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Codon-based substitution models have been widely used to identify amino acid sites under positive selection in compar-
ative analysis of protein-coding DNA sequences. The nonsynonymous-synonymous substitution rate ratio (dN/dS, denoted
x) is used as a measure of selective pressure at the protein level, with x . 1 indicating positive selection. Statistical
distributions are used to model the variation in x among sites, allowing a subset of sites to have x . 1 while the rest
of the sequence may be under purifying selection with x, 1. An empirical Bayes (EB) approach is then used to calculate
posterior probabilities that a site comes from the site class withx. 1. Current implementations, however, use the naive EB
(NEB) approach and fail to account for sampling errors in maximum likelihood estimates of model parameters, such as the
proportions and x ratios for the site classes. In small data sets lacking information, this approach may lead to unreliable
posterior probability calculations. In this paper, we develop a Bayes empirical Bayes (BEB) approach to the problem,
which assigns a prior to the model parameters and integrates over their uncertainties. We compare the new and old methods
on real and simulated data sets. The results suggest that in small data sets the new BEB method does not generate false
positives as did the old NEB approach, while in large data sets it retains the good power of the NEB approach for inferring
positively selected sites.

Introduction

The nonsynonymous-synonymous substitution rate
ratio (dN/dS or x) provides a measure of selective pressure
at the protein level (Miyata, Miyazawa, and Yasunaga
1979; Li, Wu, and Luo 1985). An x greater than one indi-
cates that nonsynonymous mutations offer fitness advan-
tages and are fixed in the population at a higher rate
than synonymous mutations. Positive selection can thus
be detected by identifying cases where x . 1. In a func-
tional protein, many amino acids may be under strong struc-
tural and functional constraints and not free to vary. Thus, it
is important to account for variation in selective pressure
(and thus in the x ratio) among sites if one hopes to detect
positive selection affecting only a few amino acid residues
(Nielsen and Yang 1998; Suzuki and Gojobori 1999). A
number of such models were implemented by Nielsen
and Yang (1998) and Yang et al. (2000) based on the
codon-substitution model of Goldman and Yang (1994;
see also Muse and Gaut 1994). In the past few years, such
site-specific models have been used to detect positive selec-
tion in a variety of genes and species (e.g., Zanotto et al.
1999; Bishop, Dean, and Mitchell-Olds 2000; Bielawski
and Yang 2001; Ford 2001; Haydon et al. 2001; Swanson
et al. 2001; Mondragon-Palomino et al. 2002; Twiddy,
Woelk, and Holmes 2002; Takebayashi et al. 2003; Filip
and Mundy 2004; Lane et al. 2004; Moury 2004). Com-
puter simulations also confirmed the power of those meth-
ods (Anisimova, Bielawski, and Yang 2001, 2002; Wong
et al. 2004).

Analysis of both real and simulated data has provided
insights into the statistical properties of the models and
highlighted the strengths and weaknesses of such codon-
based analysis. The site models of Nielsen and Yang (1998)
and Yang et al. (2000) use a statistical distribution to
describe the random variation in x among sites. A likeli-

hood ratio test (LRT) is conducted to compare a null model
that does not allow x . 1 in the distribution with an alter-
native model that does. Several LRTs were implemented
and two appeared to have good power and low false-pos-
itive rate. The first involves the null model M1a (Nearly-
Neutral), which assumes two site classes in proportions
p0 and p1 5 1 � p0 with 0 , x0 , 1 and x1 5 1, and
the alternative model M2a (PositiveSelection), which adds
a proportion p2 of sites withx2. 1 estimated from the data.
Those are slight modifications of models M1 (neutral) and
M2 (selection) implemented in Nielsen and Yang (1998),
which had x0 5 0 fixed. The old M1 and M2 were found
to be unrealistic for many data sets as they failed to account
for sites under weak purifying selection with 0 , x , 1
(e.g., Yang et al. 2000). The second LRT compares the null
model M7 (beta), which assumes a beta distribution for x
(in the interval 0 , x , 1), and the alternative model M8
(beta&x), which adds an extra class of sites with positive
selection (xs . 1). If the LRT is significant, positive selec-
tion is inferred. An empirical Bayes (EB) approach is then
used to calculate the posterior probability that each site is
from a particular site class, and sites with high posterior
probabilities coming from the class with x . 1 (say, with
P . 95%) are inferred to be under positive selection. This
approach makes it possible to detect positive selection and
identify sites under positive selection even if the average x
ratio over all sites is much less than 1.

The EB approach we implemented, known as the
naive EB (NEB), uses maximum likelihood estimates
(MLEs) of parameters, such as the proportions and x ratios
for the site classes, without accounting for their sampling
errors. While this is not a problem in large data sets, where
parameters are reliably estimated, in small data sets the
MLEs may have large sampling errors, and the NEB cal-
culation of posterior probabilities may be unreliable
(Anisimova, Bielawski, and Yang 2002). For example, if
the MLEs under M2a are p̂05p̂150; p̂251; and x̂251:3;
use of such estimates to calculate posterior probabilities will
lead to the conclusion that every site in the sequence is
under positive selection with P5 1. Such extreme estimates
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can occur, for example, when the data contain a few almost
identical sequences.

One solution to this problem was provided by
Huelsenbeck and Dyer (2004). They implemented a full
Bayesian method for calculating posterior probabilities using
Markov Chain Monte Carlo. By assigning prior probabilities
to the nuisance parameters, the method is able to take uncer-
tainty in these parameters into account. While this method
may have desirable statistical properties, it is computation-
ally slow and may not be practical for large data sets or
for evaluation by simulation. Also, the method was imple-
mented only under models M2 and M3 (discrete) (Yang
et al. 2000) instead of the more useful models M2a or M8.

In this paper, we develop a method to accommodate
uncertainties in the MLEs of parameters in the x distribution
using numerical integration. We assign a prior for those
parameters and average over this prior, a procedure known
as Bayes empirical Bayes (BEB) (Deely and Lindley 1981).
We expect that the effects of this correction should be negli-
gible in large data sets but may be important in small data
sets. Thus, we test the new method using three data sets ana-
lyzed previously: a large informative data set of 192 human
class I major histocompatibility complex (MHC) alleles, ana-
lyzed by Yang and Swanson (2002); a data set of HIV-1 env
gene V3 region from 13 HIV-1 isolates with a known trans-
mission history, analyzed by Yang et al. (2000) (data set
D10); and a data set of 20 HTLV-I tax gene sequences, ana-
lyzed by Suzuki and Nei (2004). We also conduct computer
simulation to examine the performance of the new BEB
method in comparison with the old NEB method.

Wealso implement similarBEBcorrections for branch-
sitemodelAofYangandNielsen (2002) and the clademodel
C of Bielawski and Yang (2004) (see also Forsberg and
Christiansen 2003). Our implementations are described in
Methods. Simulation studies evaluating the performance
of those models will be published elsewhere.

