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We implement a Bayesian Markov chain Monte Carlo algorithm for estimating species divergence times that uses het-
erogeneous data from multiple gene loci and accommodates multiple fossil calibration nodes. A birth-death process with
species sampling is used to specify a prior for divergence times, which allows easy assessment of the effects of that prior on
posterior time estimates. We propose a new approach for specifying calibration points on the phylogeny, which allows the
use of arbitrary and flexible statistical distributions to describe uncertainties in fossil dates. In particular, we use soft
bounds, so that the probability that the true divergence time is outside the bounds is small but nonzero. A strict molecular
clock is assumed in the current implementation, although this assumption may be relaxed. We apply our new algorithm to
two data sets concerning divergences of several primate species, to examine the effects of the substitution model and of the
prior for divergence times on Bayesian time estimation. We also conduct computer simulation to examine the differences
between soft and hard bounds. We demonstrate that divergence time estimation is intrinsically hampered by uncertainties
in fossil calibrations, and the error in Bayesian time estimates will not go to zero with increased amounts of sequence data.
Our analyses of both real and simulated data demonstrate potentially large differences between divergence time estimates
obtained using soft versus hard bounds and a general superiority of soft bounds. Our main findings are as follows. (1)When
the fossils are consistent with each other and with the molecular data, and the posterior time estimates are well within the
prior bounds, soft and hard bounds produce similar results. (2) When the fossils are in conflict with each other or with the
molecules, soft and hard bounds behave very differently; soft bounds allow sequence data to correct poor calibrations,
while poor hard bounds are impossible to overcome by any amount of data. (3) Soft bounds eliminate the need for ‘‘safe’’
but unrealistically high upper bounds, which may bias posterior time estimates. (4) Soft bounds allow more reliable as-
sessment of estimation errors, while hard bounds generate misleadingly high precisions when fossils and molecules are in
conflict.

Introduction

The molecular clock assumption, that is, a constant
evolutionary rate over time (Zuckerkandl and Pauling
1965), provides a simple yet powerful way of dating evo-
lutionary events. Under the clock, the expected distance be-
tween sequences sampled from a pair of species (in units of
expected numbers of substitutions) increases linearly with
their time of divergence. When the clock is calibrated using
external information about the geological ages of one or
more nodes on the phylogeny (typically based on the fossil
record), branch lengths estimated from sequences can be
converted into geological times (Sanderson 1997; Rambaut
and Bromham 1998; Yoder and Yang 2000; Ho et al. 2005).
Early applications of the molecular clock to date species
divergences typically use one calibration point, treated as
known without error (Graur and Martin 2004; Hedges
and Kumar 2004). However, fossil date estimates are not
perfect and usually provide only an indication of the prob-
ability that species arose in some interval of time. Previous
attempts to model this uncertainty assume the calibration
age is uniformly distributed between two bounds—the
probability that the date falls outside the interval is then zero
(Thorne, Kishino, and Painter 1998).

‘‘Hard’’ bounds, such as those imposed by a uniform
prior, often overestimate the confidence in the fossil
records. In particular, fossils often provide good lower
bounds (i.e., minimum node ages), but not good upper
bounds (maximum node ages). As a result, the researcher

may be forced to use an unrealistically high upper bound to
avoid precluding an unlikely (but not impossible) ancient
age for the clade. This strategy is problematic as the bounds
imposed in the prior may influence the posterior time esti-
mation. Furthermore, a uniform distribution is unlikely to
capture all the information about the likely age of a speci-
ation event. For these reasons, more flexible distributions
(with a mode, e.g.) and ‘‘soft’’ bounds (with nonzero prob-
abilities everywhere) appear preferable. Finally, it is of in-
terest to combine prior distributions from fossils with
models of cladogenesis to allow a more complete descrip-
tion of the speciation process. This also allows one to
examine the influence of the prior on divergence time
estimates (e.g., the ‘‘robustness’’ of the inferences to the
prior) by modifying parameters of the prior and examining
the effect on the posterior.

Here, we present a new approach for incorporating
fossil calibration information in the prior for divergence
times for use in Bayesian estimation of divergence times.
A range of flexible priors on fossil ages are combined
with a birth-death process with species sampling to al-
low fossil information from multiple calibration points to
be taken into account jointly when divergence times are
inferred. We analyze real and simulated data sets to eval-
uate the performance of the new methods, especially in
comparison with previous approaches that use hard
bounds.

Theory
The Bayesian Framework

The topology of the rooted tree relating s species is
assumed known and fixed. Aligned sequences are available
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at multiple loci, with the possibility that some species are
missing at some loci. Our combined analysis accommodates
differences in the evolutionary dynamics of different genes,
such as different rates, different transition/transversion rate
ratios, or different levels of rate variation among sites (Yang
2004). We assume that the divergence times are shared
among different loci. We envisage that the methods will
be applied to species data, so that recombination and line-
age sorting are unimportant, and one set of divergent times
applies to all loci. We assume the molecular clock, so that
one rate r applies to all branches of the tree, although dif-
ferent loci can have different rates. Variable rates among
sites within each locus are accommodated in the substitu-
tion model (Yang 1994). Here we illustrate the theory using
one locus with one r. Let D be the sequence data, t be the
s � 1 divergence times, and h be the parameters in the
substitution model and in the prior for divergence times t
and rate r.

Bayesian inference makes use of the joint conditional
distribution

f ðh; t; rjDÞ5 f ðDjt; r; hÞf ðrjhÞf ðtjhÞf ðhÞ
f ðDÞ ; ð1Þ

where f(h) is the prior for parameters h, f(rjh) is the prior for
rate r, f(tjh) is the prior for divergence times, which incor-
porates fossil calibration information, and f(Djt, r, h) is the
likelihood. The proportionality constant f(D) is virtually im-
possible to calculate as it involves integration over t, r, and
h. Instead, we construct a Markov chain whose states are (h,
t, r) and whose steady-state distribution is f(h, t, rjD). We
implement a Metropolis-Hastings algorithm (Metropolis
et al. 1953; Hastings 1970). Given the current state of
the chain (h, t, r), a new state (h*, t*, r*) is proposed
through a proposal density q(h*, t*, r*jh, t, r) and is
accepted with probability

a5min 1;
f ðDjt*; r*Þf ðr*jhÞf ðt*jh*Þf ðh*Þ

f ðDjt; rÞf ðrjhÞf ðtjhÞf ðhÞ

�

3
qðh; t; rjh*; t*; r*Þ
qðh*; t*; r*jh; t; rÞ

�
: ð2Þ

Note that f(D) cancels in the calculation of a. The proposal
density q can be rather flexible as long as it specifies an
aperiodic and irreducible Markov chain. Calculation of
the likelihood follows Felsenstein (1981) for models of
one rate for all sites or Yang (1994) for models of variable
rates among sites. This is straightforward but expensive.
Our focus in this paper is on improving the prior densities
for times f(tjh). The proposal algorithms are briefly
described in Appendix A.

Prior Distribution of Divergence Times

Kishino, Thorne, and Bruno (2001) devised a recursive
procedure for specifying f(tjh), proceeding from ancestral
to descendent nodes. A gamma density is used for the
age of the root (t1 in the example tree of fig. 1), and a Di-
richlet density is used to break the path from an ancestral
node to the tip into time segments, corresponding to
branches on that path. For example, along the path

from the root to the bonobo (fig. 1), the five proportions
(t1 � t2)/t1, (t2 � t3)/t1, (t3 � t4)/t1, (t4 � t5)/t1, and t5/t1
follow a Dirichlet distribution with equal means. Next,
the two proportions (t2 � t6)/t2 and t6/t2 follow a Dirichlet
distribution with equal means. Lower and upper bounds
for ages of fossil calibration nodes, such as t2 and t4, are
implemented by rejecting proposals that contradict such
bounds. This is equivalent to specifying a uniform distri-
bution for ages at calibration nodes. Using this strategy,
Kishino, Thorne, and Bruno (2001) were able to calculate
the prior ratio f(t*jh)/f(tjh) analytically, although not the
prior density f(tjh) itself.

