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Abstract.— The Bayesian method for estimating species phylogenies from molecular sequence data provides an attractive
alternative to maximum likelihood with nonparametric bootstrap due to the easy interpretation of posterior probabilities
for trees and to availability of efficient computational algorithms. However, for many data sets it produces extremely high
posterior probabilities, sometimes for apparently incorrect clades. Here we use both computer simulation and empirical
data analysis to examine the effect of the prior model for internal branch lengths. We found that posterior probabilities for
trees and clades are sensitive to the prior for internal branch lengths, and priors assuming long internal branches cause high
posterior probabilities for trees. In particular, uniform priors with high upper bounds bias Bayesian clade probabilities in
favor of extreme values. We discuss possible remedies to the problem, including empirical and full Bayesian methods and
subjective procedures suggested in Bayesian hypothesis testing. Our results also suggest that the bootstrap proportion and
Bayesian posterior probability are different measures of accuracy, and that the bootstrap proportion, if interpreted as the
probability that the clade is true, can be either too liberal or too conservative. [Fair-balance paradox; Lindley’s paradox;
model selection; molecular phylogenetics; posterior probabilities; prior; star tree paradox.]

For both reconstruction of phylogenetic relationships
and use of phylogenies to understand molecular evolu-
tion, it is essential to quantify the statistical uncertainty
in inferred phylogenies. Yet the phylogeny differs from
a conventional statistical parameter and this difference
poses obstacles to straightforward application of statisti-
cal estimation theory (Yang et al., 1995). Although max-
imum likelihood (ML) (Felsenstein, 1981) appears to be
efficient for obtainingpoint estimates of phylogenies, de-
termining statistical confidencehasprovenmoredifficult
(Goldman et al., 2000).
A recent advance inmolecular phylogenetics has been

the development of the Bayesian approach (Rannala and
Yang, 1996; Mau and Newton, 1997; Li et al., 2000),
which circumvents some of the controversies surround-
ing the nonparametric bootstrap, the most commonly
used procedure for assessing phylogenetic uncertainty
(Felsenstein, 1985). Implementations of efficient Markov
chain Monte Carlo (MCMC) algorithms (Larget and
Simon, 1999; Huelsenbeck and Ronquist, 2001) have
made the method very popular, and it is now widely
used to infer species relationships such as the radiation
of mammalian orders (Murphy et al., 2001) or the ori-
gin of land plants (Karol et al., 2001). However, pos-
terior probabilities for trees or clades produced by the
Bayesian method have often appeared surprisingly high
(e.g., Suzuki et al., 2002), as was noted in the very
first Bayesian phylogenetic analysis (Rannala and Yang,
1996). Several recent studies comparing posterior prob-
abilities and bootstrap proportions using computer sim-
ulation suggest that bootstrap proportions tend to be too
conservative, whereas posterior probabilities are too lib-
eral (Suzuki et al., 2002; Cummings et al., 2003; Erixon
et al., 2003; Simmons et al., 2004).However,most of those
studies are hard to interpret as they did not simulate the
trees and branch lengths under the same prior as was
used in the Bayesian analysis, and thus theoretical ex-
pectations for the results are unavailable.
Here we examine the problem of spuriously high pos-

terior probabilities by studying the simplest case of phy-
logeny reconstruction, namely estimation of the rooted

tree for three species using binary characters evolving
at a constant rate (Yang, 2000). The analysis of this sim-
ple case does not require the use of MCMC algorithms,
and thus computational problems such as lack of conver-
gence and poormixing of theMarkov chain are avoided.
To establish the relevance of our analysis of the simple
case to real data analysis, we corroborate our results by
analyzing an empirical data set concerning the origin of
land plants.

SIMULATION EXPERIMENT

Bayesian Estimation of Rooted Tree for Three Species

Here we describe our simulation study of the simple
caseof three species.Analysis of the real data set concern-
ing landplantdivergences is described later. Let the three
binary rooted trees for species 1, 2, 3 be T1 = ((1, 2), 3), T2
= ((2, 3), 1), and T3 = ((3, 1), 2) (see Fig. 1). Each tree has an
internal branch length t0 and an external branch length
t1, measured by the expected number of changes per site.
The data consist of three sequences of binary characters,
evolving according to a continuous-timeMarkovprocess
with equal substitution rates between the two characters.
Themolecular clock (rate constancy over time) is also as-
sumed. This is the binary equivalent of the constant-rate
Jukes and Cantor (1969) model for nucleotide substitu-
tion. For example,wecould imagine the twostates as rep-
resenting purines and pyrimidines in a DNA sequence.
The sequence data are summarized as the counts of four
site patterns: n0 for the constant pattern xxx, and n1, n2,
and n3 for the variable patterns xxy, yxx, and xyx, where
x and y are two different states. Let n = {n0, n1, n2, n3}.
The Bayesian approach to phylogeny estimation

places prior distributions on trees and their branch
lengths. The prior can represent either objective infor-
mation or personal beliefs about the parameters before
the data are collected and analyzed. We leave it open
whether the prior should be interpreted in an objective
or subjective Bayesian framework.We assume a uniform
prior probability (1/3) for the three trees, and, given the
tree topology, exponential priors for t0 and t1: f (t0 | µ0)=
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FIGURE 1. The three rooted trees for three species: T1 = ((1, 2), 3), T2 = ((2, 3), 1), and T3 = ((3, 1), 2). Branch lengths t0 and t1 are measured by
the expected number of character changes per site. The star tree T0 = (1, 2, 3) is also shown with its branch length t1.

exp(−t0/µ0)/µ0 and f (t1 | µ1)= exp(−t1/µ1)/µ1, where
µ0 and µ1 are the means. We also explore a few other
priors for t0 and t1, such as uniform and gamma distri-
butions, as described later.
From Yang (2000) (see also Newton, 1996), the likeli-

hood is the multinomial probability of observing data
given the tree and branch lengths:

f (n | T1, t0, t1) = Cpn00 pn11 pn2+n32 ,

f (n | T2, t0, t1) = Cpn00 pn21 pn3+n12 , (1)

f (n | T3, t0, t1) = Cpn00 pn31 pn1+n22 ,

where C = n!/(n0! n1! n2! n3!) is a proportionality con-
stant, and p0, p1, p2, p3 are probabilities of observing the
four site patterns, respectively, under tree T1:

p0(t0, t1) = 1
4

+ 1
4
e−4t1 + 1

2
e−4(t0+t1),

p1(t0, t1) = 1
4

+ 1
4
e−4t1 − 1

2
e−4(t0+t1), (2)

p2(t0, t1) = 1
4

− 1
4
e−4t1 = p3(t0, t1).

The posterior probability for tree Ti , i = 1, 2, 3, is

Pi = f (Ti | n, µ0, µ1)

=
1
3

∫ ∞

0

∫ ∞

0
f (t0 | µ0) f (t1 | µ1) f (n | Ti , t0, t1)dt0dt1

f (n | µ0, µ1)
,

(3)

where

f (n | µ0, µ1)

= 1
3

3∑
j=1

[∫ ∞

0

∫ ∞

0
f (t0 | µ0) f (t1 | µ1) f (n | Tj , t0, t1)

× dt0dt1

]
(4)

is the marginal probability of the data. The integrals are
calculated numerically using Mathematica.