Methods
BEB Calculation of Probabilities of Sites Under Positive
Selection Under Site-Specific Models

The likelihood method of Nielsen and Yang (1998) and
Yang et al. (2000) assumes that the dN/dS ratio x

(h) for site h
varies according to a statistical distribution f(xjg) with
parameters g. As discussed above, two LRTs, comparing
M1awithM2a andM7withM8, respectively, appear to have
good performance. Thus, in this paper we focus on the two
alternative models in those tests: M2a andM8. M2a assumes
three site classes in proportions p0, p1, and p2 5 1� p0� p1
with 0, x0, 1,x15 1, andx2. 1. Thus,g5 (p0, p1,x0,
x2). M8 assumes that a proportion p0 of sites are conserved
with x0 ; beta(p, q), while the remaining sites (proportion
p15 1� p0) are under positive selection with xs. 1. Thus,
g 5 fp0, p, q, xsg. In either model, parameters g are esti-
mated from the likelihood function
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where X5 fxhg is the data or sequence alignment, xh is the
data at site h, with h 5 1, 2, ., n. The last equality holds
when the distribution of x is discrete. Under M8, the inte-
gral over the beta distribution ofx is approximated using 10
equal-probability categories (Yang et al. 2000). Thus, the
sum over k is over 3 site classes under M2a and over 11
site classes under M8. When our interest is x(h), we can
view f(x(h)jg) as the prior and g as the parameters of the
prior. Nielsen and Yang (1998) calculated the posterior
probability P 5 Pr(x(h) 5 xkjxh, g) with g replaced by
the MLE, ĝ: This naive empirical Bayes (NEB) approach
fails to account for sampling errors in ĝ. In this paper we
develop a correction to take into account uncertainties in g.
Other parameters, such as the branch lengths and the tran-
sition/transversion rate ratio, appear much less important to
the calculation of the posterior probabilities, and their val-
ues are fixed at the MLEs.

Several procedures have been suggested in the statis-
tics literature to correct for the bias in the NEB approach to
achieve approximately correct frequentist coverage proba-
bilities (e.g., Morris 1983; Laird and Louis 1987; Carlin and
Gelfand 1990). Most of them work only for simplistic
examples or otherwise involve complicated approxima-
tions. Laird and Louis (1987) proposed a general approach
to the problem, using what they called the type III paramet-
ric bootstrap. However, the approach used for the present
problem would involve extensive computation. Here, we
take a hierarchical Bayes approach, also known as BEB
(Deely and Lindley 1981). We use a prior f(g) for param-
eters g and integrate over the prior.

Thus, for any site h
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is a normalizing constant. Note that the sum over k# is over
the 3 site classes under M2a or over the 11 site classes under
M8. In equation (2), the product over j gives the probability
of observing data at all sites except site h. In the NEB
approach, where parameters g are fixed, data at other sites
do not provide information about x at site h so that
Pr(x(h)jX, g) 5 Pr(x(h)jxh, g). However, for the BEB, this
is not the case so that we have to consider Pr(x(h)|X).

We approximate the integral over g by a sum over a
4-D grid.
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where
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The posterior mean and variance of x(h) can be calculated
similarly. For example,
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M2a involves four parameters: p0, p1, x0, and xs. We
use the priors x0 ; U(0, 1) and xs ; U(1, 11), and for each
parameter, we use the midpoint of each interval to represent
the density in that interval. Thus, the U(0, 1) density for x0

is approximated by 10 values 0.05, 0.15,., 0.95, each with
probability 0.1, while theU(1, 11) density for xs is approxi-
mated using 10 values 1.5, 2.5, ., 10.5, each with prob-
ability 0.1. Parameters p0, p1, and p2 5 1 � p0 � p1 are
assumed to have a Dirichlet prior D(h0, h1, h2), as in
Huelsenbeck and Dyer (2004), with density

f ðp0; p1; p2jh0; h1; h2Þ5
Cðh0 1 h1 1 h2Þ
Cðh0ÞCðh1ÞCðh2Þ

p
h0�1

0 p
h1�1

1 p
h2�1

2 :

ð7Þ

The p0-p1-p2 space is represented by a triangle shown
in figure 1. We partition it into d2 5 100 equal-sized trian-
gles and use the center of each to represent the density mass
on that triangle (fig. 1). Let the d2 triangles be labeled 0, 1,
., d2 � 1, starting from the one on the top row, then three
on the second row, five on the third row, and finally 2d � 1
on the last row, row d� 1. Themth triangle is on the ith row
and jth column (i 5 0, 1, ., d � 1; j 5 0, 1, ., 2i), with

i5 ½
ffiffiffiffi
m

p
�; j5m� i

2
; ð8Þ

where [a] is the integer part of a. The center of this triangle
is at

p0 5
11 ½j=2�331 ðjmod 2Þ

3d
;

p1 5
11 ðd � 1� iÞ331 ðjmod 2Þ

3d
;

ð9Þ

where (j mod 2) is the remainder when j is divided by 2.
We use h0 5 h1 5 h2 5 1 in the prior, so that each of

the 100 points in the ternary graph of figure 1 receives a
prior probability of 0.01. In sum, the 4-D integrals over
g in equations (2) and (3) are approximated by a sum over
104 points on the 4-D grid in equations (4) and (5).

Under M8, we use d 5 10 categories for each of the
four parameters p0, p, q, xs, and use the midpoint of each
interval to represent the density in that interval. We assume
the following priors: p0;U(0, 1), p;U(0, 2), q;U(0, 2),
and xs; U(1,11). Thus, p0 takes any of the 10 values 0.05,
0.15,., 0.95 with a prior probability of 0.1, each of p and q
takes any of the 10 values 0.1, 0.3,., 1.9 with a prior prob-
ability 0.1, while xs takes any of the 10 values 1.5, 2.5,.,
10.5 with a prior probability 0.1. To save computation, the
beta distribution (for given values of p and q) is discretized
using d 5 10 equally spaced categories, unlike Yang et al.
(2000), who used 10 equal-probability categories; that is,
beta(p, q) is approximated using 10 categories represented
by x 5 0.05, 0.15, ., 0.95, with the proportion for each
category equal to the probability mass within that category.
Thus, different beta distributions specified by different val-
ues of p and q on the grid are represented by the same set of
x values, and f(xhjx) is calculated for the same set of x val-
ues for all sites. This strategy makes the computation fea-
sible (see below), although it may not be as good as the
equal-probability scheme for approximating a skewed beta
density.