It is difficult to implement flexible priors for fossil cal-
ibration ages using this approach as even the prior ratio does
not then appear analytically tractable. To implement soft
bounds or otherwise flexible priors for fossil calibrations,
we use instead the birth-death process (Kendall 1948) gen-
eralized to account for species sampling (Rannala and Yang
1996; Yang and Rannala 1997). Previous use of the same
model in Bayesian time estimation (Aris-Brosou and Yang
2002, 2003) considered only one fossil calibration and one
gene locus. It may be noted that the birth-death process is
similar to the coalescent process widely used in popula-
tion genetics. However, the latter specifies trees with very
long internal branches, which may be unrealistic for species
phylogenies.

The birth-death process is characterized by the per-
lineage birth rate k, per-lineage death rate l, and the sam-
pling fraction q. Our analysis of the birth-death process is
conditioned on the number of species in the sample, s, and
the age of the root, t1. We partition the ages of the remaining
nodes, t�1 5 ft2, t3, ., ts � 1g, into two types: c nodes for
which fossil calibration information is available (tC) and
s � 2 � c nodes for which no fossil information is avail-
able (t�C); that is, t�1 5 ftC, t�Cg. For the tree of figure 1,
t�1 5 ft2, t3, t4, t5, t6g, tC 5 ft2, t4g, and t�C 5 ft3, t5, t6g.
We specify the joint density of tC and t�C by multiplying
the conditional density of t�C given tC, specified in the
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FIG. 1.—Phylogenetic tree for seven ape species used to explain priors
for divergence times in the Bayesian methods. This tree is also used to
analyze the mitochondrial data set of Cao et al. (1998), with nodes 2
and 4 used as fossil calibrations. The branches are drawn to show posterior
means of divergence times estimated in the Bayesian analysis (table 3,
‘‘All, HKY1 G’’). Estimated times are in millions of years before present.
The HKY 1 G model was assumed to analyze the three codon positions
simultaneously, accounting for their differences.
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birth-death process, with an arbitrary density f(tC), specified
to accommodate uncertainties in fossil dates:

f ðt�1Þ5 f ðtC; t�CÞ5 fBDðt�CjtCÞ3f ðtCÞ: ð3Þ

As mentioned above, all densities are conditional on s and
t1. The conditional density fBD(t�CjtC) can be derived
analytically using the theory of order statistics (Cox and
Hinkley 1974, pp. 466–474) because the coalescent (speci-
ation) times under the birth-death process with species sam-
pling are order statistics from a kernel density (Yang and
Rannala 1997). This formulation makes it possible to
calculate the prior density f(tC, t�Cjh) analytically in the
Markov chain Monte Carlo (MCMC) algorithm, allowing
the use of an arbitrary prior density for the fossil calibration
times tC.

Because fBD(t�CjtC) 5 fBD(tC, t�C)/fBD(tC), we con-
sider the joint density fBD(tC, t�C) first. From Yang and
Rannala (1997), this is determined by the order statistics
of s � 2 random variables from the kernel

gðtÞ5 kp1ðtÞ
vt1

; ð4Þ

where

p1ðtÞ5 1

q
Pð0; tÞ2 eðl�kÞt ð5Þ

is the probability that a lineage arising at time t in the past
leaves exactly one descendent in the sample and

vt1 5 1� 1

q
Pð0; t1Þeðl�kÞt1 ; ð6Þ

withP(0, t) to be the probability that a lineage arising at time
t in the past leaves one or more descendents in a present-day
sample

Pð0; tÞ5 qðk� lÞ
qk1 ½kð1� qÞ � l�eðl�kÞt : ð7Þ

When k 5 l, equation (4) becomes

gðtÞ5 11 qkt1
t1ð11 qktÞ2

: ð8Þ

The joint distribution of the node ages t�15 ftC, t�Cg is

fBDðt�1jt1; sÞ5 fBDðtC; t�Cjt1; sÞ5 ðs� 2Þ!
Ys�1

j5 2

gðtjÞ: ð9Þ

To derive the marginal density fBD(tC), let the ranks of the
ages of the c calibration nodes be i1, i2,., ic among all the
s� 2 node ages, so that tC5 ti1 ; ti2 ;.; ticf g: The cumulative
density function of the kernel is

GðtÞ5
Z t

0

gðxÞdx

5

qk
vt1

3
1� e

ðl�kÞt

qk1 ½kð1� qÞ � l�eðl�kÞt; if k 6¼ l;

ð11 qkt1Þt
t1ð11 qktÞ; if k5 l:

8>>><
>>>:

ð10Þ

Note that G(t1) 5 1. The marginal distribution of tC is thus

fBDðtCjt1; sÞ5
ðs� 2Þ!

ði1 � 1Þ!ði2 � i1 � 1Þ!3 � � �3ðs� 2� icÞ!
3Gðti1Þ

i1�1ðGðti2Þ � Gðti1ÞÞ
i2�i1�1

3 � � �3ð1� GðticÞÞ
s�2�ic

3gðti1Þgðti2Þ � � � gðticÞ:
ð11Þ

In sum, the joint prior of node ages, conditional on t1 and
fossil calibration information (C), is

f ðt�1jt1; s;CÞ5 fBDðt�CjtC; t1; sÞf ðtCjCÞ
5 fBDðt�1jt1; sÞ=fBDðtCjt1; sÞ3f ðtCjCÞ: ð12Þ

Note that fBD(tCjt1, s) is the marginal distribution of the ages
of the calibration nodes tC from the birth-death process,
while f(tCjC) is the prior density specified according to
fossil records.

Finally, if fossil calibration information is available for
the root, f(t1jC) will be the prior density of the root age.
Otherwise, we use a prior based on the probability density
of the age of the root given the number of extant species and
the parameters of the birth-death process

f ðt1jsÞ5 ½Pð0; t1Þð1� vt1Þ�
2
v
s�2

t1
: ð13Þ

The joint distribution of divergence times from the
birth-death process with species sampling is thus

f ðtÞ5 f ðt1; t2;.; ts�1js;CÞ
5 f ðt1ÞfBDðt�CjtC; sÞf ðtCjCÞ

5
f ðt1ÞfBDðt�1jt1; sÞ

fBDðtCjt1; sÞ
3f ðtCjCÞ: ð14Þ

Prior Densities for Fossil Calibration Times

Constraints on the ages of nodes from fossil or geo-
logical data are incorporated in the analysis through the
prior f(tCjC). The separation of the calibration information
f(tCjC) from the birth-death process prior in equation (12)
enables us to specify arbitrarily flexible constraints. We
note that use of fossils to specify calibration information
for molecular clock dating is a complicated process. First,
determining the date of a fossil is prone to errors, such as
experimental errors in radiometric dating or assignment of
the fossil to the wrong stratum. Second, placing the fossil
correctly on the phylogeny can be very complex. For ex-
ample, a fossil may be clearly ancestral to a clade, but
by how much the age of the fossil species precedes the
age of the common ancestor of the clade may be hard to
determine. Misinterpretations of character state changes
may also cause a fossil to be assigned to a wrong lineage.
For example, a fossil presumed to be ancestral may in fact
represent an extinct side branch and is not directly relevant
to the age of the clade concerned. We make no attempt to
deal with such complexities here. Instead, we describe
a method that enables the researcher to incorporate any sta-
tistical distribution to describe uncertainties in the age of
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a calibration node and leave it to the individual to choose an
appropriate prior for the problem at hand.