Computer Simulation

We simulated data sets to examine the properties of
Bayesian posterior probabilities for trees. Except where
stated otherwise, we conducted Bayesian simulation,
sampling values of parameters from the prior. Each data
set is generated by sampling branch lengths t0 and t1
from their prior distributions, calculating the probabil-
ities of the four site patterns p0, p1, p2, p3 according to
Equation 2, and then generating counts of site patterns
(n0, n1, n2, n3) by sampling from the multinomial distri-
bution M(n, p0, p1, p2, p3). The procedure is repeated to
generate multiple data sets. We use T1 as the correct tree
in the simulation, but interpret the results as if the data
are simulated froma random tree chosen from T1, T2, and
T3 with equal probability.

SIMULATION RESULTS

Effect of Branch Length Prior in Simulated Data

We simulated data sets using the trees of Figure 1 to
examine the effect of the prior for the internal branch
length on Bayesian inference of tree topology. Each sim-
ulated data set is analyzed using the Bayesian method
to calculate the posterior probabilities for the three trees
(Equation 3): P1 for the correct tree, and P2 and P3 for
the two wrong trees. We contrast the simulation model,
the model used to generate the data, and the analysis
model, the model used to analyze the data. The term
model refers to the full model, including both the prior
(for tree topology and branch lengths) and the likelihood
(substitution) model. When the simulation and analysis
models match, we say that the analysis model is cor-
rect. The only possible mismatch between the simula-
tion and analysis models considered here is the prior for
internal branch lengths; the correct prior for topology
and the correct substitution model are assumed in the
analysis.
For this simple case, theML tree isT1,T2, orT3, depend-

ing onwhether n1, n2, or n3 is the greatest.More precisely,
T1 is the ML tree if and only if n1 > max(n2, n3) and
n0 + n1 > n2 + n3 (Yang, 2000). When n1 > max(n2, n3)
but n0 + n1 ≤ n2 + n3, the sequences are more divergent
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than randomsequences, and thennoneof thebinary trees
has a higher likelihood than the star tree. The maximum
posterior probability tree is similarly determined as long
as the priormean for internal branch lengthsµ0 > 0: that
is, if n1 > max(n2, n3), we have P1 >max (P2, P3). Chang-
ingµ0 affects themagnitudes of the three posterior prob-
abilities but not their order.
We use the case where the full model is correct—

that is, where the analysis model matches the simulation
model—to illustrate the interpretation of posterior prob-
abilities for trees. When the data are simulated under
the prior and when the full analysis model is correct, the
posterior probability for a tree is the probability that the
tree is true. Figure 2a (“correct” prior) shows results of

FIGURE 2. The estimated probability that the tree is correct plotted against the posterior probability P for the tree. A total of 100,000 data sets
were simulated using branch lengths t0 and t1 drawn from exponential priors withmeansµ0 = 0.02 andµ1 = 0.2. The sequence has n = 500 sites.
The trees are binned into 50 bins according to their calculated posterior probabilities, and in each bin, the proportion of the true tree is calculated
(squares, left y-axis). The circles (right y-axis) represent the frequency of Ps in each bin. Each replicate is analyzed using the Bayesian method
assuming (a) the correct prior with µ0 = 0.02, or incorrect priors with (b) µ0 = 0.002 or (c) µ0 = 0.2. The correct prior for t1 is always assumed
with µ1 = 0.2. (d) The maximum likelihood method with bootstrap is also used.

such a simulation. Each data set is generated by choosing
a tree from T1, T2, and T3 at random and by sampling t0
and t1 from exponential priorswithmeansµ0 = 0.02 and
µ1 = 0.2, respectively. The sequence length is n = 500.
For those parameter values, the true tree is recovered
by the likelihood or Bayesian methods with probability
0.86. When the data are analyzed (Equation 3), the cor-
rect exponential priors with the correct means µ0 = 0.02
andµ1 = 0.2 are assumed for t0 and t1, respectively. Each
data set produces posterior probabilities P1, P2, P3 for
the three trees, and these are collected into 50 bins, at
2% width for each bin. Then in the bin with posterior
probability around P , the tree should be the true tree
with probability P . For example, trees in the 94% to 96%
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bin all have posterior probabilities close to 95%. Among
them, about 95% are the true treewhile others (about 5%)
are either of the two alternative (incorrect) trees (Fig. 2a).
Such amatch does not existwhen the prior assumed in

the analysis model does not match the prior assumed in
the simulation.Weconsidered theeffect of thepriormean
µ0 for the internal branch length only and used µ1 = 0.2
as in the simulation model. When the internal branch
assumed in the prior is too short (µ0 = 0.002, “conserva-
tive” prior; Fig. 2b), low Ps (say, P < 1/3) overestimate
the probability of the correct tree, whereas high Ps (say,
P > 1/2 ) underestimate the probability of the correct
tree. Thus, the method too often fails to reject or support
any tree, and is too conservative. In contrast, when the
mean internal branch length assumed in the prior is too
large (µ0 = 0.2, “liberal” prior; Fig. 2c), low Ps underes-
timate and high Ps overestimate the probability of the
correct tree, and the method is too liberal. The bootstrap
method is also too liberal in these data sets if the boot-
strap proportion is interpreted as the probability that the
tree is correct.
Figure 2 also shows the distribution of posterior prob-

abilities P over replicate data sets. The three posterior
probabilities from each data set are grouped into the
50 bins, and the frequencies in the bins are used to plot
the histogram. This procedure ignores the constraint that
P1 + P2 + P3 = 1 and is not a proper way of represent-
ing the distribution of P1, P2 and P3 (which is shown in
Fig. 3 below). With the correct prior (µ0 = 0.02; Fig. 2a),
most posterior probabilities are near 0 or 1, although
there is a third peak near 1/3. Use of the conservative
prior (µ0 = 0.002; Fig. 2b) shifted the posterior probabil-
ities towards 1/3. Note that in the extreme case where
µ0 → 0, all three Ps will approach 1/3. In contrast, the
liberal prior (µ0 = 0.2; Fig. 2c) shifts the density towards
the two tails near 0 or 1, and polarizes the probabilities.
The joint density of posterior probabilities, f (P1, P2,

P3), is shown in Figure 3, estimated from the same sim-
ulated data sets as used in Figure 2. The correct tree is
recovered in the data set if and only if P1 > max(P2,
P3). With the correct prior (µ0 = 0.02; Fig. 3a), there are
many data sets in which P1 is near 1 and many data sets
in which all three Ps are near 1/3. Note that data sets in
which one of P1, P2, P3 is 0.80 are represented by three
line segments in the plot, corresponding to each of the
three trees T1, T2, T3 being the ML/Bayes tree. As the
full analysis model is correct in this set of simulations
(Fig. 3a), exactly 80% of the total density mass on those
three line segments is located on the one corresponding
to T1. The conservative prior (µ0 = 0.002; Fig. 3b) shifts
the density towards the center of the plot, where all three
Ps are close to 1/3. If µ0 → 0 in the analysis model, the
density reduces to a point mass at P1 = P2 = P3 = 1/3.
In contrast, the liberal prior (µ0 = 0.2; Fig. 3c) shifts the
density to the three corners of the plot, so that one of P1,
P2, P3 is near 1 whereas the other two are near 0, and
high probabilities (say >95%) are produced for wrong
trees too often (say, >5% of the time).
Twoadditional sets of simulationswere conducted,us-