The posterior distribution of parameters g (that is,
p0, p1, x0, x2 under M2a and p0, p, q, xs under M8) is

FIG. 1.—Discretization of the Dirichlet prior density for parameters p0, p1, and p2 (5 1� p0� p1) under M2a. The parameter space formed by p0, p1,
and p2 is a triangle, and this is partitioned into d2 5 100 equal-sized triangles. Each small triangle is represented by a point mass on its center, with the
probability on the point mass to be the total density mass on that triangle. Note that 2d � 1 5 19 distinct values are taken by each of p0 and p1 over the
100 points.
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calculated as posterior probabilities for the 104 points on the
4-D grid. We summarize the distribution by the marginal
densities of the parameters. For example, the posterior
probability for the proportion parameter p0 under M8 is

Prðp0 5 p
ðjÞ
0 jXÞ5

1

f ðXÞ+s
Iðp0 5 p
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0 jgsÞ
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where p
ðjÞ
0 50:05; 0:15; .; 0:95; for j5 1, 2,., 10, are the

possible values for p0 on the 4-D grid, and the indicator func-
tion I ðp05p

ðjÞ
0 jgsÞ equals 1 if point s on the 4-D grid speci-

fies p
ðjÞ
0 as the value for p0 and 0 otherwise. Marginal

posterior probabilities for p, q, xs are calculated similarly.
Under M2a, we calculate the joint posterior probabilities for
p0 and p1, i.e., for points on the ternary graph of figure 1,
and the marginal posterior probabilities for x0 and x2.

Computational Issues. The computation required by
the old NEB method is equivalent to one calculation of
the likelihood function, which is aboutK times as expensive
as under the one-ratio model M0, where K is the number of
site classes (Nielsen and Yang 1998). The conditional prob-
ability of data at each site h given the site class or the x
ratio, f(xhjx(h) 5 xk), has to be calculated separately for
the K site classes. Similarly, in our implementation of
the BEB procedure, we would like to calculate the condi-
tional probability for as few x values as possible. Thus, we
fix the branch lengths at the synonymous sites (i.e., the
expected number of synonymous substitutions per codon)
at their MLEs. Then we calculate f(xhjx(h) 5 xk) for 2K 1
15 21 differentx values under M2a: 10 values forx0, 1 for
x1 5 1, and 10 values for x2; and 2K 5 20 different x
values under M8: 10 values for the x from the beta and
10 values for xs. While the computation is several times
more expensive than for the NEB procedure, it is much
faster than the ML iteration, which requires many calcula-
tions of the likelihood function.

BEB Calculations Under Branch-Site and Clade Models

Yang and Nielsen (2002) implemented two branch-
site models, A and B, which allow the x ratio to vary both
among sites and among branches. Positive selection is
potentially operating on only some branches, called the
foreground branches, while the other (background)
branches are under purifying selection. The models assume
four site classes. In site class 0, all lineages are under puri-
fying selection with a small dN/dS ratiox0. In site class 1, all
lineages are undergoing weak purifying selection or neutral
evolution with x1 close to 1. In site classes 2a and 2b, a
proportion of class-0 and class-1 sites become under pos-
itive selection with x2 . 1 on the foreground lineages.
Model A fixes x05 0 and x15 1, while model B estimates
those two parameters from the data. Real data analysis sug-
gests that model A is very unrealistic as it fails to account
for conserved sites with 0,x, 1. Thus, we modify model
A so that 0 , x0 , 1 is estimated. We still fix x1 5 1 to

avoid misclassifying sites under weak purifying selection
(with x close to but less than 1) as positive selection sites.
The modified model is still referred to as model A (table 1)
and involves four parameters:g5 (p0, p1,x0,x2). Model A
is the alternative model and can be used to construct two
LRTs. The null model in test 1 is M1a, which assumes
two site classes in proportions p0 and p1 5 1 � p0 with
ratios x0 and x1 5 1. The null model in test 2 is the same
as model A (table 1) except that x25 1 is fixed. Test 1 may
mistake relaxed purifying selection on the foreground
branches as positive selection, while test 2 appears to be
a direct test of positive selection. A simulation study eval-
uating the two tests will be reported elsewhere.

Here, we describe our implementation of the BEB pro-
cedure for calculating posterior probabilities for site classes
under branch-site model A (table 1). As under the site
model, we fix the branch lengths at the synonymous sites
at their MLEs and accommodate sampling errors in param-
eters in thex distribution:g5 fp0, p1,x0,x2g. We assign a
prior f(g) and integrate over it. We assume uniform priors
x0 ; U(0, 1) and x2 ; U(1, 11), in each case using 10 cat-
egories to approximate the continuous densities. The prior
for parameters p0 and p1 is the Dirichlet D(1, 1, 1), and we
assign a prior probability of 0.01 for each of the 100 points in
the ternary graph of figure 1. The theory is very similar to
that under the sitemodels. Similarly, calculation of the prob-
ability of the data at each site given the site class and the
foreground and background x ratios, that is, the term equiv-
alent to f(xhjx(h)) in equations (1–6), is expensive on large
trees. In our implementation, this is calculated for 10 sets of
x ratios for site class 0, 1 set for site class 1, 100 sets for site
class 2a, and 10 sets for site class 2b, with 121 sets in total.
The rest of the computation does not depend on the size of
the tree. We sum over the posterior probabilities for site
classes 2a and 2b to obtain the posterior probability that
the site is under positive selection along the foreground
branches. We also calculated the marginal posterior distri-
butions of the four parameters p0, p1, x0, and x2.

Bielawski and Yang (2004) (see also Forsberg and
Christiansen 2003) implemented two clade models, called
C and D, to detect divergent selective pressures between
clades. Branches in the phylogeny are assumed to fall into
two clades. Three site classes are assumed in the models. In
site class 0, all lineages are under purifying selection with a
small ratio x0. In site class 1, all lineages are evolving neu-
trally or under weak purifying selection with x1 close to 1.
In site class 2, branches in the two clades are evolving with

Table 1
Parameters in Branch-Site Model A

Site
Class Proportion Background x Foreground x

Number of
Classes in BEB
Calculationa

0 p0 0 , x0 , 1 0 , x0 , 1 10
1 p1 x1 5 1 x1 5 1 1
2a (1 � p0 � p1)

p0/(p0 1 p1)
0 , x0 , 1 x2 . 1 10 3 10

2b (1 � p0 � p1)
p1/(p0 1 p1)

x1 5 1 x2 . 1 1 3 10

a Number of times that f(xhjx(h)) has to be calculated in the BEB algorithm.
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x2 and x3, respectively. No positive selection is assumed
for either clade; instead the clades may be evolving under
divergent selective pressures at some sites. In model C,
x0 5 0 and x1 5 1 are fixed while x2 and x3 are estimated
together with the proportions p0 and p1. In model D all
parameters are estimated from the data including x0 and
x1. We modify model C so that 0 , x0 , 1 is estimated
while x15 1 is fixed (table 2) and will refer to the modified
model still as model C. The model has five parameters: g5
(p0, p1, x0, x2, x3). The model can be compared with the
site model M1a to construct a LRT. Here, we briefly
describe our implementation of the BEB method for calcu-
lating posterior probabilities for site classes under model C.