Most often, calibration information is in the form of
lower and upper bounds. The problem with hard bounds
is that any age outside the prior bounds will have posterior
probability zero, whatever the data. We thus prefer soft
bounds that allow small but positive probabilities outside
the bounds. We have implemented four kinds of con-
straints, as follows.

1. Lower bound (t. tL). We let the density decline toward
zero from t 5 tL according to a power distribution, with
a total probability 2.5%.

f ðtÞ5 0:0253 h
tL

t
tL

� �h�1

; if t, tL;

0:0253 h
tL

if t � tL:

8<
: ð15Þ

We use h 5 log(0.1)/log(0.9) 5 21.85 to achieve a rel-
atively sharp decay (fig. 2a); this means that 90% of the
density left of tL is within 10% of tL (i.e., between 0.9tL
and tL). For the region t � tL, we use an improper
uniform prior. We suggest that one should not use lower
bounds alone in the analysis. An example lower bound is
shown in figure 2a. The node age is at least 12 Myr,
represented by ‘‘.0.12,’’ with one time unit to be
100 Myr.

2. Upper bound (t , tU). We use a uniform distribution
in the interval (0, tU) with 97.5% of probability density
and an exponential decay for t. tUwith probability den-
sity 2.5%.

f ðtÞ5
0:975

tU
; if t, tU;

0:025h e�hðt�tUÞ; if t � tU:

8<
: ð16Þ

We fix h 5 0.975/(0.025tU) so that f(t) is continuous at
t5 tU. Figure 2b shows the density for the upper bound t
, 16 Myr, represented as ‘‘,0.16.’’

3. Lower and upper bounds (tL, t� tU). We use a uniform
distribution in the region tL , t � tU with 95% proba-
bility. On the left side (t , tL), we have a power decay,
while on the right side (t . tU), we have an exponential
decay.

f ðtÞ5
0:0253 h1

tL

t
tL

� �h1�1

; if 0, t � tL

0:95

tU � tL
; if tL , t � tU;

0:0253 h2 expf�h2ðt � tUÞg; if t. tU:

8>>><
>>>:

ð17Þ

We fix h 5 0.95tL/(0.025(tU � tL)) and h2 5 0.95/
(0.025(tU � tL)) so that f(t) is continuous at tL and tU.

(b)"<0.16"

0

2

4

6

8

0.1 0.12 0.14 0.16
t

(c) ">0.12<0.16"

0

5

10

15

20

25

30

0.1 0.12 0.14 0.16
t

(d) " >0.12=0.139<0.16"

0

10

20

30

40

0.1 0.12 0.14 0.16
t

(a) ">0.12"

0

1

2

3

4

5

6

0.1 0.12 0.14 0.16
t

f
(t)

f
(t)

f
(t)

f
(t)

FIG. 2.—Probability densities implemented to describe uncertainties in fossil dates: (a) lower bound, specified as ‘‘.0.12’’; (b) upper bound,
specified as ‘‘,0.16’’ (c) lower and upper bounds, specified as ‘‘.0.12 , 0.16’’ and (d) gamma distribution G(186.9, 1337.7), specified as ‘‘.0.12 5
0.139 , 0.16.’’
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Figure 2c shows the density for the bounds 12 Myr , t
, 16 Myr, represented as ‘‘.0.12 , 0.16.’’

4. Gamma distributed prior. If a most likely age t* is pro-
vided for a calibration node as well as lower and upper
bounds tL and tU, we use a gamma distribution prior. The
density is

f ðt; a; bÞ5 ba
e
�bt

t
a�1

CðaÞ : ð18Þ

Parameters a and b are calculated from tL, tU, and t*. We
consider it important for the prior density to have a pos-
itive (nonzero) mode and thus fix the mode to the most
likely age: (a � 1)/b5 t* with a. 1. We then estimate
a and b by matching as closely as possible tL and tUwith
the 2.5% and 97.5% percentiles of the gamma distribu-
tion. Note that the gamma distribution has a heavier right
tail than left tail, although the distribution approaches
the normal density when both a and b are large. A close
match between the gamma and tL and tU can be achieved
when the most likely value is close to the midpoint of
the two bounds but slightly to the left. The gamma den-
sity of figure 2d is specified by ‘‘.0.12 5 0.139 ,
0.16,’’ indicating that the node age is between tL 5
12 Myr and tU 5 16 Myr and is most likely around
14 Myr. The gamma distribution fitted is G(186.9,
1,337.7), which has the mean 0.14 and tail probabilities
Pr(t , tL) 5 2.24% and Pr(t . tU) 5 2.76%.

We note that in addition to the prior densities of times
for the fossil calibration nodes, there is an intrinsic con-
straint on node ages; that is, the age of an ancestral node
must be older than the age of a descendent node. Thus,
the marginal prior density of the calibration node ages is
not simply the product of the densities discussed above
but is the joint density conditional on these intrinsic con-
straints. The difference between the true joint density and
the product of the marginal densities can be large if the prior
bounds for ancestral and descendent nodes overlap.

We stress that any sensible dating analysis should use
at least one upper bound (maximum age) and at least one
lower bound (minimum age) as fossil calibrations, although
the bounds do not have to be on the same node. A single
gamma distribution also achieves a similar effect as a lower
and an upper bound. Uncertainties in most fossils appear to
be best described by a highly asymmetrical distribution,
with an extremely long right tail extending to earlier times,
like our lower bounds. However, one should not conduct
analysis using such calibrations only; an upper bound
setting the maximum age of a node is essential.

Inference with Infinite Data

It is important to realize that for a specified set of fossil
calibration bounds, progressively increasing the number of
sites in the sequence will not reduce the errors in posterior
estimates of the divergence times to zero. The sequence
data provide information about the distances (or branch
lengths) separating taxa but not the times and rates sepa-
rately. Even if we have infinitely long sequences and
can estimate branch lengths with no errors, uncertainties
will remain in the posterior time estimates.

A Normal Distribution Example

We draw an analogy to a simple problem of estimating
the means of two normal distributions. Suppose the data are
y5 fy1, y2,., yng, an independent and identically distrib-
uted sample of size n from N(l, 1), with mean l5 l11 l2.
We are interested in the marginal posterior l1jy. We assign
priors l1 ; N(�1, v1) and l2 ; N(1, v2). Note that both
in this example and in time estimation, the likelihood
depends on a function of two parameters (the sum of two
means in the normal example and the product of time and
rate in time estimation) but not on the two parameters sep-
arately. Thus, both involve an identifiability problem. It can
easily be shown (see Appendix B) that when n / N,
l1jy;N �11 v1

v11v2
l; v1v2

v11v2

� �
: Thus, even with infinite

sample size n, the variance in l1jy is not zero; indeed, it
may be as large as the prior variance v1, if v2 is large.