ing n = 200 and 1000 sites, respectively, and using prior

means µ0 = 0.1 and µ1 = 0.2. The data were analyzed in
the same way as in Figures 2 and 3, assuming the correct
prior (µ0 = 0.1,µ1 = 0.2), a conservative prior (µ0 = 0.01,
µ1 = 0.2), and a liberal prior (µ0 = 1, µ1 = 0.2). The re-
sults (not shown) were very similar to those of Figures 2
and 3. In both sets of simulations, use of the correct prior
produced a perfect match between the calculated poste-
rior probability of a tree and the probability that the tree
is true. Use of the conservative prior caused the poste-
rior probabilities to become less extreme and themethod
to become too conservative. In contrast, the liberal prior
made the posterior probabilities more extreme and the
method too liberal. For n = 1000, the effect of the lib-
eral prior was noted to be minor, because the posterior
probabilities under the correct prior were already very
extreme; for that sequence length, the correct tree is re-
covered in 96% of the simulated replicates. The effect of
the conservative prior is always apparent. Furthermore,
in both sets of simulations, the bootstrap proportions are
noted to be too liberal, as in Figure 2d.
To examine which aspects of the prior for internal

branch lengths affect posterior tree probabilities, we ana-
lyzed a fixed data set in Figure 4. The data aren = {n0, n1,
n2, n3}= {300, 80, 65, 55}. For tree T1, the maximum like-
lihood estimates (MLEs) are t̂0 = 0.04176, t̂1 = 0.16348,
with log likelihood �1 = −554.2858, whereas both trees
T2 and T3 reduce to the star tree T0, with estimates t̂0 = 0,
t̂1 = 0.19054, and �2 = �3 = �0 = −556.2283. The boot-
strap proportions for the three trees are (0.887, 0.104,
0.009). The results of Bayesian analysis are shown in Fig-
ure 4, using exponential (Fig. 4a), uniform (Fig. 4b), and
gamma (Fig. 4c) priors. In Figure 4a, exponential priors
are used for t0 and t1, with the means µ0 varying and
µ1 = 0.1 fixed. When µ0 increases from 0 to ∞, the pos-
terior probabilities (P1, P2, P3) change from (1/3, 1/3,
1/3) to (0.925, 0.052, 0.023). For this data set, the Ps are
most sensitive in the region 0.001 < µ0 < 0.1. The prior
mean µ1 for the external branch length is found to be
much less important than is µ0 (results not shown). In
Figure 4b, uniformpriors are used for the branch lengths:
t0 ∼ U(0,µ0) and t1 ∼ U(0, 1). The posterior probabilities
for the three trees becomemore extremewhen the upper
bound µ0 increases. In Figure 3c, t1 has an exponential
prior with mean µ1 = 0.1, but t0 has a gamma prior with
mean µ0 and standard deviation σ 0. The contours rep-
resent P1 as a function of µ0 and σ 0. The prior mean µ0
has much greater effect than the standard deviation σ 0
or variance of the gamma prior.

Distribution of Posterior Probabilities in Data Sets
Simulated under the Star Phylogeny

We examine how posterior probabilities P1, P2, P3
change with the increase of the sample size n when
the data are simulated under a star phylogeny. The
branch lengths are fixed at t0 = 0 and t1 = 0.2 in the
simulation, which correspond to site-pattern probabil-
ities p0 = 0.58700 for the constant pattern xxx, and
p1 = p2 = p3 = 0.13767 for the three variable patterns
(Equation 2). In the Bayesian analysis, we assumed
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FIGURE 3. Estimated joint probability density, f (P1, P2, P3), of posterior probabilities for the three trees over simulated replicates. See legend
to Figure 2 for details of simulation. The data are analyzed by the Bayesian method, assuming (a) the correct prior with µ0 = 0.02 or incorrect
priors with (b) µ0 = 0.002 and (c) µ0 = 0.2, and by (d) maximum likelihoodwith bootstrap. The 2-D density for P1 and P2 (with P3 = 1 − P1 − P2)
is shown using the color contours, with red, yellow to blue, and purple representing low to high values. The density is estimated using an
adaptive kernel smoothing algorithm (Silverman, 1986). Note that the total density mass on the triangle is 1. The inset illustrates the coordinate
system of the ternary plot, commonly used to represent proportions of three components P1, P2, and P3, which sum to 1. The point shown has
coordinates (0.2, 0.7, 0.1), whereas the center point is (1/3, 1/3, 1/3). Note that the coordinates are represented by lines parallel to the sides of
the triangle. The three blue line segments (given by P1 = P2, P2 = P3, and P3 = P1) partition the triangle into three regions, within which trees
T1, T2, and T3 is the Bayesian tree, respectively. For example, in the left region (shaded), P1 > max(P2, P3). The three red line segments represent
data sets in which one of P1, P2, P3 is 0.8.
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FIGURE 4. Posterior probabilities for the three trees (P1, P2, P3 for the three curves from top to bottom) estimated using different priors for
the internal branch length t0. The data are n = {n0, n1, n2, n3} = {300, 80, 65, 55}. (a) An exponential prior with mean µ0 is used for t0, while t1
is exponential with mean µ1 = 0.1 fixed. (b) A uniform prior U(0, µ0) is used for t0, while t1 ∼ U(0, 1). (c) The prior for t1 is exponential with
mean µ1 = 0.1 fixed, and the prior for t0 is gamma with mean µ0 and standard deviation σ0. The exponential distribution is a special case of
the gamma with µ0 = σ0, so the straight line represents the slice examined in (a). The bootstrap proportions for the three trees are (0.887, 0.104,
0.009).

µ0 = 0.1 andµ1 = 0.2 in the exponential priors for t0 and
t1. The results are shown in Figure 5. In small samples
(e.g., n = 20), the probabilities are most often close to
1/3, reflecting the paucity of the data. When the sample
size increases (n = 200 or 1000), however, the probabili-
ties shift to the corners of the plot, with one of the three
probabilities close to 1 and the other two close to 0. We
encountered problems with numerical integration using
Mathematica for large n, and it is unclear what the limit-
ing distribution f (P1, P2, P3) is when n → ∞. Note that
for those data, the bootstrap proportions are more ex-
treme than the Bayesian probabilities (Fig. 5d).

Similar simulations were conducted by Suzuki et al.
(2002) using nucleotide-substitution models without the
molecular clock to estimate unrooted trees for four
species. The authors observed variable and occasionally
very high posterior probabilities for the trees, similar to
the pattern for n = 1000 in Figure 5. It is important to
note that in the simulations of Figure 5 and of Suzuki
et al. (2002), the data are generated using fixed branch
lengths so that we are examining the frequentist sam-
pling properties of the Bayesian method. Although it
is reasonable to use frequentist criteria to evaluate a
Bayesian method, there is no theory to guarantee its
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FIGURE 5. Estimated joint probability density, f (P1, P2, P3), of posterior probabilities for the three trees over replicate data sets simulated
under the star phylogeny with t0 = 0 and t1 = 0.2. The data are analyzed using the Bayesian method, assuming µ0 = 0.1 and µ1 = 0.2 for the
means of the exponential priors. Different sample sizes are used: (a) Bayesian probabilities with n = 20; (b) Bayesian probabilities with n = 200;
(c) Bayesian probabilities with n = 1000; (d) Bootstrap proportions with n = 1000. The density, estimated using an adaptive kernel smoothing
algorithm, is shown using the color contours, with red, yellow to blue, and purple representing low to high values. Note that the density is really
discrete, especially with n = 20.