We fix all branch lengths measured by the silent rate
at their MLEs and accommodate uncertainties in parame-
ters g by assigning a prior and integrating over it. For the
prior for p0 and p1, we assign equal-probability 0.01 for
each of the 100 points in the ternary graph of figure 1.
We use U(0, 1) as the prior for x0 and U(0, 3) as the prior
for x2 and x3, in each case using 10 categories to approx-
imate the continuous densities. As under the site models,
we approximate the 5-D integral using a 5-D grid. Thus,
we have to calculate the probability of data at any site
given the site class and x ratios for 111 sets of x ratios
(table 2). Besides posterior probabilities for site classes
at each site, we also calculate the marginal posterior dis-
tributions of the five parameters.

Results
Analysis of Real Data Sets

Three data sets are analyzed to compare the old NEB
and the new BEB approaches for inferring sites under
positive selection. We focus our attention on posterior dis-
tributions of the parameters (g) in comparison with sam-
pling errors in the MLEs, on posterior probabilities for
sites under positive selection inferred by NEB and BEB,
and on the effects of the prior for g and of the number
of categories in the 4-D grid on calculation of the posterior
probabilities.

Human Class I MHC Alleles

A data set consisting of 192 alleles of the human class
I MHC alleles from the A, B, and C loci are analyzed. This
data set was compiled and analyzed using the old NEB
approach by Yang and Swanson (2002). The sequence
length is 270 codons. The tree topology estimated by Yang
and Swanson (2002) is used here. The F3x4 model of
codon frequencies is used. To save computation, we esti-
mate the branch lengths on the tree under model M0
(one-ratio) and use them as fixed when fitting site models
M2a and M8.

Table 3 lists the log-likelihood values and theMLEs of
parameters under models M2a and M8. Both models have
much higher log-likelihood values than their corresponding
null models M1a and M7, providing strong evidence for
presence of sites under positive selection (results not
shown; see table 2 of Yang and Swanson [2002]). Sites
inferred to be under positive selection by the NEB and
BEB approaches under the two models are listed as well,
with the cutoff posterior probability set at Pb 5 95%.

Under M2a, the MLEs and their standard errors (SEs)
are p̂0 5 0:7766 0:022; p̂1 5 0:1406 0:025; x̂0 5 0:0586
0:009; and x̂255:38960:361: The SEs are approximated
using the local curvature of the log likelihood. While those
SEs do not take the correlations between parameters into

Table 3
Log-likelihood Values and Parameter Estimates for the Class I MHC Alleles

Model Code p ‘ Estimates of Parameters Positively Selected Sites

M0 (one-ratio) 1 �8,225.15 x̂50:612 None
M2a (PositiveSelection) 4 �7,231.15 p̂050:776; p̂150:140ðp̂250:084Þ;

x̂050:058 ðx̂151Þ; x̂255:389
9F, 24A, 45M, 62G, 63E, 67V,
70H, 71S, 77D,
80T, 81L, 82R,
94T, 95V, 97R,
99Y, 113Y, 114H,
116Y, 151H, 152V,
156L, 163T, 167W

M8 (beta&x) 5 �7,238.01 p̂050:915ðp̂150:085Þ;
p̂50:167; q̂50:717; x̂s55:079

9F, 24A, 45M,
63E, 67V, 69A, 70H, 71S, 77D,
80T, 81L, 82R,
94T, 95V, 97R,
99Y, 113Y, 114H,
116Y, 151H, 152V,
156L, 163T, 167W

NOTE.—p is the number of parameters in thex distribution. Branch lengths are fixed at their MLEs under M0 (one-ratio). Estimates of

j range from 1.5 to 1.8. Positive selection sites are inferred at Pb 5 95% with those reaching 99% shown in bold. The lists of sites are

identical between NEB and BEB. The reference sequence is from the PDB structure file 1AKJ.

Table 2
Parameters in Clade Model C

Site
Class Proportion x for Clade 1 x for Clade 2

Number of
Classes in BEB
Calculationa

0 p0 0 , x0 , 1 0 , x0 , 1 10
1 p1 x1 5 1 x1 5 1 1
2 p2 5 1 � p0 � p1 x2 x3 10 3 10

a Number of times that f(xhjx(h)) has to be calculated in the BEB algorithm.
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account, their small values suggest that the parameters are
reliably estimated in this large data set. In the BEB analysis,
the posterior density of p0 and p1 is concentrated on two
points in the ternary graph of figure 1: p0 5 0.73, p1 5
0.13 and p0 5 0.77, p1 5 0.17, each point receiving a prob-
ability of about 0.5. Those points are the central values of
two contiguous triangles in the ternary graph of figure 1,
indicating that the mode of the joint posterior density for
p0 and p1 is near the two points. The distributions of x0

and x2 are concentrated on 0.05 and 5.5, respectively, each
with probability ;1.0. Those values may be considered
approximate maximum a posteriori estimates and agree
well with the MLEs, and the high posterior probabilities
reflect the high information content in the data.

The posterior probabilities for the three site classes
under M2a are almost identical between NEB and BEB.
Those under BEB are often (but not always) less extreme
(away from 0 or 1) than those under NEB. Note that the
posterior probabilities sum to 1 over the site classes in each
method, and less extreme probabilities mean less confi-
dence in inference. The lists of sites under positive selection
at the cutoffs Pb 5 95% and 99% are exactly the same
between the two approaches (table 3).

Under M8, the results of table 3 are slightly different
from those of Yang and Swanson (2002) due to minor dif-
ferences in the branch lengths used. The MLEs of param-
eters and their approximate SEs are p̂0 5 0:9156 0:007;
p̂5 0:1676 0:033; q̂5 0:7171 0:163; and x̂s 5 5:0791
0:374: In the BEB analysis, the posterior distribution of p0
is concentrated on 0.85 and 0.95, with probabilities 0.876
and 0.124. The beta parameter p is concentrated on 0.1,
with probability ;1 while q is concentrated on points
0.5 and 0.7, with probabilities 0.810 and 0.179, respec-
tively. Parameter xs is concentrated on 4.5 and 5.5, with
probabilities 0.135 and 0.865. Again, these approximate
posterior estimates agree well with the MLEs. The esti-
mates of beta parameters p and q are slightly more different
between the two methods because of different discretization
schemes used.

M8 assumes 11 site classes: 10 classes for the beta dis-
tribution and 1 class for positively selected sites. Because
the old NEB used 10 equal-probability categories to
approximate the beta distribution and the new BEB used
10 equally spaced categories, the posterior probabilities
for the first 10 site classes are not directly comparable
between the two approaches. The posterior probabilities
for the positive selection class are very similar. The lists
of positive selection sites at Pb 5 95% and 99% are almost
identical; the only differences are at sites 82R and 94T, for
which P 5 0.992 and 0.992 by NEB while P 5 0.985 and
0.987 by BEB.