Asymptotic Posterior Distribution of Divergence Times

Similarly, we can derive the limiting posterior density
of divergence times and rate when n /N. This is just the
joint prior of times and rate conditional on the distances d1,
d2, ., ds�1, which are the expected numbers of substitu-
tions per site from the ancestral nodes to the present time
and which are constants fixed by the infinite sample size.
The joint prior is f(r, t1, t2, ., ts�1) 5 g(r) f(t1, t2, .,
ts�1). Change variables from (r, t1, t2, ., ts�1) to (r, d1,
d2, ., ds�1) and the prior density of the new variables is

f ðr; d1; d2;.; ds�1Þ5
gðrÞf d1

r
; d2

r
;.; ds�1

r

� �
����@ðr; d1; d2;.; ds�1Þ
@ðr; t1; t2;.; ts�1Þ

����
5

gðrÞf d1
r
; d2

r
;.; ds�1

r

� �
rs�1 : ð19Þ

The posterior of rate r is thus

f ðrjd1; d2;.; ds�1Þ5
f ðr; d1; d2;.; ds�1ÞR
f ðr; d1; d2;.; ds�1Þdr

5
gðrÞf d1

r
; d2

r
; � � � ; ds�1

r

� �
r1�sR

gðrÞf d1
r
; d2

r
;.; ds�1

r

� �
r1�s

dr
: ð20Þ

The denominator is a normalizing constant and can be cal-
culated using numerical integration or the posterior density
can be easily approximated usingMCMC. The posterior for
time tj can be derived by using the transformation tj 5 dj/r:

f ðtjjd1; d2;.; ds�1Þ

}g
dj

tj

� �
3 f d1

dj
tj;

d2
dj
tj;.; ds�1

dj
tj

� �
dj

tj

� �2�s

3
1

tj
: ð21Þ

A few remarks on these results are in order. First, with
infinitely many sites in the sequence, the posterior does not
converge to a point mass on the true parameter values.
Rather, the posterior converges to a one-dimensional distri-
bution, signifying that the uncertainty still remains. In this
limiting case, the branch lengths are estimated without
error, and the enforcement of the molecular clock means
that given the rate all divergence times are fully determined.
Second, the posterior means for all node ages tj will lie on
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a straight line when plotted against the true ages, as will the
percentiles and credibility intervals (CIs). In real data anal-
ysis, one can plot the CIs against the posterior means of
divergence times to assess how well the results fit straight
lines and whether the amount of sequence data is nearly
saturated. Third, if only one fossil calibration is available,
the posterior density for that node will approximately be the
prior on the calibration, while the posterior for other diver-
gence times will be determined though linear transforma-
tions of this prior. With more than one calibration, the
posterior for the age of each calibration node will be more
informative than the prior on that node because information
is pooled across nodes. For a given sequence length n, the
ratio of the CI widths wn/wN, where wn is the CI width
on the rate (or any node age tj) for n sites and wN is the
asymptotic CI width when n / N, measures whether
increasing sequence data further is likely to improve the
precision of posterior time estimates. When the ratio is
close to 1, the sequence data is nearly saturated.

Computer Simulation

We conducted a computer simulation to examine
the performance of soft bounds, in comparison with hard
bounds. We implemented hard bounds by using soft bounds
with a very small tail probability 10�299 instead of 0.025.
Our interest was in the effect of increasing sequence length
on the accuracy of divergence time estimates. Sequence
data were generated using the EVOLVER program in
the PAML package (Yang 1997) and the model tree of
figure 3. The branch lengths conform to a molecular
clock, with the distance from the root to the present time
being one expected nucleotide substitution per site. The JC
model (Jukes and Cantor 1969) was used in both simulation
and analysis. We suppose the rate is 1 nt substitution per
time unit, so that the true ages of nodes 1 (the root), 2,., 8
are 1, 0.7, 0.2, 0.4, 0.1, 0.8, 0.3, and 0.05 (fig. 3). If one
time unit is 100 Myr, then the age of the root is 100 Myr,
and the substitution rate is 10�8 substitutions per site
per year.

For Bayesian divergence time estimation, nodes 1, 2,
4, and 7 are used as fossil calibration nodes (fig. 3). It is
assumed that good fossils are always available for nodes
3, 4, and 7, specified using the bounds (0.1, 0.3) for t3,
(0.3, 0.5) for t4, and (0.2, 0.4) for t7. The root (node 1)
has either a good fossil or a bad fossil, with the bounds
(0.5, 1.5) for the good fossil or (3.5, 4.5) for the bad fossil;
note that the true age is t1 5 1. The prior for divergence
times is specified using the birth-death process with species
sampling, with the birth and death rates k 5 l 5 2, and
sampling fraction q5 0.1. The kernel density for those pa-
rameters (eq. 4) is nearly flat between t15 0 and 1, suggest-
ing that the node ages t�15 t2, t3,., t8 are ordered random
variables from a nearly uniform distribution (see fig. 2 of
Yang and Rannala [1997] for plots of such densities).
The substitution rate is assigned a gamma prior G(2, 2),
with mean 1 and variance ½.

Estimation with Good Fossil Calibrations

Posterior means and 95% CIs for divergence times t1
and t2 (see fig. 3) are plotted against the sequence length n in

figure 4 for the good fossils. Results for all divergence times
t 5 t1, t2, ., t8 are presented for a large data set with 106

sites in figure 5. First, we consider the performance of soft
and hard bounds when only good fossil calibrations are
used. Figure 4 shows that there was essentially no differ-
ence between soft and hard bounds. For both, the true times
were close to the posterior means and well within the 95%
CIs. With n 5 106 sites, the posterior means for the times
t lay on a straight line, so did the 2.5% percentiles and the
97.5% percentiles (fig. 5). For soft bounds, the posterior
mean of t1 was 1.05, with the 95% CI to be (0.77, 1.26)
(fig. 5a), which were very close to the theoretical limits
of 1.06 (0.78, 1.25) when n/N (eq. 25). The correspond-
ing results for hard bounds were 1.05 (0.77, 1.24) for
n 5 106 sites (fig. 5b) and 1.06 (0.78, 1.24) for n / N.
The soft and hard bounds produced nearly identical results.
Note that with no data, the posterior CI for t1 is the prior
interval, approximately (0.5, 1.5), with a width of 1. With
the increase of the sequence length, the posterior CI became
narrower. When n / N, the width of the 95% CI is 0.46,
so that the interval is reduced by only one-half relative to
the prior on the calibration age by using infinitely long se-
quences. Thus, at this limit, every 1 Myr of divergence
time adds 0.46 Myr to the 95% CI. Indeed, the influence
of increased sequence data was essentially saturated at
n 5 10,000 sites, when the 95% CI width was 0.49, very
close to the width 0.46 at n / N.

Estimation with a Bad Fossil Calibration

Divergence time estimates obtained using the bad fos-
sil calibration prior are shown in figure 6. The root age t1

t1: (0.5, 1.5) or (3.5, 4.5) 
t3: (0.1, 0.3)
t4: (0.3, 0.5)
t7: (0.2, 0.4)
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FIG. 3.—A tree of nine species used in computer simulation to exam-
ine the performance of soft and hard bounds. The tree conforms to the mo-
lecular clock, with the amount of sequence change from the root to the
present time to be one substitution per site. For divergence time estimation,
the rate is assumed to be one change per time unit, so that the true times for
nodes 1, 2, ., 8 are 1, 0.7, 0.2, 0.4, 0.1, 0.8, 0.3, and 0.05. Nodes 1, 3, 4,
and 7 are used as fossil calibrations, with good fossils always available for
nodes 3, 4, and 7, but the root (node 1) has either a good fossil (with bounds
0.5, 1.5) or a bad fossil (with bounds 3.5, 4.5).
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was specified to be within the bounds (3.5, 4.5), while the
true age is 1; that is, if the true age is 100 Myr, the grossly
misspecified fossil bounds are from 350 to 450 Myr! In
small data sets with n � 2,000 sites, the soft and hard
bounds produced similar results. The posterior 95% CI
for the root age was close to the prior interval (3.5, 4.5),
while the posterior for other divergence times, such as t2
(fig. 6), was closer to the true times due to the influence
of the three good fossils at nodes 3, 4, and 7. However
in large data sets with n� 3,000 sites, soft and hard bounds
behaved very differently. With soft bounds, the sequence
data and the good prior calibration intervals appeared to
overcome the poor calibration interval at the root so that
posterior estimates of t1 improved considerably (fig. 6).
At n 5 106, the posterior mean for t1 was 1.33, with the
95% CI to be (1.25, 1.41). The theoretical limits at
n / N were 1.33 (1.28, 1.37). Thus, with infinite sites,
all divergence times twould be overestimated by 33%, with
the 95% CI width to be 0.09 Myr for every 1 Myr of true
divergence. The true times were well outside the CIs.

