impossible to obtain the conditional
distributions analytically.

3.4.4  Metropolis-coupled MCMC

If the target distribution has multiple peaks, separated by low valleys, the
Markov chain may have difficulties in moving from one peak to another. As a
result, the chain may get stuck on one peak and the resulting samples will not
approximate the posterior density correctly. This is a serious practical concern
for phylogeny reconstruction, as multiple local peaks are known to exist in the
tree space during heuristic tree search under the maximum parsimony (MP),
maximum likelihood (ML), and minimum evolution (ME) criteria, and the same
can be expected for stochastic tree search using MCMC. Some strategies have
been proposed to improve mixing of Markov chains in presence of multiple local



peaks in the posterior density. One such algorithm is the Metropolis-coupled
MCMC or MCMCMC (MC?) algorithm suggested by Geyer [12].

In this algorithm, m chains are run in parallel, with different stationary
distributions 7;(-), j = 1,2,...,m, where m () = (-) is the target density, while
7i(-), J = 2,3,...,m are chosen to improve mixing. For example, one can use
incremental heating of the form '

m;(0) = m()/OHAG-1I )5 o, (3.12)

so that the first chain is the cold chain with the correct target density, while
chains 2,3,...,m are heated chains. Note that raising the density 7(-) to the
power 1/T with 7' > 1 has the effect of flattening out the distribution, similar
to heating a metal. In such a distribution, it is easier to traverse between peaks
across the valleys than in the original distribution. After each iteration, a swap
of states between two randomly chosen chains is proposed through a Metropolis-
Hastings step. Let 1) be the current state in chain Jyi=L12,...,m. A swap
between the states of chains i and j is accepted with probability

Wi(n‘)i)’\j(t()j) '

At the end of the run, output from only the cold chain is used, while those from
the hot chains are discarded. Heuristically, the hot chains will visit the local
peaks rather easily, and swapping states between chains will let the cold chain
occasionally jump valleys, leading to better mixing. However, if mi(0)/7;(0) is
very unstable, proposed swaps will seldom be accepted; this is the reason for
using several chains which differ only incrementally. An obvious disadvantage
of the algorithm is that m chains are run but only one chain is used for infer-
ence. MC? is ideally suited to implementation on parallel machines or network
workstations, since each chain will in general require about the same amount of
computation per iteration, and interactions between chains are minimal.

a = min (1, (3.13)

3.5 Simple moves and their proposal ratios

The proposal ratio is separate from the likelihood or the prior and is solely
dependent on the proposal algorithm. Thus simple proposals can be used in
a variety of Bayesian inference problems. As mentioned earlier, the proposal
density has only to specify an aperiodic recurrent Markov chain to guarantee
convergence of the MCMC algorithm. One can easily construct such chains and it
is also typically easy to verify that thie proposal density satisfies those conditions.
For a discrete parameter that takes a set of values, calculation of the proposal
ratio often amounts to counting the number of candidate elements in the source
and target states, which is easy. Calculation for continuous parameters requires
more care. In this section, I list a feyy commonly used proposals and their proposal
ratios. I may use x instead of @ to represent the state of the chain.

Two results are particularly useful in deriving proposal ratios. So I mention
them in the form of two theorems, before describing the proposals. The first result
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concerns the distribution of functions of random variables (see, for example, [15]:
pp. 107-112).

Theorem 3.1 (a) If z is a random variable with density f(x), and y = y(z)
and x = x(y) is a one-to-one mapping between x and y, then the random variable
y has the density

0 | (3.14)

P = f@w) x|

dy

(b) The multivariate version is very similar. Suppose random wvariables x =
{z1,29,...,2m} and y = {y1,%2,...,Ym} constitute a one-to-one mapping
through y; = yi(x), and z; = x;(y), i = 1,2,...,m, and that x has probability
density f(x). Then y has densily

fly) = f(x(y)) x [J(y)

where |J(y)| is the absolute value of the Jacobian determinant of the transform

; (3.15)

dr, Oz 8_:::}_
. Oy Oym
dre  Oxo o
J(y) = ?)_X = Wl’l Y2 OYm |- (3.16)
dy . . ;
'C)J:‘m dz.m 8%Lm
o 70’; o W

As an example, suppose that the probability of different sites p has a uniform
prior distribution f(p) = 4/3, 0 < p < 3/4. What is the distribution of the
sequence distance §7 From equation (3.1), we have dp/df = e(=4/3)% Thus the
distribution of 0 is f(8) = 4/3 x e(=4/3)% 0 < f < co. This is the exponential
distribution with mean 3/4.