We also conducted a robustness analysis under M8.
First, we used d 5 20 categories in the BEB calculation,
with 160,000 instead of 10,000 points on the 4-D grid,
to examine the effect of the number of categories d on cal-
culation of the posterior probabilities. The beta distribution
is discretized using d 5 20 equally spaced categories as
well. The posterior probabilities are very similar to those
obtained using d 5 10 categories, when two consecutive
categories for d 5 20 are merged into one category for
d5 10. Exactly the same sites are inferred to be under pos-

itive selection at the 95% and 99% cutoffs for the two val-
ues of d. Also, the correlation coefficients in the posterior
mean x are all greater than 0.999 among the three analyses:
the old NEB with 10 categories, and the new BEB with 10
or 20 categories. Ten categories appear to be sufficient for
discretizing the integral over parameters g.

Next we examine the effect of the prior for g. We
applied a triangle prior for p0 under M8 with density
f(p0) 5 2p0, 0 , p0 , 1. This prior places more density
mass on p0 close to 1; the prior probabilities for the 10 val-
ues 0.05, 0.15,., 0.95 are 0.01, 0.03,., 0.19. The lists of
sites inferred to be under positive selection at Pb5 95% and
99% are essentially identical to those obtained under the
uniform prior (table 3); the only difference is that site
94T had P 5 0.992 for the uniform prior and 0.987 for
the triangle prior. We also used U(1, 21) instead of U(1,
11) as the prior for xs. This change had a slightly greater
effect. For example, the posterior probabilities for sites
82R, 94T, and 113Y changed from 0.985, 0.987, and
0.993 under the old prior to 0.933, 0.947, and 0.979 under
the new prior. Overall, the priors for parameters g had min-
imal effects on the calculation of the posterior probabilities
in this data set.

HIV env Gene

The second data set consists of the HIV-1 env gene V3
region from 13 HIV-1 isolates, previously analyzed by
Yang et al. (2000). The sequence has 91 codons. The
F3x4 model of codon frequencies is used. This was
intended to be a small data set, suitable for demonstrating
differences between the NEB and BEB approaches, but it
failed to do so (see below). To see the effects of sequence
sampling, we also analyzed a smaller data set of only the
first four sequences (accession numbers U68496–U68499).

The MLEs of parameters under models M2a and M8
are listed in table 4, together with the sites inferred to be
under positive selection by the NEB and BEB approaches
at Pb 5 95%. Both M2a and M8 have much higher like-
lihood values than their corresponding null models M1a
and M7, so the LRTs suggest presence of sites under pos-
itive selection. Both models identified three sites under pos-
itive selection by the old NEB approach.

Under M2a, the MLEs and SEs are p̂0 5 0:3776
0:132; p̂1 5 0:4416 0:161; x̂0 5 0:0606 0:108; and x̂s 5
3:6266 0:951: The large SEs reflect considerable uncer-
tainties in the MLEs. The posterior distribution of p0 and
p1 has a wide spread around the peak at p0 5 0.37, p1
5 0.47, which has probability 0.098, in comparison with
the prior probability 0.01 (see fig. 1). The posterior distri-
bution of x0 peaks at 0.05 (with probability 0.4) while that
ofx2 peaks at 3.5 (with probability 0.5). These approximate
Bayesian estimates agree well with the MLEs, but their
associated small probabilities indicate large sampling errors
in the parameters. The posterior probabilities for the three
site classes under M2a are similar between NEB and BEB.
At Pb 5 95%, both approaches identified 28T, 66E, and
87V as sites under positive selection (table 4). At Pb 5
90%, site 26N is selected by both approaches as well.

Under M8, the MLEs of parameters and their approx-
imate SEs are p̂0 5 0:8006 0:103; p̂5 0:1676 0:302;
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q̂50:1496 0:349;and x̂5 3:4706 1:009: The large sam-
pling errors, especially for the beta parameters p and q, indi-
cate considerable uncertainty in the MLEs. The marginal
posterior densities of p0, p, q, and xs peak at 0.75, 0.70,
1.9, and 3.5, with probabilities at the peaks to be 0.494,
0.181, 0.121, and 0.510, respectively. The approximate
Bayesian estimates of p0 and xs agree well with the MLEs,
but the estimates of p and q do not because of the different
schemes used to discretize the beta distribution. Both anal-
yses suggest that p and q are more poorly estimated than p0
and xs. The posterior probabilities for the positive-selection
class are found to be quite similar between NEB and BEB.
For example, the probabilities for site 9S are 0.759 and
0.859, with posterior mean x to be 2.858 and 2.819, for
NEB and BEB, respectively. At Pb 5 95%, NEB identified
28T, 66E, and 87V to be under positive selection, while at
Pb 5 90%, sites 26N and 51I are identified as well. All of
these five sites reached the 95% cutoff by the BEB ap-
proach, which identified two additional sites at Pb 5 90%:
69N and 83V. It is interesting that BEB inferred more sites
under positive selection than NEB in this data set (table 4).

We also applied the triangle prior for p0 under M8with
density f(p0)5 2p0, 0, p0 , 1. This had very minor effect
on the posterior distributions of the parameters or on the
posterior probabilities of sites under positive selection.
The lists of sites under positive selection at Pb 5 0.95
and 0.99 are identical between the two priors, with almost
identical probabilities.

Overall the NEB and BEB approaches produced sim-
ilar inferences of sites under positive selection for this data
set, despite the considerable uncertainties in the MLEs of
model parameters. To explore further the differences
between the two approaches and to examine the effects
of sequence sampling, we analyzed a smaller data set con-
sisting of only the first four sequences (accession numbers
U68496–U68499).

In this small data set, the LRT statistic is 2D‘5 4.1 for
both the M1a-M2a and M7-M8 comparisons, and the null
hypotheses are not rejected. Model M2a produced the
following MLEs: p̂0 5 0:814; p̂1 5 0:000; x̂0 5 0:866; and
x̂2 56:858; with very large sampling errors. At Pb 5
0.95, bothNEBandBEB identifiedone site (28T) tobeunder
positive selection, withP5 0.96 for NEB and 0.95 for BEB.
Model M8 gave parameter estimates p̂050:815; p̂599;
q̂515:2; and x̂56:863; again with large sampling errors.
At Pb 5 0.95, both NEB and BEB identified site 28T to

be under positive selection, with P 5 0.96 and 0.98 for
NEBandBEB, respectively.Overall,NEBandBEBare sim-
ilar andmodelsM2a andM8 are consistent in this small data
set. Note that the single site (28T) identified in this small data
set was also identified in the larger 13-sequence data set. The
larger data set provided stronger evidence for positive selec-
tion in identifyingmore sites with higher posterior probabil-
ities. A similar pattern was reported for two MHC data sets,
with 6 and 192 sequences, respectively, by Swanson et al.
(2001) and Yang and Swanson (2002).