When hard bounds were used, the sequence data and
the fossil calibrations were in direct conflict. With the se-

quence length n . 105, the posterior mean of t1 converged
to the lower bound (3.5), while the 95%CI became virtually
a point (figs. 5d and 6). The posterior mean for t1 is grossly
wrong, and the high precision is misleading. Posterior
means of other divergence times were not seriously wrong
due to the influence of the good fossils. However, their pos-
terior CIs still converged to single points, with misleadingly
high precisions. Thus, the extremely narrow CIs, which are
at the prior bounds, reflect conflicts among fossil calibra-
tions or between fossils and the molecular data rather than
high precision of estimation. Note that with hard bounds the
sequence data and the fossils are in contradiction so that the
limiting theory for n/N cannot be applied. For example,
the infinite data suggest that t15 5t3 (see fig. 3), so with the
upper bound 0.3 for t3, it is impossible for t1 to be older than
1.5. Similarly, consideration of upper bounds at t4 and t7
suggest that t1 should not be older than 1.25 or 1.33. Thus,
the specified lower bound t1 . 3.5 causes contradictions
among the fossils. It is apparent that systematic errors in
fossil calibrations will deflate posterior confidence intervals
for divergence times when using prior calibration intervals
with either soft or hard bounds, although the problem is

Soft bounds

0

0.5

1

1.5

100 1000 10000

t1

100000100000

Hard bounds

0

0.5

1

1.5

100 1000 10000

0

0.5

1

1.5

100 1000 10000 100000

t2

0

0.5

1

1.5

100 1000 10000 100000
Sequence length

Po
st

er
io

r m
ea

n 
an

d 
95

%
 C

I

FIG. 4.—Posterior means and 95% CIs of divergence times t1 and t2 (fig. 3) plotted against the sequence length when all fossils are good. The three
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calibrations are shown in figure 3, with the bound for t1 to be (0.5, 1.5). The true times are t1 5 1 and t2 5 0.7, indicated by the dotted lines. The
results for all times t1–t8 when sequence length is n 5 106 are shown in figure 5a and b.
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much more severe with hard bounds. Residual uncertainties
due to finite sequence length might mask such trends,
however, and should also be examined.

Analysis of Primate Data Sets

We analyze two data sets to test the new algorithms
incorporating soft bounds in fossil calibrations. The first
consists of five genomic contigs from two primates and
two Old World monkeys (Steiper, Young, and Sukarna
2004). We analyze the five loci both separately and as
a combined data set. The second data set consists of
the 12 protein-coding genes from the mitochondrial ge-
nome from seven ape species (Cao et al. 1998; Yang,
Nielsen, and Hasegawa 1998). We merge the 12 genes
into one supergene as they have similar evolutionary dy-
namics but accommodate the huge differences among the
three codon positions. The nucleotide substitution model
of Hasegawa, Kishino, and Yano (HKY) (1985) was used
together with the discrete gamma model of rate variation
among sites, with five rate categories being used (Yang
1994). The model is represented as HKY 1 G and
accounts for unequal transition and transversion rates, un-
equal nucleotide frequencies, and unequal rates among
sites. We assign the gamma prior G(6, 2) with mean 3

and variance 1.5 for the transition/transversion rate ratio
j and the gamma prior G(1, 1) for the gamma shape par-
ameter a. The nucleotide frequencies are estimated using
the observed frequencies.

In the combined analysis (of all five loci in data set 1
and of all three codon positions in data set 2), the model
assumes different rates and different substitution parame-
ters (j, a, and base frequencies) among site partitions
(Yang 1996). The JC model (Jukes and Cantor 1969) is
used for comparison as well. The substitution rate for
each site partition is assigned the gamma distribution
G(2, 2). We used the same priors for both data sets and,
as far as possible, for the computer simulation, to simplify
the description. The data sets are very informative about
substitution parameters such as j, a, and rates, and these
priors had very little effect on the posterior estimates. In
the birth-death process with species sampling, we fix the
birth and death rates at k 5 l 5 2, with the sampling frac-
tion q 5 0.1, as in the computer simulation discussed
above. However, we also used two other sets of values
for k, l, and q to examine the effects of the prior for di-
vergence times on posterior estimation. We implement in
the computer program an option of assigning priors on
k, l, and q and integrating out those parameters using a hi-
erarchical Bayesian approach.
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We conducted initial runs to fine-tune the step lengths
for proposing changes in the Metropolis-Hastings algo-
rithm and to determine how long the Markov chain has
to be run to reach convergence. The results presented below
were obtained by discarding 10,000 iterations as the burn-
in, followed by 100,000 iterations, sampling every five
iterations. Every analysis was conducted by running the
chain at least twice, using different starting values, to
confirm consistency between runs.

The Date Set of Steiper, Young, and Sukarna

We analyzed the data of Steiper, Young, and Sukarna
(2004), which consist of five genomic contigs from four
species: human (Homo sapiens), chimpanzee (Pan troglo-
dytes), baboon (Papio anubis), and rhesus macaque
(Macaca mulatta). The contigs (referred to as A, B, C,
D, and E) range from ;12 to 64 kbp long. See Steiper,
Young, and Sukarna (2004) for the GenBank accession
numbers. The phylogeny for the species is shown in figure 7.

Steiper, Young, and Sukarna (2004) conducted likelihood
ratio tests (LRTs) of the molecular clock for each of the
five contigs. The loci that passed the test were then ana-
lyzed using the quartet dating approach of Rambaut and
Bromham (1998), fixing the age of the human-chimpanzee
divergence at either 6 or 7 Myr and the age of the baboon-
macaque divergence at either 5 or 7 Myr. Thus, each anal-
ysis fails to accommodate uncertainties in fossil dates, but
the range of estimates produced in several analyses fixing
fossil node ages at different constants provides an intuitive
assessment of the effect of fossil uncertainties.

LRTs of the Clock and Maximum Likelihood
Estimation of Divergence Dates

We conducted a simple likelihood analysis to esti-
mate model parameters reflecting basic properties of the
evolutionary process and to obtain results for comparison
with the Bayesian analysis. We apply two LRTs of the mo-
lecular clock and examined the corresponding maximum
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likelihood estimates (MLEs) of divergence times for each
contig (table 1). We note that it is also possible to apply
a Bayesian approach for testing the clock (Suchard, Weiss,
and Sinsheimer 2003). The first test we conducted is the
commonly used LRT of the clock described by Felsenstein
(1981). The alternative no-clock model estimates five
branch lengths on the unrooted tree, while the null-clock
model estimates three node ages on the rooted tree—the dis-
tances from the three internal nodes to the present times. No
fossil information is used in this test of the clock model.
Twice the log likelihood difference is compared with
a v2 distribution with df 5 2. This test examines whether
the human and chimpanzee are equidistant from their com-
mon ancestor and whether the baboon and macaque are
equidistant from their common ancestor (fig. 7). This test
failed to reject the clock in any analysis under either JC
or HKY 1 G (table 1). The second test of the clock uses
the same alternative model, but the null model uses the
two fossil calibrations to calculate the log likelihood, esti-
mating the age of the root and the substitution rate. The test
thus has three degrees of freedom. Steiper, Young, and Su-
karna (2004) used this test, considering all combinations of
the ages at the two calibration nodes 2 and 3 in the tree: (6,
5), (6, 7), (7, 5), (7, 7). If the fossil dates are correct, this test
may be expected to be more powerful. If the fossil dates are
incorrect, this test may mistake the unreliability of the fossil
dates as violation of the molecular clock. We used the fossil
dates (7, 6) to conduct the test (table 1). The clock was re-
jected in contigs B and D and in the combined analysis. In
contig C, the clock was marginally rejected by this test.