performance. Suzuki et al. (2002: 16139) incorrectly stated
that “Bayesian . . . trees were judged as false-positives
when the posterior . . . probability was >95%. . . . Note
that the expected false-positive rate (type-I error) is
5% . . . because the confidence level is 95%.” These au-
thorshave confusedposteriorprobabilitieswith frequen-
tist P-values. Nevertheless, Suzuki et al. (2002) argued
that a good method should give about equal probability
(1/3) for the three bifurcating trees when the star tree is
used to simulate data and when the amount of data is
large. In this study, we take this viewpoint as well, as
did Lewis et al. (2005). The concern is that if the inte-

rior branches are short in the real world, the real data
may appear similar to data sets generated under the star
tree, and then the posterior probabilities will be highly
variable among data sets, sometimes strongly support-
ing the true tree and other times strongly supporting
wrong trees. Lewis et al. (2005) called the phenomenon
a star-tree paradox.
Fair-coin and fair-balance paradoxes.—Lewis et al. (2005)

drew an insightful parallel between Bayesian phylogeny
reconstruction when the data are simulated under the
star tree and a coin-tossing experiment. Suppose a
coin is fair with the probability of heads to be exactly
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θ = 1/2, but we are required to compare two hypothe-
ses that the coin is either negatively or positively bi-
ased: H1 : θ < 1/2 and H2: θ > 1/2. The truth θ = 1/2
is considered impossible in the analysis. The data are
the number of heads x out of n tosses of the coin,
with the likelihood given by the binomial probability,
x | θ ∼ bino(n, θ ). Lewis et al. (2005) argued that one
would like the posterior model probability P1 = Pr(H1 |
x) to approach 1/2 when n → ∞. Assuming a uniform
prior θ ∼ U(0, 1) and prior probability 1/2 for each
model, the authors found that P1 instead converged
to a uniform distribution. They referred to the phe-
nomenon as the fair-coin paradox. Note that the pos-
terior is given by θ | x ∼ beta(x + 1, n− x + 1), which
converges to N(y, y(1 − y)/n), where y = x/n, when
n → ∞. Let φ(·), 
(·), and 
-1(·) be the density func-
tion, the cumulative density function (CDF) and the in-
verseCDF (quantile) of the standardnormaldistribution.
We have P1 = Pr(θ < 1/2 | x)≈ 
(( 12 − y)/

√
y(1 − y)/n).

Also dP1/dy = φ(a ) × 2
√
n× (1 + a2

n )
3/2, where a =


−1(P1). Since y ∼ N(1/2, 1/(4n)), P1 has the density

f (P1) = f (y(P1))
/∣∣∣∣dP1dy

∣∣∣∣
=

√
2n
π
exp

{
−2n× a2

4(n+ a2)

}
/[

φ(a ) × 2
√
n×

(
1 + a2

n

)3/2]
→ 1, (5)

when n → ∞.
A simpler argument can be constructed using the

normal distribution. Suppose n measurement errors x1,
x2, . . . , xn are observed on a balance, which is fair (cal-
ibrated) so that the xi are independent draws from
N(0, σ 2) with mean θ0 = 0 and known variance σ 2.
We are required to test two hypotheses that the bal-
ance has either negative or positive bias: H1: θ < 0 and
H2: θ > 0. The truth θ = 0 is not allowed in the analy-
sis. We assume a normal prior θ ∼ N(0, τ 2), with larger
τ 2 representing more diffuse priors. Equivalently, H1
and H2 each has prior probability 1/2, and under each
model the prior on θ is N(0, τ 2), truncated to the range
(−∞, 0) under H1 or (0, ∞) under H2. The likelihood
is given by x̄ | θ ∼ N(θ , σ 2/n), since the sample mean
x̄ is a sufficient statistic. The posterior of θ given data
x = {x1, x2, . . . , xn} is given by θ | x ∼ N (nτ 2 x̄/(σ 2 +
nτ 2), σ 2τ 2/(σ 2 + nτ 2)). Thus the posterior model
probability is

P1 = Pr(H1 | x) =
∫ 0

−∞
f (θ | x)dθ = 
(z)

= 


(
−

√
nx̄
σ

/√
1 + σ 2

nτ 2

)
, (6)

When n → ∞, z → −√
nx̄/σ, which is a standard nor-

mal variable since the sample is from N(0, σ 2) and x̄ ∼ N
(0, σ 2/n). Thus, 
(z) or P1 ∼ U(0, 1) when n → ∞ (see
Ripley, 1987: 59). Note that using an increasingly diffuse
prior (that is, letting τ 2 → ∞) has a similar effect as in-
creasing the sample size.
To follow Suzuki et al. (2002) and Lewis et al. (2005),

we would like a good method to give equal support for
H1 and H2 when n → ∞. The Bayesian method does not
achieve this; instead, the posterior model probability P1
converges to U(0, 1). This may be termed the fair-balance
paradox. When n → ∞, the sample mean x̄ will be closer
and closer to θ0 = 0; in 99% of data sets, x̄ will be in the
narrow interval (−2.58σ/

√
n, 2.58σ/

√
n). Also, the confi-

dence interval for θ from each data set will be narrower
and narrower around the true value 0. However, when
forced to decide whether θ < 0 or θ > 0, the posterior
model probability varies widely among data sets, just
like a random variable fromU(0, 1), sometimes strongly
supporting one of the two hypotheses.

ANALYSIS OF THE LAND PLANT DATA OF KAROL ET AL.
Sequence alignment.—To demonstrate the relevance

of our analysis of the simple three-species case (Fig. 1)
to real data sets used in molecular phylogenetics,
we examined the impact of the prior for internal
branch lengths on the posterior clade probabilities
using the data set of Karol et al. (2001) concerning
land plant divergences. The 40 species are identified
in Figure 6; see appendix 2 in Karol et al. (2001)
for GenBank accession numbers for the sequences.
The alignment was retrieved from the Science Web site
(http://www.sciencemag.org/cgi/content/full/294/
5550/2351/DC1/1) and includes four genes concate-
nated as a supergene. The four genes are atpB and rbcL
from the chloroplast, nad5 from the mitochondria, and
the small subunit rRNA gene (SSU rRNA) from the
nuclear genome. We made a few minor corrections to
the alignment of Karol et al., leaving 5141 sites in the
sequence, compared with 5147 used by Karol et al. The
alignment is available at the Systematic Biology web site,
http://systematicbiology.org.
MrBayes (Huelsenbeck and Ronquist, 2001; Ronquist