HTLV-I tax Gene

Twenty sequences of the tax gene from the HTLV-I
are retrieved from GenBank and analyzed on a star phylog-
eny, following Suzuki and Nei (2004). The sequences, 181
codons long, are very similar and all differences are single-
tons. Ancestral sequence reconstruction suggests a total of
23 single-nucleotide mutations: 2 synonymous transitions
(at sites 33L and 38E), 19 nonsynonymous transitions (at
sites 4P, 39D, 43I, 53V, 60S, 62L, 81G, 85I, 92D,
101S, 108K, 115H, 146S, 152K, 154A, 157N, 161P,
166G, 181V), and 2 nonsynonymous transversions (2C,
69L). Site numbering here refers to sequence AB045401.
We use the F3x4 model to accommodate biased codon
usage. Application of model M0 (one-ratio) leads to the
estimates ĵ523:3 and x̂54:87; with the log-likelihood
‘ 5 �892.02. M0 can be compared with the null model
that fixes x 5 1. This LRT rejects the null model, with
P5 0.008. Thus, the average x across the whole sequence
and across all branches on the tree is significantly greater
than 1, and there seems to be no doubt that positive selec-
tion drives the evolution of the tax gene.

We fix the branch lengths at the estimates obtained
under M0 when applying the site models. The MLEs under
both M2a and M8 are reduced to those under M0, with all
sites having x̂54:87 (p̂251 and x̂254:87 under M2a,
and p̂151 and x̂s54:87 under M8). The MLEs under
the null models M1a and M7 are reduced to x 5 1, with
‘5�895.50. The test statistic for the two LRTs comparing
M2a with M1a and comparing M8 with M7 is 2D‘5 6.96,
and the null models are rejected with a marginal P value
;0.03. NEB calculation of posterior probabilities for site
classes using such MLEs led to the conclusion that all sites,
including the 158 invariant sites, are under positive selec-
tion with P 5 1, as reported by Suzuki and Nei (2004).

Table 4
Log-likelihood Values and Parameter Estimates for the HIV-1 env V3 Regions (13 Sequences)

Positively Selected Sites

Model Code p ‘ Estimates of Parameters NEB BEB

M0 (one-ratio) 1 �1,137.69 x̂50:901 Not allowed Not allowed
M1a (NearlyNeutral) 2 �1,114.64 p̂050:484ðp̂150:516Þ; x̂050:079ðx151Þ Not allowed Not allowed
M2a (PositiveSelection) 4 �1,106.45 p̂050:377; p̂150:441ðp̂50:181Þ;

x̂050:060ðx151Þ; x̂253:626
28T, 66E, 87V 28T, 66E, 87V

M7 (beta) 2 �1,115.40 p̂50:148; q̂50:118 Not allowed Not allowed
M8 (beta&x) 5 �1,106.39 p̂050:800ðp̂150:200Þ; p̂50:167;

q̂50:149; x̂53:470
28T, 66E, 87V 26N, 28T, 51I, 66E, 87V

NOTE.—p is the number of parameters in the x distribution. Estimates of j range from 2.4 to 2.8. Positive selection sites are inferred at Pb5 95%with those reaching 99%

shown in bold. The reference sequence is U68496.
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The BEB approach is then applied to the same data.
Under M2a, the posterior density for p0 and p1 is the highest
at three points (0.033, 0.033), (0.067, 0.067), and (0.033,
0.133), each receiving probability 0.035, compared with
the prior probability 0.01. The posterior distribution of
x0 peaks at 0.95, with probability 0.113, while that of
x2 peaks at 6.5 and 7.5, each with probability 0.184. Those
probabilities are not very different from the prior probabil-
ity 0.1, indicating lack of information in the data. The 21
sites with a nonsynonymous mutation are inferred to be
under positive selection with 0.91 , P , 0.93, while all
other sites are under positive selection with 0.55 , P ,
0.61.

Under M8, the posterior densities for p0, p, q, and xs

peak at 0.05, 1.9, 0.1, and 5.5, with probabilities 0.206,
0.106, 0.111, and 0.211, compared with the prior probabil-
ity 0.1 each. The 21 sites with a nonsynonymous mutation
are inferred to be under positive selection with 0.96, P,
0.97, while all other sites are inferred to be under positive
selection with 0.69 , P , 0.73. We also applied the trian-
gle prior for p0 under M8. Under this prior, the posterior
densities for p0, p, q, and xs peak at 0.05, 1.9, 0.1, and
5.5, respectively, as under the uniform prior, and the prob-
abilities at the peaks are 0.197, 0.106, 0.111, and 0.207,
similar to those under the uniform prior. The posterior prob-
abilities for site classes are identical between the two priors
at the level of accuracy used here.

Considering the LRTs and the BEB calculations of
posterior probabilities, we suggest that positive selection
has affected the evolution of the tax gene. The nonsynon-
ymous substitutions seen in the data are likely due to pos-
itive selection, although the evidence is marginal.

Computer Simulation

Before describing our simulation experiment, we illus-
trate the concept of posterior probabilities as well as three
performance measures of methods for detecting positive
selection sites. Figure 2 shows the results obtained by sim-
ulating the data under the prior and analyzing them under
the correct prior and model. The tree used is (((A:0.1,
B:0.2):0.12, C:0.3):0.123, D:0.4, E:0.5), where the branch
length is measured by the expected number of nucleotide
substitutions per codon. It is assumed that there is no
transition-transversion rate difference so that j 5 1 and
each codon has the equilibrium frequency 1/61. The
sequence length is 1,000 codons. The data are generated
under M2a with the priors (p0, p1, p2) ; D(1, 1, 1), x0

; U(0, 1) and xs ; U(1, 11). Each replicate data set is
generated by drawing parameters p0, p1, x0, and xs from
those priors and then evolving sequences on the tree.

The correct model M2a is used in the analysis, and the
true branch lengths are used as fixed. In this case, the pos-
terior probability that a site is under positive selection
should be the probability that the site is truly under positive
selection. We group the posterior probabilities into bins and
in each bin calculate the proportion of sites truly under pos-
itive selection. The proportion should then match the prob-
ability for the bin. For example, among sites for the bin
0.9, P, 0.925, 91.2% of them are found to be truly under
positive selection (fig. 2a). This is a Bayesian measure,
called ‘‘accuracy’’ by Anisimova et al. (2002). If we con-
sider sites with P. Pb, the probability that the inferred site
is correct will be greater than Pb (fig. 2b). For example,
among sites which achieved posterior probability 0.90 or
higher, 97% of them are truly under positive selection
(fig. 2b). The second measure is the proportion of sites
inferred correctly to be under positive selection among
all sites truly under positive selection (fig. 2c). This was
called power by Anisimova et al. (2002) or proportion of
true positives by Wong et al. (2004). It is also known as
‘‘sensitivity.’’