Table 1 shows theMLEs of the age of the root obtained
under the clockmodel, assuming that nodes 2 and 3 are 7 and
6 Myr old. Note that the likelihood analysis fails to accom-
modate uncertainties in the fossil calibrations. The estimates
were similar to those obtained by Steiper, Young, and
Sukarna (2004). There were no systematic differences in
the time estimates between contigs that conform to the clock
(A and E) and contigs that violate the clock (B, C, D). Thus,
we use all five contigs in our Bayesian analysis below.

Bayesian Divergence Time Estimation

We then apply the Bayesian method described in this
paper. We used the gamma distribution to specify the two
fossil calibration dates. The age of the human-chimpanzee
divergence was assumed to be between 6 and 8 Myr, with
the most likely date to be 7 Myr (Brunet et al. 2002). We

specified the prior as ‘‘.0.06 5 0.0693 , 0.08’’ and fitted
the gamma distribution G(186.2, 2672.6), so that the prior
mean was 7Myr, and the tail probabilities were Pr(t2, 6)5
2.5% and Pr(t3 . 8) 5 2.5%. The second calibration is
for the divergence of baboon and macaque. We assumed
that the date is between 5 and 7 Myr, most likely at 6
Myr (Delson et al. 2000). This was specified as ‘‘.0.055
0.0591 , 0.07,’’ and the gamma prior fitted was G(136.2,
2286.9), with mean at 6 Myr and tail probabilities 2.6%
and 2.4%. See Steiper, Young, and Sukarna (2004) and
Raaum et al. (2005) for reviews of relevant fossil data.

The posterior means and 95%CIs for divergence times
obtained from the separate and combined analyses are
shown in table 2. The posterior means were virtually iden-
tical to the MLEs under the clock model (table 1) and sim-
ilar to the MLEs obtained by Steiper, Young, and Sukarna
(2004). However, the Bayesian analysis has the advantage
of providing CIs that take into account fossil uncertainties.
The posterior means of the root age ranged from 20 to 38
Myr among the five contigs. The posterior mean in the com-
bined analysis is 33 Myr, with the 95% CI to be (29, 37).

As discussed earlier, in the limit of an infinite number
of sites, the marginal distribution of each divergence time
should be a simple transformation of the posterior density
of r. In that case, the width of the confidence interval for
each divergence time estimate should asymptotically be-
come a linear function of the mean of the posterior. Thus,
a simple way to examine the amount of information in the
sequence data is to regress the mean against the width of the
confidence interval for each node. Plotting the posterior CI
bounds against the posterior means of divergence times for
the data of Steiper, Young, and Sukarna (2004) revealed
a nearly perfect linear relationship (results not shown).

human

chimpanzee

baboon

rhesus macaque

051015202530
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FIG. 7.—The four-species tree for the data of Steiper, Young, and
Sukarna (2004), with branches drawn in proportion to the posterior means
of divergence times estimated from the data (table 2, ‘‘All combined’’).
Fossil calibrations at nodes 2 and 3 are available. See text for details.

Table 1
LRT Statistic of the Molecular Clock and MLEs of
Ages and Rate Under JC and HKY 1 G Models for
the Data of Steiper, Young, and Sukarna

Data
D‘

(test 1)
D‘

(test 2)
Root
Age Rate ĵ â

JC
A 0.76 0.81 28.2 7.4
B 1.88 24.95** 29.6 8.3
C 2.10 4.40* 34.2 5.8
D 0.22 35.64** 34.8 6.1
E 0.68 3.19 37.9 5.6
All concatenated 1.71 49.89** 32.8 6.6
All, combined 1.71 49.89** 32.8

HKY 1 G

A 0.83 0.87 28.9 7.5 4.50 0.82
B 1.60 24.57** 30.4 8.4 4.09 1.24
C 2.17 4.47* 34.6 5.8 3.50 2.83
D 0.14 35.43** 36.1 6.2 4.77 0.62
E 0.49 2.93 39.3 5.6 4.29 0.72
All concatenated 1.31 49.20** 33.8 6.6 4.41 0.79
All combined 1.30 49.17** 33.8 6.7

NOTE.—The null model in test 1 assumes that each tip in the tree is equidistant

from the root (fig. 7). The null model in test 2 assumes the clock and also fits two

fossil calibrations to the tree: 7 Myr for the human-chimpanzee divergence and 6 Myr

for the baboon-macaque divergence. In both tests, the alternative is the no-clock

model, with five branch lengths in the unrooted tree as parameters. Significance

is indicated by * for P , 5% or ** for P , 1%. Rate is 310�10 substitutions

per site per year.
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While there are only three time estimates, we suspect that
the amount of sequence data has nearly saturated, and add-
ing more sites is unlikely to improve the precision of pos-
terior time estimation (compare with the simulation results
above). The 95% CI width had a regression coefficient of
0.23 against the posterior mean, meaning that every million
years of species divergence adds 0.23 Myr to the 95% CI
width.

The two substitution models JC and HKY 1 G pro-
duced very similar results, despite the fact that HKY 1 G
fits the data far better than JC (results not shown). For the
two calibration nodes, the posterior means and 95% CIs
are identical between the two models at this level of accu-
racy. Estimates of rates under the twomodelswere also iden-
tical. This lack of difference between the twomodels appears
partly due to the high similarities of the sequences.

We examined the effect of the prior for divergence
times on posterior time estimation, using the HKY 1 G
model for combined analysis of all five contigs. The
birth-death prior with k 5 l 5 2 and q 5 0.1, used above
(table 2), specifies a nearly flat kernel density between 0 and
t1 5 1 for node ages t�1. We used two additional sets of
parameters to explore the effect of prior tree shape. In
the second set, k 5 1, l 5 10, and q 5 0.1, and the kernel
density has a highly skewed L shape, meaning that the non-
root internal nodes tend to be near the tips with long internal
branches in the tree. In the third set, k5 10, l5 1, and q5
10�4, which produces an inverse L shaped kernel density,
favoring starlike trees. The second set of prior parameters
led to the posterior mean 32.8 Myr with the 95% CI to be
(29.2, 36.8) for the root age t1. The estimates are similar to
those of table 2 and are only slightly younger. The posterior
estimates of ages for the two calibration nodes were youn-
ger as well, but the differences were very small; for exam-
ple, the human-chimpanzee divergence was dated to 5.7
Myr (5.1, 6.4). Under the third prior, the posterior mean
of t1 was 35 Myr with the 95% CI to be (31.1, 39.3).
The ages were slightly older than those of table 2. Overall,
we found that parameters k, l, and q had only minor effects
on posterior time estimates.

We also changed the gamma priors for the two fos-
sil node ages into a uniform distribution with soft lower
and upper bounds, that is, ‘‘.0.06 , 0.08’’ for the
human-chimpanzee divergence and ‘‘.0.05 , 0.07’’ for
the baboon-macaque divergence. The posterior means and
95% CIs became 33.7 Myr (32.1, 35.4) for t1, 6.0 Myr
(5.8, 6.3) for t2, and 7.0 Myr (6.7, 7.2) for t3. The
posterior means were virtually identical to those under the
gamma priors (table 2, ‘‘All combined, HKY 1 G’’), but
the CIs were narrower. If we assume more uncertainty in
the fossil dates, with bounds ‘‘.0.05 , 0.09’’ for the hu-
man-chimpanzeedivergenceand ‘‘.0.05,0.08’’ for theba-
boon-macaque divergence, the posterior estimates became
32.7 Myr (28.0, 37.9) for t1, 5.6 Myr (4.9, 6.5) for t2, and
7.0Myr (5.9, 8.0) for t3. The posterior means did not change
much, but the CIs all became much wider, as expected.