and Huelsenbeck, 2003) was used to conduct the
Bayesian analysis (see below for ourmodifications),with
a Markov process model of nucleotide substitution used
for likelihood calculation. Three of the four genes (atpB,
rbcL, and nad5) are protein-coding,with huge differences
among the three codon positions in the evolutionary dy-
namics, such as the evolutionary rate, the base compo-
sitions, the transition/transversion rate ratio, and the
extent of rate variation among sites. Ideally, such het-
erogeneity should be taken into account in the analysis
(Yang, 1996), and indeedMrBayesprovides somemodels
for combined analysis of such heterogeneous data.How-
ever, for the posterior probabilities calculated from our
analysis to be directly comparable with those of Karol
et al. (2001), we followed those authors and ignored
the differences among codon positions. Thus, we used
the HKY+G model, with five categories in the discrete
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FIGURE 6. The phylogeny and clade probabilities for land plants and their relatives, estimated by Bayesian inference without assuming the
molecular clock. Exponential priors with means µ0 and µ1 are assumed for internal and external branch lengths, respectively, with µ1 = 0.1
fixed. (a) Consensus tree published by (Karol et al., 2001), obtained when µ0 used is not too small (e.g., >10−4). The two posterior probabilities
(×100), at the two sides of “/” at each node, are for µ0 = 0.0001/0.1, with values equal to 100% omitted. (b) The posterior probabilities for four
major clades (labeled A, B, C, and D in a) plotted against µ0. These are (A) the land plants-charales clade, (B) the clade of land plants, charales,
and Coleochaetales, (C) the Klebsormidiales clade including Entransia, and (D) charophyta including Mesostigma. See Karol et al. (2001) for the
phylogenetic significance of those clades.
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gamma model of rates for sites (Yang, 1994a; Hasegawa
et al., 1985). To reduce computation, parameters in the
substitution model are fixed at their maximum likeli-
hood estimates (MLEs) obtained from a few parsimony
trees: κ̂ = 3.0 for the transition/transversion rate ra-
tio; π̂T = 0.307, π̂C = 0.188, π̂A = 0.272, and π̂G = 0.233
for nucleotide frequencies; and α̂ = 0.29 for the gamma
shape parameter. Thus, themodel accounts for themajor
features of the more complex model GTR+I+G, which
Karol et al. used. Note that the gamma distribution with
α ≤ 1 allows for virtually invariable sites with rates close
to 0. We expect that fixing the substitution parameters to
their MLEs will have little effect on tree reconstruction
(Yang et al., 1995), as those parameters are reliably esti-
mated from the large data set, with standard errors to be
about 1% to 2% of the MLEs. The molecular clock is not
assumed, and unrooted trees are considered.
Modifications toMrBayes andMCMCanalysis.—The cur-

rent version of MrBayes (version 3.0) (Ronquist and
Huelsenbeck, 2003) assumes the same prior, either uni-
form or exponential, for all branch lengths on the un-
rooted tree. To use exponential priors with different
means µ0 and µ1 for the internal versus external branch
lengths, the source code of the program was modified
by Z.Y. The change of the prior only affects the cal-
culation of the prior ratio in MCMC moves that alter
branch lengths, and does not affect other parts of the
program, such as likelihood calculation or proposals that
change other parameters. Thus, the source code was an-
alyzed and appropriate changes were made. Our exten-
sive tests indicated that the modifications were correct.
We assume uniform priors for topologies and exponen-
tial priors with different means for the internal and ex-
ternal branch lengths. The prior mean of external branch
lengths is fixed at µ1 = 0.1, whereas the prior mean of
internal branch lengths µ0 is varied to see how it affects
posterior clade probabilities. We used preliminary runs
to determine reasonable settings to ensure convergence
of the MCMC algorithm. Results reported in Figure 6
and below were obtained by running two simultaneous
chains, using a burn-in of 20,000 iterations, followed by
sampling every 10 iterations for a total of 2,000,000 itera-
tions. Each analysis is conducted at least twice, using dif-
ferent random numbers, to confirm consistency between
runs.
The original analysis of Karol et al. (2001) using

MrBayes (Huelsenbeck and Ronquist, 2001) produced
very high posterior probabilities for the inferred clades.
The results obtained from applying the modified ver-
sion of the program, assuming exponential priors with
different means µ0 and µ1 for the internal and exter-
nal branch lengths, are summarized in Figure 6. When
µ0 is in the range (0.00004, 0.001), we recover the same
phylogeny as reported by Karol et al. (2001), with larger
µ0 producing higher probabilities for the clades. When
µ0 ≥ 0.01, posterior probabilities for all but one node on
the tree ofKarol et al.were calculated to be 100%, but sur-
prisingly one node was not found in the sampled trees
(Fig. 6a). Posterior clade probabilities calculated using
µ0 = 0.0001 and 0.1 are listed on the tree of Figure 6a,

whereas Figure 6b shows the posterior probabilities for
four important clades on the phylogeny as functions of
µ0. Posterior probabilities for other nodes show similar
changes with the change of µ0 (results not shown).

DISCUSSION

Bayesian Posterior Probabilities Versus Bootstrap
Proportions

Bayesian posterior probabilities are conceptually
straightforward to interpret. The posterior probability
for a tree or clade is the probability that the tree or clade
is true, given the data and themodel (including the prior
and the likelihoodmodel). Using the simple case of phy-
logeny reconstruction for three species, we illustrated
this interpretation (Fig. 2a). In contrast, thebootstrappro-
portion has beenmuch harder to interpret. At least three
interpretations have been offered in the literature (see,
e.g., Berry and Gascuel, 1996). The first is that it means
repeatability. A clade with bootstrap proportion P in the
original data set is expected to be in the estimated tree
with probability P if many new data sets are generated
from the same data-generating process and if the same
tree reconstruction method is used to analyze the data
sets (Felsenstein, 1985). The rationale for resampling the
original data by bootstrap is that the distribution of the
bootstrap samples around the observeddata set is a good
approximation of the unknown distribution of observed
data from thedata-generatingprocess (Efron, 1979; Efron
et al., 1996). The simulations of Hillis and Bull (1993)
suggest that the bootstrap proportion varies so much
among replicate data sets that it is useless as a measure
of repeatability.A second interpretation is the frequentist
type-I error rate, using the star tree as the null hypothesis
(Felsenstein and Kishino, 1993) or a confidence interval
(Felsenstein and Kishino, 1993; Zharkikh and Li, 1995).
If we generate many data samples under the star tree in
which the concerned clade (with bootstrap proportion
P from the original data set) is absent, then the clade
will be in the estimated tree with probability < 1 − P .
Efron et al. (1996) argued that this interpretation is only
approximate, and suggested a more complex, two-step
bootstrap procedure for transforming bootstrap propor-
tions into standard frequentist confidence intervals. A
third interpretation is phylogenetic accuracy: a cladewith
bootstrapproportion P is in the true treewithprobability
P . This interpretation equates bootstrap proportionwith
Bayesian posterior probability and appears to be the one
that most empirical phylogeneticists use or would like
to use (e.g., Hillis and Bull, 1993; Murphy et al., 2001).
All studies comparing the two approaches appear to be
using this interpretation, as otherwise the two measures
are incomparable.
The fact that the posterior probabilities change dras-

tically with the prior for internal branch lengths (e.g.,
Fig. 4) suggests that the posterior probability and
bootstrap proportion are two fundamentally different
measures of phylogenetic uncertainty. This result ap-
pears to contradict previous claims that the two should
be theoretically close (Efron et al., 1996; Newton, 1996),
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and to agree with recent simulations demonstrating
their differences (Suzuki et al., 2002; Alfaro et al., 2003;
Cummings et al., 2003; Douady et al., 2003; Erixon et al.,
2003). We observe that bootstrap proportions are more
similar to posterior probabilities under some priors than
under others. For example, for the data set of Figure 4a,
the bootstrap proportions are close to the posterior prob-
abilitiesunder theexponentialpriorwithmeanµ0 = 0.06
but are more or less extreme than the posterior probabil-
ities when µ0 < or >0.06, respectively. In the data sets
of Figure 2 simulated under the prior, the bootstrap pro-
portions are on average comparable to posterior prob-
abilities under µ0 = 0.2 but are more different from the
posterior probabilities under µ0 = 0.02 or 0.002. Thus,
the bootstrap will be too conservative or too liberal, that
is, the bootstrap proportions will be too moderate or too
extreme relative to the posterior probabilities under the
correct prior, depending on whether the prior mean µ0
used to generate the replicate data sets is very small or
very large. It is clear that the bootstrap proportion, if in-
terpreted as the probability that the clade is correct, is
not always conservative, as suggested previously (Hillis
and Bull, 1993).
We asked the question whether certain priors can