A third measure is the false-positive rate (fig. 2d), the
proportion of sites not under positive selection that are
inferred falsely to be under positive selection. This is a fre-
quentist measure, formulating the problem of identifying
positive selection sites as one of testing problem, in which
the null hypothesis assumes neutral evolution (x5 1) while
the alternative hypothesis assumes positive selection (x. 1)
(Suzuki and Gojobori 1999). In this formulation, the false-
positive rate is also the type I error. Thismeasure was used by
Suzuki and Gojobori (1999) and Wong et al. (2004). One
minus the false-positive rate is also known as ‘‘specificity.’’
Note that the Bayesian posterior probability calculation gives
the correct accuracy, but not the frequentist false-positive
rate. However, many Bayesian methods are known to have
good frequentist properties (see, e.g., pp. 92–108; Carlin and
Louis 2000). In figure 1d, the false-positive rate does not

FIG. 2.—A simulation study to illustrate different measures of per-
formance of methods for detecting positive selection sites. See text for sim-
ulation conditions. (a) Accuracy (binned) is the proportion of sites truly
under positive selection among sites with posterior probability P lying
in a bin. Sites with P. 0.5 are grouped into 21 bins, and Accuracy within
each bin is plotted against the midvalue of the bin. Because the correct
model and prior are used in analysis, Accuracy equals the posterior prob-
ability P. (b) Accuracy (cutoff) is the accuracy for all sites exceeding a
cutoff probability. (c) Power is defined as the proportion of sites inferred
correctly to be under positive selection among all true-positive selection
sites. (d) False-positive rate is the proportion of sites inferred falsely to
be under positive selection among all sites not under positive selection.
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match and is much lower than 1 � Pb. For example, at the
cutoff Pb 5 0.7, the false-positive rate is only 0.03, much
lower than 1 � 0.7 5 0.3 (fig. 2d). Note that Suzuki and
Nei (2002) confused the Bayesian posterior probabilities
with the frequentist type I error rate when they claimed that
1 � Pb should equal the nominal P value.

In the following simulation, we examine the frequent-
ist false-positive rate and the power (proportion of true pos-
itives) of the new BEB approach in comparison with the old
NEB approach for detecting positive selection sites. Data
are simulated using fixed values of parameters for the x
distribution. We address two major questions: (1) does
BEB overcome the problem of high false positives of
NEB in small data sets? (2) does the BEB correction cause
a loss of power in large data sets in which NEB was work-
ing well? We used two simulation schemes (4 and 6) of
Wong et al. (2004) plus a new scheme. Scheme 4 assumes
two site classes in proportions 1:1 with x5 1 and 1.5. The
old NEB produced many false positives under this scheme
(Wong et al. 2004), and it is interesting to know whether the
BEB is an improvement. Scheme 6 assumes three site
classes in proportions 45%, 45%, and 10% with x ratios
0, 1, and 5, respectively. Under this scheme, NEB per-
formed very well (Wong et al. 2004), and it is interesting
to know whether the BEB correction causes any loss of
power. The third scheme (scheme 7) is new and assumes
12 site classes in proportions 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.05, 0.05, 0.05, 0.05 with x ratios 0, 0.2, 0.3,
0.4, 0.5, 0.7, 0.8, 1, 2, 3, 4, and 5, respectively. This scheme
is used to evaluate the robustness of the analysis and to
address the concern that both M2a and M8 assume one
x value for all sites under positive selection while those
sites may be expected to be under different strengths of
selection.

Simulation conditions followWong et al. (2004). Two
trees with either 5 or 30 taxa are used with fixed branch
lengths. The tree length, that is, the expected number of
nucleotide substitutions per codon along all branches in
the tree, is 3. Again the model assumes no transition-
transversion bias (j 5 1) or codon usage bias (pj 5 1/61).
The sequence length is 500 codons. Data sets were
simulated using the evolver program in the PAML package
(Yang 1997) and analyzed using the codeml program,
which implements both the NEB and BEB approaches.
The correct tree topology is used, but the branch lengths
are estimated by ML.

The results are summarized in table 5. Under scheme
4, the old NEB has high false-positive rates caused by inac-
curate MLEs of parameters in the x distribution. The BEB
procedure corrects for the problem and reduces the false-
positive rate considerably. For example, under M2a the
false-positive rate is 42% for NEB but only 1% for BEB
at the cutoff Pb 5 95%. The false-positive rate for BEB
under M8 is higher than under M2, at 5% in the large tree

Table 5
Performance of BEB and NEB (in parentheses) Inferences of Positive Selection Sites

Simulation Scheme Test

5 Taxa (Tree A) 30 Taxa (Tree B)

Proportion of
True Positives

Proportion of
False Positives

Proportion of
True Positives

Proportion of
False Positives

Scheme 1: 100 replicates, 100% x 5 1
Before LRT M2a NA 0.00 (0.33) NA 0.00 (0.28)

M8 NA 0.00 (0.24) NA 0.00 (0.29)
After LRTa M2a-M1a NA 0.00 (0.02) NA 0.00 (0.00)

M8-M7 NA 0.00 (0.03) NA 0.00 (0.00)
Scheme 2a: 100 replicates, 50% x5 0.5, 50% x5 1
Before LRT M2a NA 0.00 (0.14) NA 0.00 (0.13)

M8 NA 0.01 (0.08) NA 0.00 (0.02)
After LRTa M2a-M1a NA 0.00 (0.00) NA 0.00 (0.00)

M8-M7 NA 0.00 (0.00) NA 0.00 (0.00)
Scheme 4: 100 replicates, 50% x 5 1, 50% x 5 1.5
Before LRT M2a 0.02(0.45) 0.01 (0.42) 0.03 (0.32) 0.01 (0.28)

M8 0.09 (0.38) 0.06 (0.36) 0.09 (0.19) 0.05 (0.16)
After LRTa M2a-M1a 0.02 (0.34) 0.01 (0.32) 0.03 (0.29) 0.01 (0.25)

M8-M7 0.09 (0.28) 0.06 (0.26) 0.09 (0.16) 0.05 (0.14)
Scheme 6: 50 replicates, 45% x 5 0, 45% x 5 1,
10% x 5 5
Before LRT M2a 0.19 (0.18) 0.00 (0.00) 0.76 (0.75) 0.00 (0.00)

M8 0.42 (0.20) 0.01 (0.00) 0.79 (0.76) 0.00 (0.00)
After LRTa M2a-M1a 0.19 (0.18) 0.00 (0.00) 0.76 (0.75) 0.00 (0.00)

M8-M7 0.42 (0.20) 0.01 (0.00) 0.79 (0.76) 0.00 (0.00)
Scheme 7: 100 replicates, 12 site classes
Before LRT M2a 0.16 (0.16) 0.00 (0.00) 0.43 (0.43) 0.00 (0.00)

M8 0.25 (0.24) 0.00 (0.00) 0.48 (0.47) 0.00 (0.00)
After LRTa M2a-M1a 0.16 (0.16) 0.00 (0.00) 0.43 (0.43) 0.00 (0.00)

M8-M7 0.25 (0.24) 0.00 (0.00) 0.48 (0.47) 0.00 (0.00)

NOTE.—Positive selection sites are inferred using the cutoff posterior probability Pb 5 0.95. The proportion of true positives is defined as the number of sites which are

correctly classified as positively selected divided by the total number of positive selection sites simulated. The proportion of false positives is defined as the number of sites

which are falsely classified as positively selected divided by the total number of sites that are not positively selected (with x< 1). The NEB results for schemes 4 and 6 are from

Wong et al. (2004). Scheme 7 assumes 12 site classes with x ratios 0, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 1, 2, 3, 4, and 5 in proportions 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.05,

0.05, and 0.05, respectively.
a The NEB and BEB calculations are applied only if the LRT is significant at the 5% level.