The second useful result gives the proposal ratio when the proposal is made
though transformed variables.

Theorem 3.2 Suppose the Markov chain is run using the original vari-

ables x1,29,...,Tm, but the proposal is through transformed wvariables

Y1s Yooy Ym. Then

gx|x7) _aly1y") % 1)l (3.17)
ox %) aly*ly) I .

The proposal ratio in the original variables is the proposal ratio in the trans-

formed variables times the ratio of the Jacobian.

The statement can be proved by noting that
aly” 1y) =aly" | x) = ¢(x" [ x) x J(y"). (3.18)

The first equation is because conditioning on y is equivalent to conditioning on
x due to the one-to-one mapping. The second equation applies Theorem 3.1(b)
to derive the density of y* as functions of x*.



3.5.1  Sliding window using uniform proposal
This proposal chooses the new state z* as a random variable from a uniform
distribution around the current state z:

:c*wU(rz:—%,:r—F%), (3.19)
The window size w is a fixed constant, chosen to achieve a reasonable acceptance
rate. The proposal ratio is 1 since ¢(z* | z) = ¢(z | 2*). If z is constrained in
the interval (a,b) and z* is outside the range, the excess is reflected back into
the interval; that is, if 2* < a, z* is reset to a+ (a—z*) =2a—z*, and if z* > b,
z* is reset to b — (b —z*) = 2b — z*. The proposal ratio is 1 even with reflection,
because if z can reach z* through reflection, z* can reach z through reflection
as well. The window size w should be smaller than the range b — a. Note that it
Is incorrect to simply set the unfeasible proposed values to a or b.

3.5.2  Sliding window using normally distributed proposal

This algorithm uses a normal proposal density centred around the current state;
that is, * has a normal distribution with mean z and variance o?, with o
controlling the step size

z* ~ N(z,0%). (3.20)

As q(z* | z) = (1/(0V2r)) exp{—(z* — 2)?/(20?)} = q(z | z*), the proposal
ratio is 1. This proposal works also if z is constrained in the interval (a,b). If z*
is outside the range, the excess is reflected back into the interval, and the proposal
ratio remains one. Both with and without reflection, the number of routes from z
to z* is the same as from z* to 2, and the densities are the same in the opposite
directions, even if not between the routes. Note that sliding window algorithms
using either uniform or normal jumping kernels are Metropolis algorithms with
symmetrical proposals.

How do we choose 6?7 Suppose the target density is the standard normal
N(0,1), and the proposal is 2* ~ N(z, o?). A large o will cause most proposals
to be in unreasonable regions of the parameter space and be rejected. The chain
then stays at the same state for a long time, causing high correlation. A ¢ too
small means that the proposed states are very close to the current state, and
most proposals will be accepted. However, the chain baby-walks in the same
region of the parameter space for a long time, leading again to high correlation.
Proposals that minimize the auto correlations are thus optimal.

More formally, consider the sample mean § = (1/N)Sz®, where z(*)
is the state in iteration ¢, with ¢t = 1,2,...,N. With independent sampling,
var(f) = 1/N. The large-sample variance of a dependent sample is

var(0) = (142001 + 2 + 3 +---)), (3.21)

where p is the autocorrelation ef the Markov chain at lag k. In effect, a
dependent sample of size NV is equivalent to an independent sample of size

N/[1 4+ 2(p1 + p2 + p3 + -++)]. By minimizing var(é) in equation (3.21), Gel-
man et al. [9] found the optimum o to be about 2.4. Thus if the target density
is a general normal density N(u,72), the optimum proposal density should be
N(z,7%0?) with ¢ = 2.4. As 7 is unknown, one can monitor the acceptance rate
or jumping probability, which is slightly below 0.5 at the optimum o.