produce posterior probabilities that are close to the
bootstrap proportions in all replicate data sets. For the
data sets of Figures 2 and 3, we used an iterative al-
gorithm to adjust the means µ0 and µ1 in the expo-
nential priors to minimize the difference between the
posterior probabilities and the bootstrap proportions in
each data set. We found that µ0 and µ1 “estimated” in
this way vary considerably among data sets, suggest-
ing that it is in general impossible for bootstrap pro-
portions to match posterior probabilities under fixed
priors. Similarly, we observed in the simple case of three
species that the effect of overall sequence divergence is
quite different on the twomeasures. For example, adding
constant sites (n0) to the data tends to polarize the pos-
terior probabilities while having little impact on boot-
strap proportions. For example, Table 1 lists posterior
probabilities calculated for the data set of Figure 4, but
withdifferent numbers of constant sites added. Theboot-
strap proportions are (0.887, 0.104, 0.009), estimated us-
ing 100,000 bootstrap pseudosamples. At this level of
accuracy, we cannot detect any difference in bootstrap
proportions among the data sets. The lack of effect of n0
on the bootstrap is understandable in this case, because
in each data set, the maximum likelihood tree is deter-

TABLE 1. Posterior probabilities in data setswith different numbers
of constant sites. The bootstrap proportions are (0.887, 0.104, 0.009), for
all the four data sets. The posterior probabilities are calculated under
the exponential priors with means µ0 = 0.02 and µ1 = 0.2. The second
data set is analyzed in Figure 4.

Data (n0, n1, n2, n3) Posterior probabilities (P1, P2,P3)

D1: (100, 80, 65, 55) (0.446, 0.303, 0.251)
D2: (300, 80, 65, 55) (0.786, 0.136, 0.078)
D3: (500, 80, 65, 55) (0.852, 0.098, 0.051)
D4: (1000, 80, 65, 55) (0.890, 0.074, 0.036)

minedby thecountsof sites for the threevariablepatterns
and largely independent of n0. In contrast, the posterior
probabilities become more extreme when constant sites
are added to the data. Intuitively, adding constant sites
reduces the overall sequence divergence, and as a re-
sult, every observed change becomes less likely and is
counted as stronger evidence in calculation of posterior
probabilities. Those results also suggest that the poste-
rior probability might be more sensitive to the substitu-
tion model, especially concerning rate variation among
sites, than bootstrap proportions.

Factors Inflating Posterior Probabilities for Trees

Bayesian posterior probability for a tree or clade is the
probability that the tree or clade is true given the data
and model (prior and substitution model). Thus, there
can be only three possible reasons for spuriously high
cladeprobabilities: (i) programerrors and computational
problems, (ii) misspecification of the likelihood (substi-
tution) model, and (iii) misspecification and sensitivity
of the prior. Lack of convergence and poor mixing in
the MCMC algorithm can cause the chain to stay in an
artificially small subset of the parameter space, leading
to spuriously high support for the trees visited in the
chain. This problemmaybe a serious concern inBayesian
analysis of large data sets, but in principle may be re-
solved by running longer chains and designing more ef-
ficient algorithms. Model misspecification, that is, use of
an overly simple substitution model, is also known to
cause spuriously high posterior probabilities (Buckley,
2002; Huelsenbeck and Rannala, 2004; Lemmon and
Moriarty, 2004; Suzuki et al., 2002). The problem can in
theory be resolved by implementing more-realistic sub-
stitution models or taking a model-averaging approach
(Huelsenbeck et al., 2004). In this study,we examined the
effect of the prior on internal branch lengths and demon-
strated that the posterior probabilities are sensitive to the
prior specification. We note that high posterior proba-
bilities were observed in simulated data sets where the
substitutionmodel is correct (this study) and in analyses
that did not use MCMC algorithms (Rannala and Yang,
1996). In those cases, the first two factors do not apply.
The sensitivity of Bayesian inference to prior specifica-
tion is more fundamental and difficult to deal with (see
below). Theuniformpriorwith a largeupper bound such
as 10 or 100 is often advocated as a “non-informative” or
“diffuse” prior for branch lengths.However, such a prior
causes inflated clade probabilities and is one of theworst
in this regard. Exponential priors with small means ap-
pear preferable.

The Effect of Prior on Bayesian Model Comparison
and Phylogeny Estimation

Phylogeny reconstruction can be viewed as a prob-
lem of model selection rather than parameter estima-
tion (Yang et al., 1995). Different trees have different
likelihood functions with different branch length pa-
rameters, and are equivalent to non-nested models.
In contrast to Bayesian parameter estimation under
a well-specified model, where the posterior will be
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dominated by the likelihood when more and more data
are available, Bayesian hypothesis testing or model se-
lection is a difficult area, and weak prior information
for model parameters is known to cause problems (e.g.,
Bernardo, 1980; DeGroot, 1982; Berger, 1985: 144–157).
Below, we briefly review the literature on Bayesian
model selection in presence of weak prior information,
partly because phylogeny estimation appears to be af-
fected by similar difficulties but mainly because some
of the suggested remedies appear useful to phylogeny
estimation.
An extreme well-known case is Lindley’s paradox, in

which Bayesian analysis and traditional hypothesis test-
ing approaches reach drastically different conclusions
(Lindley, 1957; see also Jeffreys, 1939). Consider test of
a simple null hypothesis H0: θ = 0 against the composite
alternative hypothesis H1: θ �= 0 using a random sam-
ple x1, x2, . . . , xn from N(θ , σ 2) with σ 2 known. The
usual test is based on the sufficient statistic x̄ having
a normal distribution N(0, σ 2/n) under H0 and calcu-
lates the P-value as 
(−√

n | x̄ | /σ ). In the Bayesian
analysis, suppose the prior is Pr(H0) = Pr(H1) = 1/2,
and θ ∼ N(0, τ 2) under H1. The likelihood is given by
x̄ ∼ N(0, σ 2/n) under H0 and by x̄ | θ ∼ N(θ , σ 2/n) un-
der H1. Then the ratio of posterior model probabilities,
which is also the Bayes factor since the priormodel prob-
ability is uniform, is equal to the ratio of the marginal
likelihoods

B= Pr(H0 | x)
Pr(H1 | x)

=
1√

2πσ 2/n
exp

{− n
2σ 2 x̄2

}
∫ ∞

−∞
1√
2πτ 2

exp
{− θ2

2τ 2

}× 1√
2πσ 2/n

exp
{− n

2σ 2 (x̄− θ )2
}
dθ

=
√

1 + nτ 2

σ 2 × exp

{
− nx̄2

2σ 2
(
1 + σ 2

nτ 2

)
}

(7)