The Mitochondrial Data Set of Cao et al.

This data set consists of all 12 protein-coding
genes encoded by the same strand of the mitochondrialT
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genome from seven species of apes (Cao et al. 1998). The
species are human (H. sapiens), common chimpanzee (P.
troglodytes), bonobo (Pan paniscus), gorilla (Gorilla go-
rilla), Bornean orangutan (Pongo pygmaeus pygmaeus),
Sumatran orangutan (Pongo pygmaeus abelii), and com-
mon gibbon (Hylobates lar). The 12 protein-coding genes
are concatenated into one supergene and analyzed as one
data set as they appear to have similar substitution patterns.
Instead, we accommodate the large differences among the
three codon positions. After removal of sites with alignment
gaps, the sequence has 3,331 nt sites at each codon position.
See Cao et al. (1998) for the GenBank accession numbers.

The species phylogeny is shown in figure 1. Two fossil
calibrations were used in our Bayesian analysis. The first is
for the human-chimpanzee divergence, assumed to be be-
tween 6 and 8 Myr, with a most likely date of 7 Myr. A
gamma prior G(186.2, 2672.6) is used for the node age,
as in the previous data set. The second calibration is for
the divergence of the orangutan from the African apes, as-
sumed to be between 12 and 16Myr, with a most likely date
of 14 Myr (Raaum et al. 2005). The prior is specified as
‘‘.0.12 5 0.139 , 0.16,’’ and the gamma G(186.9,
1337.7) is fitted, with tail probabilities 2.2% and 2.7%.

We analyze the three codon positions separately and
then combined. Table 3 lists posterior means and 95% CIs
for divergence times, substitution rates, and substitution
parameters j and a. The estimates for the three codon posi-
tions were in the order r2, r1, r3, j2, j1, j3, and a2,
a1 , a3, consistent with well-known patterns of conserved
evolution of the mitochondrial genes (see, e.g., Kumar
1996). In the combined analysis, posterior estimates of rates
rs, js, and as (not shown) are very similar to those obtained
in the separate analyses (table 3).

Estimates of divergence times were similar at the three
codon positions, except for the age of the root t1, for which
the first two positions produced younger estimates (;18
Myr) than the third (;23 Myr). The posterior mean of t1
from the combined data was 20 Myr with the 95% CI
(19 and 26 Myr). For the human-chimpanzee divergence
(t4), the estimated age from the combined analysis was
6.1 Myr (5.5, 6.8). In figure 8, the widths (w) of the
95% CIs were plotted against the posterior means of node
ages (t). For the combined analysis, the six points were
nearly perfectly linearly related, suggesting that the amount
of data had nearly reached saturation, and increasing the
sequence length was unlikely to improve the precision of

time estimates. The regression line w 5 0.23t means that
even with infinitely many sites in the sequence every 1
Myr of species divergence would add 0.23 Myr to the
95% CI. In the separate analyses of the three codon posi-
tions, the linear fit was better at the third position and poorer
at the second, indicating that the third positions were more
variable and informative than the second (fig. 8).

The JC model gave somewhat younger estimates for
the root age compared with the corresponding estimates un-
der HKY 1 G. The estimates from the combined analysis
under JC were shown in table 3, where the posterior mean
for the root age was 15 Myr, with the 95% CI to be (13 and
17 Myr). The JC model is ineffective at correcting for mul-
tiple hits and is expected to be unreliable for these data.

We again examined the effect of the prior for diver-
gence times on posterior time estimation, using two alter-
native sets of k, l, and q in the birth-death process model.
The HKY 1 G model is used for combined analysis of all
three codon positions, in comparison with results of table 3
(‘‘All, HKY1G’’). Under the second prior (k5 1, l5 10,
and q5 0.1), the kernel density is L shaped. Posterior time
estimates all became slightly younger, but the effects were
small. For example, the root age had the posterior mean
19.3 Myr with the 95% CI (17.1, 21.8), slightly younger
than 19.8 Myr (17.5, 22.3) (table 3). Under the third set
(k 5 10, l 5 1, and q 5 10�4), the kernel density has
an inverse L shape, favoring starlike trees. The posterior
mean for the root age became 20.5 Myr (18.1, 23.1).
The ages were slightly older than those of table 3. Similarly,
all other divergence times became slightly older with this
prior. The patterns were the same as in the previous data set.
Overall, the different priors on divergence times produced
very similar posterior time estimates in this data set.

We also changed the gamma priors for the two fossil
node ages into uniform priors with soft lower and upper
bounds: ‘‘.0.06, 0.08’’ for the human-chimpanzee diver-
gence and ‘‘.0.12 , 0.16’’ for the orangutan divergence.
With this prior, the posterior means and 95% CIs became
19.3 Myr (17.9, 20.8) for the root age t1, and 6.1 Myr (5.8,
6.4) for the human-chimpanzee divergence t4. The posterior
means were very similar to those under the gamma priors
(table 3 ‘‘All, HKY1G’’), but the CIs were narrower. If we
use looser bounds to allow more uncertain fossil dates, that
is, ‘‘.0.05 , 0.09’’ for the human-chimpanzee divergence
and ‘‘.0.11, 0.18’’ for the orangutan divergence, the pos-
terior means and 95% CIs became 20.2 Myr (17.0, 22.7) for

Table 3
Posterior Mean and 95% CIs of Divergence Times (million years) for the Mitochondrial Data of Cao et al.

Prior
Position pos1,
HKY 1 G

Position pos2,
HKY 1 G

Position pos3,
HKY 1 G All, HKY 1 G All, JC

t1 (root) 1376 (268, 4857) 17.8 (15.3, 20.6) 17.4 (14.7, 20.9) 22.6 (19.6, 26.0) 19.8 (17.5, 22.2) 15.0 (13.4, 16.7)
t2 14.0 (12.0, 16.1) 15.7 (13.9, 17.6) 15.3 (13.5, 17.3) 16.3 (14.5, 18.1) 16.3 (14.6, 18.1) 14.0 (12.6, 15.5)
t3 10.5 (6.9, 14.5) 8.5 (7.3, 9.8) 9.0 (7.5, 10.8) 8.6 (7.6, 9.8) 8.6 (7.6, 9.6) 9.4 (8.5, 10.5)
t4 (HC) 7.0 (6.0, 8.0) 6.3 (5.5, 7.1) 6.5 (5.6, 7.3) 6.2 (5.5, 6.9) 6.1 (5.5, 6.8) 7.1 (6.4, 7.9)
t5 3.5 (0.2, 7.0) 2.7 (2.1, 3.4) 2.4 (1.5, 3.5) 1.9 (1.6, 2.2) 2.0 (1.8, 2.4) 2.9 (2.6, 3.3)
t6 7.0 (0.3, 14.0) 4.8 (3.8, 5.8) 4.8 (3.6, 6.2) 3.7 (3.1, 4.3) 4.1 (3.5, 4.7) 5.2 (4.6, 5.9)
r 1.00 (0.12, 2.78) 0.492 (0.423, 0.571) 0.177 (0.146, 0.212) 3.21 (2.81, 3.68)
j 3 (1.1, 5.8) 12.3 (10.4, 14.4) 9.3 (7.3, 11.8) 34.7 (30.9, 38.9)
a 1 (0.025, 3.69) 0.225 (0.180, 0.279) 0. 047 (0. 004, 0.115) 3.71 (2.64, 5.31)

NOTE.—Divergence times are defined in figure 1. Rate is measured by the number of substitutions per 108 years. HC indicates time human-chimp divergence.
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root age t1 and 6.0Myr (5.0, 6.8) for the human-chimpanzee
divergence. The posterior means did not change much, but
all the CIs became much wider, as expected. The patterns
were the same as in the previous data set.