Bayes Inference of Positive Selection Sites 1115



and 6% in the small tree. Under this scheme, BEB has very
low true-positive rate, never identifying more than 9% of all
positive selection sites, even in the large tree. It appears to
be very difficult to identify positively selected sites with x
as low as 1.5. The apparent high power of NEB in this
scheme is clearly unreliable.

Under schemes 6 and 7, the old NEB performed well,
with the false-positive rate at;0% at the cutoff Pb 5 95%.
The method also has good power in identifying positive
selection sites, especially under scheme 6. The new BEB
also performed well, with the false-positive rate at 0%–
1% at the cutoff Pb 5 95%. BEB never had lower true-
positive rate than NEB, and indeed in some cases, it even
recovers more positive selection sites than NEB. For exam-
ple, under scheme 6 and M8 for the small tree, the true-
positive rate increased from 19% for NEB to 42% for
BEB. The true-positive rate is higher in the 30-taxa tree than
in the 5-taxa tree even though the total tree length is the
same, probably because the large tree allows the same num-
ber of changes to be distributed on many branches, so that
the data are more informative (for example, about the
codons at ancestral nodes) than on the small tree.

To examine the false-positive rate of the BEB proce-
dure when the data contain no positive selection sites, we
also simulated data sets under schemes 1 and 2a of Wong
et al. (2004). Scheme 1 assumes that all sites have x 5 1
(corresponding to a pseudogene), while scheme 2a assumes
that 50% of sites havex5 0 and 50% havex5 1. Schemes
1 and 2a are similar to schemes 4 and 6 except for the
absence of sites under positive selection. It is not possible
to calculate true-positive rates as there are no true-positive
sites. The false-positive rate for BEB at the cutoff Pb5 0.95
is found to be 0 for both schemes 1 and 2a, for both trees,
and both before and after the LRT. The error rate is 0 even if
a less stringent criterion Pb5 0.5 is applied. Thus, the false-
positive rate for BEB is lower in schemes 1 and 2a, where
no positive selection sites are present, than in correspond-
ing schemes 4 and 6, where some sites are under positive
selection.

We also note that BEB maintains a low false-positive
rate even when the LRT has not been performed first. How-
ever, we suggest that to answer the question whether there
are any sites in the sequence under positive selection, the
LRT should be used, while the BEB should be used to iden-
tify positive selection sites when the LRT indicates that
such sites exist. Overall, the BEB correction appears to
avoid the high false-positive rates of the NEB approach
in small noninformative data sets, while it has not caused
any loss of power in large informative data sets. It also
appears that the BEB procedure tends to be conservative
if considered a frequentist test; the false-positive rate is
often much lower than 1 � Pb when sites are identified
at the cutoff posterior probability Pb.

Discussion

In all three real data sets analyzed in this paper, the
prior for p0 under M8 was found to have minimal effects
on the posterior distributions of model parameters or on
posterior probabilities for site classes. This insensitivity,
especially in the small data sets of HIV env genes and

HTLV-I rax genes, appears to be due to the fact that priors
on g are second-level priors as far as inference on x(h) is
concerned. While no robustness analysis has been con-
ducted on all parameters g under M8 or under M2a, one
may expect that the pattern is general. We also note that
several previous studies demonstrated that test of positive
selection and identification of sites under positive selection
were insensitive to minor errors in the tree topology or to
different estimates of the branch lengths. For example, the
tree topology was found to have minimal effects by Suzuki
and Gojobori (1999), Yang et al. (2000), and Swanson et al.
(2001). Yang (2000) tested a few different ways of estimat-
ing branch lengths in the tree, including one using nucleotide-
substitution models, and found that they all produced
highly similar inferences of positive selection sites. Thus,
we expect that our fixation of branch lengths to their MLEs
in the BEB calculation should not introduce large errors.

We used three real data sets to evaluate the differences
between the NEB and BEB approaches. The two methods
are different when the MLEs are extreme as in the HTLV-I
rax gene. What is striking is perhaps the similarity between
the twomethods in very small data sets, such as the HIV env
genes. The real data analysis also suggests that models 2A
and 8 usually gave similar conclusions, as found in early
studies (e.g., Yang et al. 2000; Swanson et al. 2001). This
pattern appears to suggest that previous studies using the
NEB approach should be fine as long as the data set is
not too small and the estimates are not extreme (say, with
estimates of proportions to be 0 or 1). However, if the data
consist of few short sequences, or if estimates of xs are only
slightly larger than 1, it may be worthwhile to use the new
BEB method to confirm results. Sequence sampling seems
to have greater effects than either the prior for parameters or
the different methods (NEB vs. BEB).

The simulation study suggests that the BEB method in
general appears to have good statistical properties. In small
data sets, the BEB does not have the high false-positive rate
of the NEB approach, while in large data sets, the BEB
seems at least as powerful as NEB. The BEB appears often
to be conservative under the frequentist criterion, with the
false-positive rate to be lower than 5% if a cutoff posterior
probability of Pb 5 95% is applied.

The extensive simulation studies performed by
Anisimova, Bielawski and Yang (2001) and Wong et al.
(2004) demonstrate that the LRTs for detecting positive
selection, suggested by Nielsen and Yang (1998) and Yang
et al. (2000), have good statistical properties over a wide
range of conditions. Analyses of both real and simulated
data sets in this study suggest that the new BEB method
is reliable in both small and large data sets and also has
good power for identifying individual positively selected
sites, especially in large data sets or with strong selective
pressure. Together, those methods provide a robust and
trustworthy framework for inference of positive selection
affecting protein-coding genes. However, it is important
to be aware of the inherent limitations of these methods.
First, they have appreciable power to detect positive selec-
tion only if multiple substitutions have occurred at the same
codon site throughout the phylogeny. If positive selection
does not involve recurrent fixations of nonsynonymous
mutations at the same sites, those methods may fail. For
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example, Guindon et al. (2004) demonstrated that in some
HIV-1 genes, the selective pressure varies not only among
sites but also among lineages. Second, a number of assump-
tions are made in the tests for positive selection, which may
be violated in real data. For example, simulations demon-
strated that the LRTs are not robust to frequent intragenic
recombinations (Anisimova, Nielsen, and Yang 2003).
Likewise, the methods accommodate variable nonsynony-
mous rates among sites but assume the same synonymous
rate, and it is possible that varying mutation rates (or other
mutational parameters) among sites may mimic the effect of
positive selection (Kosakovsky Pond, Frost, and Muse
2004). We encourage more work identifying cases where
the likelihood methods for detecting positive selection
might fail. Only by identifying such cases is it possible
to further improve the current framework and construct
even better statistical methods.
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