Now suppose that
√
n | x̄ |/σ = zα/2, so that we reject H0

at the significance level α, but as n → ∞, we see that
B → ∞ and Pr(H0 | x) → 1. Hence the paradox: while
the significance test rejects H0 decisively at α = 10−10,
say, the Bayesianmethod strongly supports H0 with pos-
terior model probability Pr(H0 | x) approaching 1. We
can also fix the sample size n but increase τ 2, making
the prior more andmore diffuse; again Pr(H0 | x) → 1 as
τ 2 → ∞. In both cases, the prior distribution under H1
becomes more and more spread out relative to the like-
lihood, which is concentrated in a small region close to
but different from 0.
We note that Lindley’s paradox is controversial, even

among Bayesian statisticians. Some view it as reveal-
ing logical flaws in traditional hypothesis testing (e.g.,
Good, 1982: 342; Berger, 1985: 144–157; Press, 2003: 220–
225), whereas others consider the Bayesian approach to
be misleading and suggested fixes (e.g., Bernardo, 1980;
Shafer, 1982). However, all appear to agree that the ex-

treme sensitivity of the posterior model probabilities to
the priormeans that an objective Bayesian analysis is im-
possible.As remarkedbyO’HaganandForster (2004: 78),
“Lindley’s paradox arises in a fundamental way when-
ever we wish to compare different models for the data,
and where we wish to express weak prior information
about parameters in oneormore of themodels.” For such
difficulties to arise, the compared models can have one
or more parameters, or one model can be sharp (with
no parameters), and the prior can be proper and infor-
mative as increasing the size of data while keeping the
prior fixed has the same effect. To appreciate the gen-
erality of the problem, we contrast Bayesian parameter
estimation with model selection using uniform priors
for parameters. First, consider estimation of parameter θ
in a well-specified model, with the prior f (θ ) = 1/(2c),
−c < θ < c. The posterior is

f (θ | x) = f (θ ) f (x | θ )∫ c
−c f (θ) f (x | θ ) dθ

= f (x | θ )∫ c
−c f (x | θ) dθ

. (8)

When the sample is large, the likelihood f (x | θ ) is con-
centrated in a small region (inside the prior interval as
long as the prior is diffuse enough to contain the true
θ ), outside which f (x | θ ) is vanishingly small. Then
the integral in the denominator is insensitive to c, and
so is the posterior. In contrast, consider comparison be-
tween two models H1 involving parameter θ1 with prior
f1(θ1) = 1/(2c1),−c1 < θ < c1, and H2 involvingparame-
ter θ2 withprior f2(θ2) = 1/(2c2),−c2 < θ < c2. TheBayes
factor is

Pr(H1 | x)
Pr(H2 | x) =

∫ c1
−c1 f1(θ1) f1(x | θ1)dθ1∫ c2
−c2 f2(θ2) f2(x | θ2)dθ2

= c2
c1

×
∫ c1

−c1 f1(x | θ1) dθ1∫ c2
−c2 f2(x | θ2)dθ2

. (9)

When the data are informative and the likelihood fi (x |
θi ) under model i , i = 1, 2, is highly concentrated, the
two integrals are more or less independent of ci . How-
ever, the Bayes factor or posterior model probability de-
pends on c2/c1, and that sensitivity will not disappear
with the increase of data. The difficulty is that when the
prior information is weak, one may not be able to decide
whetherU(−10, 10) orU(−100, 100) is a more appropri-
ate prior, even though the Bayes factor differs by 10-fold
between the two.
We note some differences between Lindley’s paradox

and the phylogeny estimation problem. First, in tree esti-
mation, the mean of the prior for internal branch lengths
is important, whereas in Lindley’s paradox, it is the vari-
ance. In both cases, increasing the sample size has the
same effect of exacerbating the problem. Second, if we
view tree estimation as a problem of hypothesis testing,
with the binary trees being the alternative hypothesis
(hypotheses) and the star tree being the null hypothesis,
the pattern in phylogeny estimation is opposite to
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that in Lindley’s paradox. In the former, posterior
probabilities are high for the binary tree,which is consid-
ered the “alternative” hypothesis, whereas in the latter,
the effect of increasing amounts of data or a progres-
sively diffuse prior is a strong support for the null hy-
pothesis. Lewis et al. (2005) argued that the phylogeny
problem, especially the star-tree paradox, is more sim-
ilar to the fair-coin paradox they constructed (or the
equivalent fair-balance paradox discussed in this study).
However, this formulation has difficulties aswell. First, a
simple hypothesis test considers one alternative hypoth-
esis, but we have many binary trees and such compos-
ite hypothesis tests can have complex properties. Sec-
ond, a conventional hypothesis test makes assumptions
about parameters in a general model, whereas different
trees are equivalent to different models with different
parameter spaces. Third, rejection of the star tree is not
an appropriate measure of the statistical support for the
ML/Bayes tree; one can construct data sets in which all
threebinary trees are significantlybetter than the star tree
but it is ridiculous to claim that all three binary trees are
significantly supported by the same data (Tateno et al.,
1994; Yang, 1994b). Here we consider Lindley’s paradox,
the fair-coin or fair-balance paradoxes, and phylogeny
estimation as three distinct manifestations of the deeper
problem of sensitivity of Bayesian model selection to the
prior for model parameters.
If we use an extreme prior µ0 = 0, all binary trees will

have the same small probability. Thus, high clade proba-
bilities in any data set can be made small by assuming a
very small µ0 in the analysis model, and therefore there
must always be a region of µ0 over which the poste-
rior probabilities are sensitive to changes in the prior.
However, in large data sets, this sensitive region may
include only very small values of µ0. In our analysis of
the land plant data set, the sensitive region is (10−5, 10−3)
(Fig. 6b). Such values may seem unrealistically small if
we consider estimated internal branch lengths in pub-
lished trees. The question arises as to whether the prior
for the internal branch lengths is relevant for the high
posterior probabilities reported in many real data sets.
We suggest that the answer is “Yes.” In Bayesian model
comparison, parameters in different models with dif-
ferent definitions are usually assigned different priors.
In phylogeny reconstruction, branch lengths in differ-
ent phylogenies have different biological meanings, and
one can envisage assigning different priors for them. For
example, a biologist’s information or belief about the in-
ternal branch length in the tree ((human, chimpanzee),
gorilla) may well be different than about the internal
branch length in the tree (human, (chimpanzee, gorilla)),
in each case the respective tree topology being assumed
to be true. The branch in the latter tree may be ex-
pected to be shorter if the tree is considered less likely
to be true than the former tree. Estimates of internal
branch lengths in wrong or poor trees are typically
small and often 0. If we specify the prior to represent
our prior knowledge of branch lengths in all binary
trees, the majority of which are wrong or poor trees,
a very small µ0 is necessary. This argument also sug-

gests that µ0 should be smaller in larger trees with more
species.