3.5.3  Sliding window using normal proposal in multidimensions

If the target density is a m-dimensional standard normal with density N, (0, 1)
where I is a m x m identity matrix, one can use the proposal density g(x* | x) =
Np(x,Ig?). The proposal ratio is one. The Gelman et al. [9] analysis suggests
that the optimum scale factor ¢ is 2.4, 1.7, 1.4, 1.2, 1, 0.9, 0.7 for m =1, 2, 3, 4, 6,
8, 10, respectively, with an optimal acceptance rate of about 0.26 for m > 6. It is
interesting to note that at low dimensions, the optimal proposal density is over-
dispersed relative to the target density, suggesting that one should take big steps,
while at high dimensions, one should use under-dispersed proposal densities and
take small steps. In general one should try to achieve an acceptance rate of about
20-70% for 1-D proposals, and 15-40% for multi-dimensional proposals.

Those results are more useful than for just standard normal densities. When
the target density is x ~ Ny, (i, S), with variance-covariance matrix S, several
strategies can be used. One is to reparametrize the model using y = S™/%x
as parameters, where S™1/2 is the square root of S~1. Note that y has unit
variance, and the above proposal can be used. The second strategy is to propose
new states using the transformed variables y, that is, ¢(y* | y) = Nm(y,Io?),
and then derive the proposal ratio in the original variables x. The proposal ratio
is one according to Theorem 3.2. A third approach is to simply use the proposal
z* ~ Np(x,0%S), where o2 is chosen according to the above discussion. The
three approaches are equivalent and all of them take care of possible differences
in the scales and possible correlations among the variables. In real data analysis,
S is unknown. One can perform short runs of the Markov chain to obtain an
estimate § of the variance—covariance matrix in the posterior density, and then
use it in the proposal. If S is estimated in the same run, samples taken to estimate
S should be discarded. If the normal distribution is a good approximation to the
posterior density, those guidelines should work well.

3.5.4  Proportional shrinking and expanding
For a variable that is always positive or always negative, this proposal multiplies
the current value by a random number that is around 1. Let

o= ef(r=1/2)

=i, (3.22)

where r ~ U(0,1) and € > 0 is a small finetuning parameter. Note that z is
shrunk or expanded depending on whether r is < or > 1/2. To calculate the
proposal ratio, derive the proposal density ¢(z* | ) through variable transform,
noting that r and z* are random variables while ¢ and z are constants. Since



r =1/2+log(z*/z)/e, and dr/dz* = 1/(ex*), we have from Theorenr 3.1(a)

. (3.23)

elz*|

dr
dz*

q(z* | z) = f(r(z*)) x

Similarly ¢(z | 2*) = 1/e|z|, so the proposal ratio is ¢(z | z*)/q(z* | z) = .

This proposal can be used to shrink or expand many variables by the same
factor ¢: af = ew;, i = 1,2,...,m. This is useful for variables with a fixed
order, such as the ages of nodes in a phylogenetic tree [48]. It is also effect-
ive in bringing all variables, such as branch lengths on a phylogeny, into the
right scale if all of them are either too large or too small. Although all m
variables are altered, the proposal is really in one dimension (along a line
in the m-D space). We can derive the proposal ratio using the transform:
Y1 =T1,Yi = ;/x1,4=2,3,...,m. The proposal changes y;, but Y2y s Ym
remain unchanged. The proposal ratio in the transformed variables is ¢. The Jac-
obian is J(y1, 2, ..., Ym) = |0x/3y| = y*~1. The proposal ratio in the original
variables is thus ¢x (7 /y1)™ ! = ¢™, according to Theorem 3.2. Similarly, if the
proposal multiplies m variables by ¢ and divides n variables by ¢, the proposal
ratio is ¢™/™.