Discussion

We note that our strategy of specifying priors for di-
vergence times would work if a different kernel density is
used in place of equation (4). The theory of order statistics
can then be used to incorporate arbitrary densities to de-
scribe uncertainties in fossil dates, as in this paper. We pre-
fer the birth-death process with species sampling as it has
a biological interpretation. With three parameters (k, l, and
q), the model can generate different tree shapes as reflected
in the relative node ages and is sufficiently flexible to ac-
commodate various data sets. In particular, the sampling
fraction was noted to dramatically affect the shape of the
tree (Yang and Rannala 1997). While small trees may
not contain enough information to reliably estimate those
parameters, we suggest that varying them to change the tree
shape in the prior provides a convenient way of assessing
the robustness of the posterior distribution of divergence
times to the prior specifications.

We also suggest that it is important to explore the
sensitivity of posterior time estimates to the specification
of fossil calibration priors. Results obtained from both
our simulation study and from analyzing the two real data
sets demonstrate the critical importance of reliable high-
precision fossil calibrations. It does not seem to be suffi-
ciently appreciated that increasing the amount of sequence
data cannot be expected to reduce errors in time estimates to
zero. Both our theoretical analysis of the normal distribu-
tion example and our simulations using good fossils dem-
onstrate that the posterior confidence intervals will typically
be comparable in width to the most precise prior interval
even if infinitely many sites are in the sequence. For readers
dismayed by such results, we offer the consolation that the
problem will become much worse when the molecular
clock is relaxed. We note that Bayesian estimation using
hard bounds sometimes produced very narrow posterior
CIs because age estimates converge to the prior bounds.
Based on these results, we suggest that exceptionally nar-
row confidence intervals may often not represent genu-
inely high precision in posterior divergence time estimates
but rather conflicts among fossil calibrations or conflicts
between fossils and sequences. We suggest that soft bounds
are in general preferred to hard bounds for describing fossil
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positions and in combined analysis of the mitochondrial data set. The six divergence times are shown in figure 1.
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uncertainties. The risk of using zero probabilities in a prior is
well known in statistics, characterized by the Bayesian stat-
istician D. V. Lindley as the Cromwell’s rule: one should
avoid using prior probabilities of 0 (or 1). Such extreme pri-
ors force the posterior probabilities to be 0 (or 1) as well,
whatever be the data. Oliver Cromwell famously wrote to
the synod of the Church of Scotland onAugust 5, 1650, say-
ing ‘‘I beseech you, in the bowels of Christ, think it possible
you may be mistaken.’’ As Lindley (1985, p. 104) puts it, if
you attach a prior probability of 0 to the hypothesis that the
moon is made of green cheese, then even whole armies of
astronauts returning from the moon bearing green cheese
cannot convince you.

Implementation Details and Program Availability

The method developed in this paper is implemented in
the MCMCTREE program in the PAML package (Yang
1997). Fossil information is specified as part of the tree
notation, with ‘‘.’’ and ‘‘,’’ indicating lower and upper
bounds, respectively. In addition, if a most likely age is
specified using ‘‘=,’’ a gamma distribution is fitted to the
node age. For example, the tree notation ‘‘((human, chimp)
.0.065 0.0693, 0.08, (baboon, rhesus macaque). 0.05
, 0.07)’’ specifies that the human-chimpanzee divergence
was between 6 and 8 Myr, with a most likely age at 6.93
Myr. The program will then fit a gamma distribution. The
baboon-macaque divergence is between 5 and 7 Myr, and
the program will use soft lower and upper bounds. Here
time is measured in 100 Myr.
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Appendix A. Proposal Steps in the MCMC

The MCMC algorithm implemented in this paper
involves four proposal steps, each of which updates some
parameters in the Markov chain. These steps are described
briefly below. The reader is referred to earlier papers in
the area, such as Thorne, Kishino, and Painter (1998),
Drummond et al. (2002), and Rannala and Yang (2003),
for more detailed discussions of Bayesian MCMC algo-
rithms. Each of the four steps below involves a fine-tuning
parameter that acts as the step length. Larger steps usually
lead to rejection of most proposals, while small steps lead to
high acceptance proportions. The fine-tuning parameters
should be adjusted to achieve intermediate acceptance pro-
portions, say, between 10% and 80%.

Step 1. Updating Divergence Times at Internal Nodes of
the Species Tree

This step cycles through the internal nodes in the spe-
cies tree to propose changes to the node ages (divergence
times). The node age is bounded by the ages of the daughter

nodes and the mother node. A sliding window is used to
propose the new age.

Step 2. Updating Substitution Rates at Different Loci

For each locus, the current rate is multiplied by a ran-
dom variable around 1; that is, the current rate is expanded
or shrunk by a random constant.

Step 3. Updating Substitution Parameters in the Model

This step is used only if there are parameters in the
substitution model, such as j and a under HKY 1 G. It
is not used under JC. The step cycles through all the loci
and, for each locus, updates the parameter by multiplying
the current value with a random variable around 1.

Step 4. Mixing Step

This step is similar to the mixing step of Thorne,
Kishino, and Painter (1998) and Rannala and Yang
(2003). We generate a random variable around 1: c 5
ee(r � 0.5), where r ; U(0, 1) and e is a small constant.
We then multiply all (s � 1) divergence times by c and
divide all g rates at the g loci by c. The proposal ratio is
c(s � 1) � g. As the branch lengths are not changed, there
is no need to update the likelihood.

Appendix B. Identifiability Problem in a Normal
Distribution Example

Suppose the data y 5 fy1, y2, ., yng are an indepen-
dent and identically distributed sample of size n from a nor-
mal distribution: yi;N(l, 1) with mean l5 l11 l2. In the
Bayesian analysis, we assign priors l1 ; N(�1, v1) and l2
; N(1, v2). We are interested in the posterior (l1, l2)jy or
l1jy in particular. Note that the likelihood depends on l 5
l1 1 l2 but not on l1 and l2 individually, so there is an
identifiability issue. The likelihood is given by the sample
mean: �yjl1; l2;Nðl11l2; 1=nÞ: The posterior density is

f ðl1; l2jyÞ}

exp � 1

2v1
ðl1 1 1Þ2� 1

2v2
ðl2 � 1Þ2� n

2
ð�y� l1 � l2Þ

2
n o

:

ð22Þ

That is,

l1; l2jy;N2

�11
nv1

11 nv1 1 nv2
�y

11
nv2

11 nv1 1 nv2
�y

0
B@

1
CA;

0
B@

v1
11 nv2

11 nv1 1 nv2

�nv1v2
11 nv1 1 nv2

�nv1v2
11 nv1 1 nv2

v2
11 nv1

11 nv1 1 nv2

0
BB@

1
CCA
1
CCA: ð23Þ

When n/N, l1jy;N �11 v1
v11v2

l; v1v2
v11v2

� �
; so that the pre-

cision (1 over the variance) of the density is 1/v11 1/v2, the
sum of the precision of the two priors.

Alternatively, the limiting posterior distribution of
l1 when n / N can be obtained by observing that the
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posterior is simply the prior conditional on l1 1 l2 5 l,
with l fixed by the infinite sample size. Instead of l1 and l2,
we may use l1 and l 5 l1 1 l2 as parameters, with the
prior density

l1

l

� 	
;N2

�1

0

� 	
;

v1 v1
v1 v1 1 v2

� 	� 	
: ð24Þ

The limiting conditional density agrees with that obtained
above by direct calculation,

l1jy5 l1jl;N �11 v1
v1 1 v2

l; v1v2
v1 1 v2

� �
: ð25Þ

The posterior l2jy can be similarly obtained from l2 5
l � l1.
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