Possible Remedies to Deal with the Sensitivity to the Prior

In a traditional parameter estimation problem, two ap-
proaches can be taken when the posterior is sensitive
to parameters in the prior such as µ0. The first is the
hierarchical or full Bayesian approach, which assigns a
hyperprior for µ0 and integrates µ0 out in the MCMC
algorithm. Suchard et al. (2001) implemented such an
approach. Adding a hyperprior to µ0 is equivalent to
specifying a different prior for t0, in the same way that
the gamma prior considered in Figure 4 is an extension
of the exponential prior. From our results (Fig. 4), the
mean of the prior for t0 appears more important than the
variance.
The second approach to dealing with the prior param-

eter µ0 is the empirical Bayes approach, which estimates
µ0 from the data and uses the estimate to calculate pos-
terior probabilities. We implemented this approach for
the three-species case (Fig. 1). We estimate µ1 as the
single branch length in the star phylogeny (i.e., with
t0 = 0): µ̂1 = −log{(4n0/n− 1)/3}/4, as an overall mea-
sure of sequence divergence.We estimate the priormean
µ0 by maximizing the marginal likelihood: L(µ0, µ̂1) =
f (n | µ0, µ̂1) of Equation 4. The estimates µ̂0 and µ̂1 are
then used to calculate Pi ’s in Equation 3. Application of
this approach to the data analyzed in Figure 4 gives pa-
rameter estimates µ̂1 = 0.19054 and µ̂0 = 0.02746, with
the marginal log likelihood � = −558.3644. The poste-
rior probabilities are (0.8278, 0.1120, 0.0602) (c.f. Fig. 4a).
We note that use of the star tree to estimate µ1 leads
to overestimates of µ1 and underestimates of µ0, and
may be problematic in large trees. However, use of the
marginal likelihood function to estimate µ0 means that
the estimate will be dominated by the ML tree, which
typically has longer internal branches than poor trees.
An alternative strategy is to estimate parameters such as
µ0 and µ1 from the data for each possible tree topology,
and then choose values representative of the collection of
estimates among the trees, for use in Bayesian calcu-
lation. This strategy is computationally demanding be-
cause of the great number of trees, but will produce very
small estimates of µ0 in real data analysis since most
trees are wrong trees with small or zero internal branch
lengths. As far as we are aware, the empirical Bayes ap-
proach has been used only in estimation of parameters in
awell-specifiedmodel andnot indealingwith sensitivity
of Bayesian model comparison to the prior.
We note that Bayesian model comparison is an ex-

tremely active research area, with much controversy. A
number of modifications have been introduced to deal
with the sensitivity of Bayes factors to the prior onmodel
parameters, resulting in a plethora of Bayes factors: such
as intrinsic, partial, fractional, and pseudo-Bayes factors
(see, e.g., O’Hagan and Forster, 2004 pp. 183–191). In dis-
cussions of Lindley’s paradox, several possible remedies
were suggested in the literature.Wenowdiscuss theirpo-
tential use in the phylogeny problem. All such remedies
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are to some degree subjective and none are generally ac-
cepted. (a) Blame the question (e.g., Hill, 1982). It has
been suggested that one cannot reasonably expect a pa-
rameter to take a fixed value θ = 0; instead, one should
consider the null hypothesis that θ lies within a narrow
interval (−δ, δ). (b) Blame the data and avoid using large
data sets (Bartlett, 1957). Those two options are unlikely
to be relevant or appealing to molecular phylogeneti-
cists. (c) Assume that both hypotheses are wrong and
add a pinch of probability ε for errors, i.e., for possibil-
ities unaccounted for in the model (DeGroot, 1982; Hill,
1982; see also Jeffreys, 1961: 129). How to determine ε is
subjective. In the phylogeny problem, one of the binary
trees should be correct, so that this idea does not appear
logically sound. Factors such as lineage sorting or hori-
zontal gene transfers may cause different genes to have
different tree topologies, but this should best be dealt
with by allowing data partitions to have different phy-
logenies, rather than by considering the composite phy-
logeny to be a star phylogeny. Nevertheless, one might
assume a prior probability ε for the star tree, or, equiv-
alently, assume a point mass at t0 = 0 in the prior for
internal branch lengths t0, with the rest of the density
coming from a distribution. This should have an effect
similar to that achieved by assuming a small µ0 in the
exponential prior and will reduce high posterior prob-
abilities for trees. Lewis et al. (2005) has implemented
this strategy, using a reversible-jump MCMC algorithm
to move between trees with different numbers of branch
lengths. (d) Use data or at least the size of data to specify
the prior (Bernardo, 1980; Davison, 2003). As the prior is
supposed to reflect information or beliefs before the data
are gathered, this idea is outrageous to many Bayesian
statisticians but considered useful by others. In the case
of Lindley’s paradox, one suggestion is to let the vari-
ance τ 2 be proportional to 1/n, that is, θ ∼ N(0, cσ 2/n),
so that increasingly informative priors are used for θ un-
der H1 in larger data sets. Values of c in the range 5 to 20
appear to produce results comparable to the traditional
significance test (Davison, 2003: 586–587).
A similar strategy can be applied to the fair-balance

problem. We can let the prior become increasingly in-
formative as n increases by specifying the prior variance
τ 2 = cσ 2/nk . The posterior model probability is then (cf:
Equation 6)

P1 = Pr(H1 | x) = 


(
−

√
nx̄
σ

/√
1 + nk−1/c

)
. (10)

Note that if z ∼ N(0, 1), then y = 
(az+ b), where a and
b are constants, has the density

f (y) = f (z(y)) ×
∣∣∣∣ dzdy

∣∣∣∣
= 1

| a |exp
{
1
2
[
−1(y)]2 − 1

2a2
[
−1(y) − b]2

}
, (11)

As −√
nx̄/σ ∼ N(0, 1) the density of the posterior model

probability P1 becomes

f (P1) =
√
1 + nk−1

c
× exp

{
− nk−1

2c
[
−1(P1)]2

}
. (12)

If k = 1, the prior variance becomes τ 2 = cσ 2/n, which
decreases at the rate 1/n. The density of P1 then peaks
at 1/2, so that P1 is more likely to be around 1/2 than
close to 0 or 1. However, the density is independent of n,
andwill not becomemore concentrated around 1/2with
the increase of n. When k > 1, the distribution converges
to the point mass P1 = 1/2 when n → ∞, as we wanted,
and at a faster rate for larger k.

To choose an appropriate k, we would also want f (P1)
to converge to the point mass at 1 (or 0) at a reasonable
rate when n → ∞, if the true θ < 0 and H1 is the true
model (or if θ > 0 and H2 is the true model). From Equa-
tion 11, the density of P1 if the true parameter value is θ0
is given as

f (P1|θ0) =
√

1 + nk−1/c × exp
{
1
2
[
−1(P1)]2

−1
2
(1 + nk−1/c)

[

−1(P1)

+
√
n/(1 + nk−1/c) × θ0

σ

]2}
. (13)

It is easy to see that when n → ∞, f (P1 | θ0) degener-
ates to a point mass at 1 (or 0) if θ0 < 0 (or if θ0 > 0)

FIGURE 7. The probability density function of the posterior model
probability P1 = Pr(H1 | x) in the fair-balance problem assuming the
prior θ ∼ N (0, cσ 2/nk ), with c = 2 and k = √

2. In curves (a) and (b),
the true parameter value is θ0 = 0 and the density is given by Equation
(12) while in curves (c) and (d), θ0 = 0.01σ and the density is given
by Equation 13. The sample size is n = 1000 for (a) and (c) and n =
1,000,000 for (b) and (d).
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irrespective of k. However, the convergence is faster if k
is smaller. To avoid the fair-balance paradoxwhen θ0 = 0
and to achieve a fast convergence when θ0 �= 0, k should
be greater than 1 but not toomuch greater. Figure 7 plots
the densities when k = √

2 for θ0 = 0 and 0.01σ and for
two sample sizes n = 1,000 and 1,000,000, with c = 2
fixed.
For the phylogeny problem, we note that the objec-

tives of both strategies (c) and (d), discussed above, can
be achieved by applying a smallmean in the prior for the
internal branch length.Thepriormeanshouldbe increas-
ingly smaller for longer sequences (greater n) and larger
trees, and should also reflect the overall information con-
tent (e.g., as indicated by overall sequence divergences),
in the same way that σ 2 is used in the priors discussed
above. Incorporating those factors in the prior appears
hard, and merits further research.
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