3.6 Monitoring Markov chains and processing output
3.6.1 Diagnosing and validating MCMC algorithms

An MCMC algorithm can suffer from two problems: slow convergence and poor
mixing. The former means that it takes very long for the chain to reach station-
arity. The latter means that the sampled states are highly correlated and the
chain is very inefficient in exploring the parameter space. While it is often obvi-
ous that the proposal density g(. | .) satisfies the required regularity conditions
so that the MCMC is in theory guaranteed to converge to the target distribu-
tion, it is much harder to determine in real data problems whether the chain has
reached stationarity. A number of heuristic methods have been suggested to dia-
gnose the Markov chain. However, those diagnostics are able to reveal problems
but unable to prove the correctness of the algorithm or implementation. Model
misspecification, programming errors, and slow convergence all pose difficulties
to program validation. A Bayesian MCMC program is notably harder to debug
than a maximum likelihood program implementing a similar model. In a likeli-
hood iteration, the convergence is to a point while in Bayesian MCMC, it is to a
statistical distribution. In likelihood iteration, the log likelihood should always
go up (at least if the optimizer is non-decreasing), and the gradient converges
to zero. In a Bayesian MCMC algorithm, no statistics have a fixed direction of
change. It is usually hard to independently calculate the posterior probability
distribution. The temptation to use sophisticated models with excessive para-
meters in Bayesian modelling adds further difficulty. Often when the algorithm
converges slowly or mixes poorly.it is difficult to decide whether this is due to
faulty theory, buggy program, or inefficient but correct algorithm.

The following are some of the commonly used strategies for diagnosing and
validating an MCMC program. (1) One can plot parameters of interest or their
functions against the iterations. Such time-series plots can often reveal lack of
convergence and/or poor mixing (see, for example, Figs. 3.3(a) and (b)). Often
the chain appears to have converged with respect to some parameters but not to
others. (2) The acceptance rate for each proposal should be neither too high nor
too low. (3) It is advisable to run multiple chains from different starting points
and make sure that the chains all converge to the same distribution. Gelman
and Rubin’s [10] statistic can be used to analyse multiple chains; see the next
section. (4) Another technique is to run the chain without data, that is, to fix
f(D | 8) =1 in equation (3.11). The posterior should then be the prior, which
might be analytically available for comparison. (5) Simulation is also commonly
used to validate MCMC algorithms. For example, Wilson et al. [49] simulated
data under the prior to calculate the “hit probability” and “coverage probability”
to validate their BATWING program. The former is the probability that the
100a% posterior credibility interval of a parameter includes the correct value.
This should equal a. The latter is the average, across data replicates, of posterior
coverage probability of a fixed interval. If this fixed interval has 100a% coverage
probability in the prior, the average posterior coverage probability should also
equal o [37, 49]. This is a more precise criterion for assessing interval coverage
than the hit probability.

3.6.2 Gelman and Rubin’s potential scale reduction statistic

Gelman and Rubin [10] suggested a diagnostic statistic called estimated “poten-
tial scale reduction,” based on variance-components analysis of samples taken
from several chains run using “over-dispersed” starting points. The idea is that
after convergence, the within-chain variance should be indistinguishable from
the between-chain variation while before convergence, the within-chain variance
should be too small and the between-chain variance should be too large. The
statistic can be used to monitor any or every parameter of interest. Let this
be x, and its variance in the target distribution be 72. Suppose there are m
chains, each run for n iterations, after the burn-in is discarded. Let z;; be the
parameter sampled at the jth iteration from the ith chain. Gelman and Rubin
[10] defined the between-chain variance

m

o mn — =2 9,
B e P | Z(:r:, -'B) 1 (3“4)
and the within-chain variance
1 T m - ‘ }
e e (x5 = 52, (3.25)
m(n—1) ; g g
where 7;, = (1/n)} j_,7i; is the mean within the ith chain, and

Z.=(1/m)Y L, T; is the overall mean. If all the mm chains have reached sta-
tionarity and z;; are samples from the same target density, both B and W are
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unbiased estimates of 72, and so is their weighted mean

, n—1_ 1
2="""w4-B. (3.26)
T T

If the m chains have not reached stationarity, W will be an underestimate of
72 since each chain has not traversed the whole parameter space and does not
contain enough variation, while B will be an overestimate as the chains are from
overdispersed starting points. Gelman and Rubin [10] showed that in this case
72 is also an overestimate of 72. The estimated “potential scale reduction” is
defined as

.72

This should get smaller and approach one when the parallel chains reach the
same target distribution. In real data problems, values of R < 1.1 or 1.2 indicate
convergence. '

(3.27)

3.6.3  Processing output

Before we process the output, the beginning part of the chain before it has
converged to the stationary distribution is discarded as “burn-in.” Some pro-
grams do not sample every iteration but instead only takes a sample for every
certain number of iterations. This is known as “thinning” the chain, as the
thinned samples have reduced autocorrelations across iterations. While in theory
sampling every iteration is more efficient (with smaller variances) than thinned
samples, MCMC algorithms easily produce huge output files and it is often
necessary to thin the chain to reduce the disk requirement.

