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Detection of positive Darwinian selection has become ever more important with the rapid growth of genomic data sets.
Recent branch–site models of codon substitution account for variation of selective pressure over branches on the tree and
across sites in the sequence and provide a means to detect short episodes of molecular adaptation affecting just a few
sites. In likelihood ratio tests based on such models, the branches to be tested for positive selection have to be specified
a priori. In the absence of a biological hypothesis to designate so-called foreground branches, one may test many
branches, but a correction for multiple testing becomes necessary. In this paper, we employ computer simulation to
evaluate the performance of 6 multiple test correction procedures when the branch–site models are used to test every
branch on the phylogeny for positive selection. Four of the methods control the familywise error rates (FWERs), whereas
the other 2 control the false discovery rate (FDR). We found that all correction procedures achieved acceptable FWER
except for extremely divergent sequences and serious model violations, when the test may become unreliable. The power
of the test to detect positive selection is influenced by the strength of selection and the sequence divergence, with the
highest power observed at intermediate divergences. The 4 correction procedures that control the FWER had similar
power. We recommend Rom’s procedure for its slightly higher power, but the simple Bonferroni correction is useable as
well. The 2 correction procedures that control the FDR had slightly more power and also higher FWER. We demonstrate
the multiple test procedures by analyzing gene sequences from the extracellular domain of the cluster of differentiation 2
(CD2) gene from 10 mammalian species. Both our simulation and real data analysis suggest that the multiple test
procedures are useful when multiple branches have to be tested on the same data set.

Introduction

Genome scans for positive selection are proving useful
to further our understanding of gene functions by generat-
ing interesting biological hypotheses for experimental rat-
ification (Clark et al. 2003; Nielsen et al. 2005; Arbiza et al.
2006). The rapid accumulation of sequence data has also
prompted efforts to develop methods for detecting positive
Darwinian selection in protein-coding genes, especially
when it affects only a few codons in the gene and a few
lineages on the phylogeny (Yang and Nielsen 2002;
Forsberg and Christiansen 2003; Bielawski and Yang
2004; Guindon et al. 2004; Yang et al. 2005). In particular,
the branch–site models (Yang and Nielsen 2002; Yang et al.
2005) aim to detect episodic positive selection and have re-
cently received much attention (Zhang 2004; Yang et al.
2005; Zhang et al. 2005). These models use the nonsynon-
ymous to synonymous substitution rate ratio (x) to measure
selective pressure on the protein. As they allow the selective
pressure indicated by the x ratio to vary both across sites in
the gene and across lineages on the tree, these models have
improved power to detect short episodes of positive selec-
tion acting on a few amino acids.

However, the initial branch–site methods proposed by
Yang and Nielsen (2002) were found to be sensitive to
model assumptions and to generate excessive false posi-
tives in computer simulations (Zhang 2004). The models
were later modified (Yang et al. 2005), and a likelihood ra-
tio test (LRT) based on the modified models was found to
have satisfactory accuracy and reasonable power (Zhang
et al. 2005). This modified test is used in the present study.

As stressed by Yang and Nielsen (2002; see also Yang
1998), the branches to be examined for positive selection
in the branch–site test, referred to as the foreground
branches, have to be specified a priori. The LRT then com-
pares a branch–site model that allows positive selection on
the foreground branches with a simpler model that does not.
In some situations, a biological hypothesis may be used to
specify the foreground branches in a straightforward man-
ner. For example, to detect positive selection after gene du-
plication, branches following the duplication event may be
designated as foreground branches. However, such a pre-
specified biological hypothesis may not always be avail-
able. For example, when thousands of genes from the
genome are scanned automatically for positive selection,
it is very unlikely for the same branch to be affected by pos-
itive selection in all genes. Similarly, it may be difficult to
specify the foreground branch when the functions of the
gene under study are poorly understood.

A possible approach then is to test several or all
branches on the tree, with every branch treated in turn as
the foreground branch. However, in such tests of multiple
null hypotheses, the probability of rejecting falsely at least
one of them can be high. The family-wise error rate
(FWER) or the overall type-I error rate is defined as the
probability of false rejection of at least one true null hypoth-
esis in a family of hypotheses. If n independent true null
hypotheses are tested, each at the significance level a,
the FWER is 1 � (1 � a)n. This is as high as 40% when
n 5 10 hypotheses are tested at the a 5 5% level. Several
procedures have been proposed in the statistics literature to
correct for multiple testing to ensure that the FWER is �a.
The simplest is Bonferroni’s correction (Miller 1981, p. 67–
70), according to which one uses a/n as the significance
level to test each of the n hypothesis being tested. This pro-
cedure is simple and applicable to most multiple testing sit-
uations. However, it is known to be conservative, especially
if the multiple hypotheses are strongly correlated. Several
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modifications were proposed in order to improve the power
of the test, including Hochberg’s (1988), Hommel’s (1988),
and Rom’s (1990) methods.