After the burn-in, the samples taken from the MCMC can be summarized
in a straightforward way. The sample mean, median, or mode can be used as
a point estimate of the parameter, while the HPD or equal-probability credibility
intervals can be constructed from the sample as well. For example, a 95% CI can
be constructed by sorting the MCMC output for the variable and then using the
2.5% and 97.5% percentiles. The whole posterior distribution can be estimated
by using a histogram, perhaps with further smoothing [40].

3.7 Applications to molecular phylogenetics

MCMC algorithms have been widely used in population genetics to analyse
genetic data (DNA sequences, micro-satellites, etc.) under the coalescent models
of variable complexity. Such applications include estimation of mutation rates
(e.g. [4]), inference of population demographic processes or gene flow between
subdivided populations (e.g. [3, 49]), and estimation of ancestral population
sizes (35, 50], to name a few. See recent reviews by Griffiths and Tavaré [14]
and Stephens and Donnelly [42]. Here I will discuss two major applications
of Bayesian inference to molecutar’ phylogenetics: estimation of phylogenetic
trees and estimation of species divergence times under stochastic models of
evolutionary rate change.
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3.7.1  Estimation of phylogenies

Brief history. The Bayesian method was introduced to molecular phylogenetics
by Rannala and Yang (34, 53], Mau and Newton [29], and Li et al. [28]. Those
early studies assumed a constant rate of evolution (the molecular clock) as well
as equal-probability prior for rooted trees either with or without ordered node
ages (rooted trees or labelled histories). Since then, much more efficient MCMC
algorithms have been implemented in the computer programs BAMBE [27] and
MrBayes [21, 36]. The clock constraint is also relaxed, enabling phylogenetic
inference under more realistic evolutionary models. A number of innovations have
been introduced in those programs, adapting tree perturbation algorithms used
in heuristic tree search (such as nearest-neighbour interchange, NNI, and sub-
tree pruning and regrafting, SPR [44]), into flexible and efficient MCMC proposal
algorithms for moving around in the tree space. In particular, MrBayes 3 has
essentially incorporated all evolutionary models developed for likelihood infer-
ence, and can accommodate heterogeneous data sets from multiple gene loci in
a combined analysis. A Metropolis-coupled MCMC algorithm (MC3) is imple-
mented in MrBayes to overcome multiple local peaks in the tree space. The
parallel algorithm is efficient on network workstations that are becoming access-
ible to empirical biologists [2, 36]. MrBayes is now widely used in phylogeny
reconstruction and is the top-cited paper in August 2002 in the whole field of
computer science!

General framework. To formulate the problem of phylogeny reconstruction in
the general framework of Bayesian inference described requires no more than
definition of symbols. Let D be the sequence data. Let # include all parameters
in the model, with a prior distribution f(6). Let 7; be the ith tree topology,
i=1,2,...,N(s), where N(s) is the total number of tree topologies for s species.
Usually a uniform prior f(r;) = 1/N(s) is assumed. Let b; be branch lengths on
tree 7;, with prior probability f(b;). MrBayes 3 assumes that branch lengths have
independent uniform or exponential priors with the parameter (upper bound
for the uniform or mean for the exponential) set by the user. The posterior
probability of tree 7; is then

[ FO)f(b; | 8)f(i | 6)f(D | 74, b;,6)db; dO _
SN [[ £(0)F(b; 16)f(r; 1 0)£(D | 75,b;,6) db; do

Note that calculating the denominator, the marginal probability of the data
f(D), would involve summing over all possible tree topologies and, for each tree
topology 7;, integrating over all branch lengths b; and parameters 6, a virtually
impossible task except for very small trees. The MCMC algorithm avoids direct
calculation of f(D), but integrates over branch lengths b; and parameters 6
through MCMC.

P(r,| D) = =)

Summarizing output. It is straightforward to summarize the posterior probab-
ility distribution of trees, and several summaries are provided by MrBayes. One
can take the tree with the maximum posterior probability (MAP) as a point
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estimate, the so-called MAP tree [34]. This should be identical or very similar to
the maximum likelihood tree under the same model. An approximate 95% cred-
ibility set of trees can be constructed by including trees with the highest posterior
probabilities until the total probability exceeds 95%. Similarly to summarizing
bootstrap support values for clades (subtrees) [8], posterior clade probabilities
can also be collected and shown on a majority-rule consensus tree [27]. It may
be noted that the branch lengths on the consensus tree produced by MrBayes 3
should be ignored as those are averages over different tree topologies; branch
lengths are meaningful only on a fixed topology and their posterior probabilities
should be calculated by running the MCMC on the fixed tree topology.

Comparison with likelthood. In terms of computational efficiency, stochastic tree
search by MrBayes appears to be more efficient than heuristic tree search under
likelihood using David Swofford’s PAUP program [45]. Nevertheless, running
time of the MCMC algorithm is proportional to the number of iterations the
algorithm is run for. In general, longer chains are needed to achieve convergence
in larger data sets due to the increased number of parameters to be averaged over.
However, many users ran shorter chains for larger data sets because larger trees
require more computation per iteration. As a result, it is not always certain
that the MCMC algorithm has converged in Bayesian analyses of very large
data sets. Furthermore, dramatic improvements to heuristic tree search under
likelihood are still being made [16]. So it seems possible that for the purpose of
obtaining a point estimate, likelihood heuristic search using numerical optimiza-
tion can be faster than Bayesian stochastic search using MCMC. However, no
one knows how to use the information in the likelihood tree search to attach a
confidence interval or some other measure of sampling errors in the maximum
likelihood tree—as one can use the local curvature or Hessian matrix calculated
in a non-linear programming algorithm to construct a confidence interval for
a conventional parameter. As a result, one currently resorts to bootstrapping.
Bootstrapping under likelihood is an expensive procedure, and appears slower
than Bayesian MCMC.

To many, Bayesian inference of molecular phylogenies enjoys a theoretical
advantage over maximum likelihood with bootstrapping. Posterior probabilities
have an easy interpretation: the posterior probability of a tree or clade is the
probability that the tree or clade is correct given the data and the model (27, 34].
In contrast, the interpretation of bootstrap in phylogenetics has been controver-
sial (e.g. [6, 19], Chapter 4, this volume). As a result, posterior probabilities of
trees can be used in a straightforward manner in a variety of phylogeny-based
evolutionary analyses to accommodate phylogenetic uncertainty; for example,
they were used in comparative analysis to average the results over phylogenies
[20, 22].

It has been noted that Bayesian posterior probabilities calculated from real
data sets using MrBayes are often‘:extremely high. One may observe that while
bootstrap clade proportions are shown on published trees only if they are >50%
(as otherwise the relationships may not be considered trustable), posterior clade

APPLICATIONS TO MOLECULAR PHYLOGENETICS 83

probabilities are reported only if they are <100% (as most of them are 100%!).
Recently a number of simulation studies suggested that the posterior probab-
ilities are often misleadingly high (e.g. [1, 7, 43]). Some of the high posterior
probabilities from real data sets may be genuine and indicate high but correct
confidence in the phylogenetic relationship. Some may be due to lack of conver-
gence of the MCMC algorithm or inadequate evolutionary model, which could
be resolved by running longer chains or implementing more realistic substitution
models. However, the problem seems more serious. Extremely high probabilit-
ies were observed by Rannala and Yang [34], who studied only small trees and
used numerical integration, in which case algorithm performance is not an issue.
Yang and Rannala [54] note that the posterior probabilities of trees vary widely
over simulated replicate data sets and that they can be unduly influenced by
the prior on the internal branch lengths. It is easy to see that high posterior
probabilities will decrease when the internal branch lengths assumed in the prior
get smaller; in the extreme when internal branch lengths are assumed to be 0,
all trees will have the same probability. It is not clear to what extent the high
posterior probabilities observed in real data sets can be attributed to this sens-
itivity. The problem raises serious practical concern about the methodology and
further investigation is urgently needed.

3.7.2  Estimation of species divergence times

Bayesian inference has also been successfully applied by Thorne and co-workers
[26, 48] to estimate species divergence times under models of rate change, that
is, when the evolutionary rate itself evolves. Traditionally the molecular clock
has been assumed for divergence time estimation. However, in many data sets,
especially when the species are not closely related, the clock assumption is ser-
iously violated. Because the sequence data contain information only about the
branch length. which is the product of time and rate, but not about time and
rate individually, incorrectly assuming that the clock can lead to seriously biased
time estimates.

The likelihood approach to this problem has been to classify the branches on
the tree into a few rate classes and then to estimate the divergence times as
well as those few branch rates by maximum likelihood [25, 32, 57]. The methods
have the drawback of requiring the researcher to assign branches to rate groups.
although ideas of heuristic rate smoothing [38, 39] can be used to automate
that process. The likelihood method has also been extended to incorporate fossil
calibration information at multiple nodes on the phylogeny and to account for
the heterogeneity in evolutionary process of multiple gene loci in combined ana-
lysis [56]. Yang and Yoder [56] emphasized the importance of such combined
analysis as a way of circumventing the serious confounding effect between time
and rate; the rates vary over lineages in different ways among gene loci, but the
divergence times are shared, so that the internal constraints in the model might
lead to reliable estimation of divergence times even when the clock is violated in
every gene.



The Bayesian method specifies a prior distribution f(¢) of divergence times (t)
and a prior distribution f(r) of evolutionary rates (r). Let 6 be all parameters
in the model, with prior f(#). The joint posterior distribution of times and rates
are then

JfO)f(16)f(r|t.6)f(D |t r,0)do
JIJ£0)f([0)f(r|t,0)f(D |t 0)drdtdf

This is approximated by the MCMC algorithm. The marginal posterior of
divergence times

f@t,r| D)= (3.29)

f(t| D) = ] f(t,r | D)dr (3.30)

can be constructed from the samples taken from the MCMC.

Thorne et al. [48] and Kishino et al. [26] used a recursive procedure to specify
the prior for the rates, proceeding from the root of the tree towards the tips.
The rate at the root is assumed to have a gamma prior. Then the rate at each
node is specified conditioning on the rate at the ancestral node. Specifically,
given the log rate, log(r4), of the ancestral node, the log rate of the current
node, log(r), follows a normal distribution with mean log(r4) — ¢ and variance
vt, where ¢ is the time duration separating the two nodes. The correction term ¢
in the mean is to remove any trend in the rate but is unimportant to the present
description. Parameter v controls how quickly the rate drifts and determines how
clock-like the tree is a priori. This is a geometric Brownian motion model.

The prior for divergence times is specified using another recursive procedure
[26], starting from the root and moving towards the tips. The age of the root
has a gamma prior. Then each path from a tip to the root or an ancestral node
is broken into random segments, corresponding to branches on the path, with
the segment lengths having a Dirichlet density with equal probabilities (see [48]).
Fossil calibration information is incorporated in the prior for times as constraints
on node ages.

Thorne’s program implements an efficient algorithm for divergence time
estimation under the models of Thorne et al. [48] and Kishino et al. [26]. It
incorporates fossil information at multiple nodes as lower and upper bounds.
The likelihood is calculated using a normal approximation to the branch lengths
estimated without the clock assumption, to achieve computational efficiency.
Recent extensions made the method suitable for combined analysis of mul-
tiple data sets. The method and program has been used extensively to date
divergences of major species groups, such as the radiation of mammals [17, 41].

While many factors including the substitution model can potentially affect
divergence time estimation in the Bayesian method, the most difficult and
important of those appear to be the priors for rates and times. An infinite amount
of sequence data combined with a perfectly correct substitution model will reduce
the errors in branch lengths to zero, but the errors in time estimates will persist
as long as there is uncertainty in the fossil calibrations, or mismatch between
the model and prior on one hand and reality on the other. Yoder and Yang [58]

described a case where species sampling had a major effect on Bayesian diver-
gence time estimation. The authors estimated divergence times on a tree of
mammals, when either two or nine mouse lemur species are included in the data.
The estimated age of the mouse lemur clade in the bigger data set was 25% older
than in the small data set. The reason-appears to be the assumed prior model
of times. As discussed above, the method assumes similar branch lengths on the
tree. However, branches within the mouse lemurs are very short, and inclusion of
more mouse lemur species in the large data set made the prior rather unrealistic
and pushed back the age of the mouse lemur clades.

In sum, recent developments in Bayesian and likelihood frameworks make
it possible to estimate divergence times without the molecular clock through
integrated analysis of heterogeneous genetic data sets incorporating multiple
fossil calibrations. However, one has to bear in mind that estimation of divergence
times without a clock is an extremely difficult problem whatever method is used,
and should critically assess the effects of assumptions about rates and times on
time estimates. The quality of fossils is critically important.

3.8 Conclusions and perspectives

The Baysian method, especially combined with MCMC algorithms, provides
exciting opportunities to model-based analysis in molecular phylogenetics. Use of
the likelihood function makes it straightforward to conduct integrated analysis of
heterogeneous data sets from multiple loci while accommodating differences in
their evolutionary characteristics, obliterating the need for ad hoc approaches
such as supermatrix and supertree analyses. However, a number of computational
and theoretical problems remain, which will no doubt prompt active research in
the future. Computational problems include development of ingenious and effi-
cient proposal mechanisms that will lead to improved mixing of the MCMC
algorithms. While likelihood and Bayesian algorithms will probably never be
fast enough to scale up with the ever-increasing sizes of real data sets analysed
by molecular systematicists, any gain in performance is highly beneficial. Theor-
etical problems include understanding the power and limitations of the Bayesian
methods and its robustness to assumptions in the prior and in the substitution
model. The complexity of likelihood estimation of phylogeny has been extens-
ively discussed (Chapter 2, this volume). That complexity appears to apply also
in the Bayesian framework, and it remains an open question whether Bayesian
posterior probabilities will be the ultimate answer to molecular phylogeny
reconstruction.

Program availability

The programs mentioned in this chapter are available at the following web sites:
MrBayes: http://morphbank.ebc.uu.se/mrbayes/;

Divergence time estimation by Bayesian methods (T?: Thornian Time Traveller):
ftp://abacus.gene.ucl.ac.uk/pub/T3/ and
http://statgen.ncsu.edu/thorne/multidivtime.html;
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Tree reconstruction by likelihood:

PAUP: http://paup.csit.fsu.edu/;

Time estimation by likelihood:

PAML: http://abacus.gene.ucl.ac.uk/software /paml.html.
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STATISTICAL APPROACH TO TESTS
INVOLVING PHYLOGENIES

Susan Holmes

This chapter reviews statistical testing involving phylogenies. We present
both the classical framework with the use of sampling distributions
involving the bootstrap and permutation tests and the Bayesian approach
using posterior distributions.

‘We give some examples of direct tests for deciding whether the data
support a given tree or trees that share a particular property, comparative
analyses using tests that condition on the phylogeny being known are also
discussed.

We introduce a continuous parameter space that enables one to avoid
the delicate problem of comparing exponentially many possible models with
a finite amount of data. This chapter contains a review of the literature on
parametric tests in phylogenetics and some suggestions of non-parametric
tests. We also present some open questions that have to be solved by math-
ematical statisticians to provide the theoretical justification of both current
testing strategies and as yet underdeveloped areas of statistical testing in
non-standard frameworks.

4.1 The statistical approach to phylogenetic inference

From our point of view, as statisticians, we see the phylogenetic inference as
both estimation and testing problems that are set in an unusual space. In most
standard statistical theory. the parameter space is either the real line R or an
Euclidean space of higher dimension, R? for instance. One notable exception
for which there are a number of available statistical models and tests are ranked
data. These sit in the symmetric group &, of permutations of n elements. See [58]
for a book long treatment on statistics in such spaces, see [15] for some examples
of data and relevant statistical analyses based on decompositions of the space,
and [27] on the use of distances and their applications in that context. Of course
other relevant high dimensional parameters that statisticians use are probability
distributions themselves (non-parametric statistics). The authors of [16] use them
to show conditions on consistency for Bayes estimates. Thus, as opposed to some
authors in systematics, statisticians actually do believe that both distributions
and trees can be true parameters. Although some references [4, 76, 80] do not
agree with this approach, we will confer the status of true parameters to both the
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