In cases where some null hypotheses are expected to
be wrong and a small percentage of false rejections are tol-
erable, it may be too stringent to control the FWER. In this
case, a useful concept is the false discovery rate (FDR). A
significant result or a rejection of the null hypothesis is
called a ‘‘discovery,’’ and the FDR is defined as the ex-
pected proportion of falsely rejected hypotheses among
all hypotheses that are rejected. The FDR was introduced
by Benjamini and Hochberg (1995), and its power has been
improved by estimating the number of true null hypotheses
(Benjamini and Hochberg 2000; Storey 2002; Storey and
Tibshirani 2003). See Manly et al. (2006) for a review
of FWER, FDR, and some other criteria useful for multiple
test corrections.

We suggest that in tests of positive selection, one nor-
mally does not know whether there exists any lineage at all
under positive selection and that a false rejection of the null
hypothesis of no positive selection on any branch should be
considered a serious error, to be avoided. Thus, it appears to
us necessary to control the FWER when the branch–site test
is applied to multiple branches on the tree. Nevertheless, we
include for comparison 2 methods that control the FDR.

In this paper, we use computer simulation to examine
the FWER and power of 6 multiple test correction proce-
dures when they are combined with the branch–site test of
positive selection to detect episodic selection affecting par-
ticular lineages and sites. Four of the procedures control the
FWER: 1) Bonferroni’s method, 2) Hochberg’s (1988)
method, 3) Hommel’s (1988) method, and 4) Rom’s
(1990) method, whereas 2 of them control the FDR: 5)
method of Benjamini and Hochberg (1995) and 6) an im-
proved version by Storey (2002; Storey and Tibshirani
2003).

We also apply those methods to a real data set, the
mammalian immune gene cluster of differentiation 2
(CD2), previously analyzed by Lynn et al. (2005). CD2
is a cell-surface protein expressed in natural killer cells
and T-cells, major components in the cell-mediated and in-
nate immune system. Positive selection was detected in this
gene by Lynn et al. (2005) using branch and site models that
allow variable selective pressures either over branches or
over sites, but not over both.

Methods
Branch–Site Test of Positive Selection

The LRT evaluated in this paper is the branch–site test
of positive selection of Yang et al. (2005; see also Zhang
et al. 2005) based on the so-called branch–site model A
(table 1). The phylogenetic tree is assumed known. All
branches on the tree are partitioned into 2 categories: the
‘‘foreground’’ branches on which some sites may be under
positive selection and the ‘‘background’’ branches on which
positive selection is not allowed. Four classes of sites are
assumed in the model. Site class 0 includes codons evolving
under purifying selection on all branches, with 0 , x0 , 1.
Site class 1 includes codons that are evolving neutrally

throughout the tree, with x1 5 1. Codons in site classes
2a and 2b are conserved or neutral on the background
branches but become under positive selection on the fore-
ground branches, with x2 � 1. The model involves 4 free
parameters in the x distribution to be estimated from the
data: p0, p1, x0, and x2. This is the alternative hypothesis
in the LRT. The null hypothesis is the same model A but
with x2 5 1 fixed. If the null hypothesis is correct, twice the
log-likelihood difference between the 2 models (2D‘)
should follow an asymptotic distribution that is a 1:1 mix-
ture of 0 and v2

1, often written as 1
2
v2

0 þ 1
2
v2

1 (e.g., Self and
Liang 1987; Yang et al. 2005). The critical values of this
mixture distribution are 2.71 and 5.41 at the 5% and 1%
levels, respectively. To guide against violations of model
assumptions, we also use v2

1 as the null distribution, which
is expected to make the test conservative (Zhang et al.
2005). The critical values of the v2

1 distribution are 3.84
and 5.99 at the 5% and 1% levels, respectively.

Corrections for Multiple Testing

Consider testing n null hypotheses H1, H2, . . ., Hn,
with corresponding p values p1, p2, . . ., pn. The overall
null hypothesis H 5 {H1, H2, . . ., Hn} is rejected if at least
one of the n component hypotheses is rejected. Bonferroni’s
correction makes use of Bonferroni’s inequality, 1 � (1 �
a)n � na, and uses the significance level a/n to test each
hypothesis: any hypothesis Hi is rejected if and only if
pi � a/n. The FWER is thus �a. Bonferroni’s procedure
strictly controls the FWER but is known to be conservative,
especially when many null hypotheses are tested and they
are correlated.

Several less-conservative procedures were proposed in
the statistics literature, which work as follows. The p values
calculated from the data are ranked in ascending order: p(1)

� p(2) � � � � � p(n), with the corresponding component hy-
potheses H(1), H(2), . . ., H(n). The p values are compared
with the threshold p values a#ð1Þ; a

#
ð2Þ; . . . ; a#ðnÞ calculated

according to a certain procedure. If a component hypothesis
with a particular p value is rejected, then all other compo-
nent hypotheses with smaller p values must also be re-
jected. Thus, the correction procedures fall into 2
categories. The step-down procedures start with the small-
est p value, perform tests in order of increasing p values,
and stop as soon as a component hypothesis is not rejected
(and then none of the remaining hypotheses, with greater p
values, is rejected). In contrast, the step-up procedures start
with the largest p value, proceed in order of decreasing p
values, and stop as soon as a component hypothesis is

Table 1
Parameters in Modified Branch–Site Model A (Yang et al.
2005)

Site Class Proportion of Sites Background x Foreground x

0 p0 0 , x0 , 1 0 , x0 , 1
1 p1 x1 5 1 x1 5 1
2a (1 � p0 � p1) p0/(p0 þ p1) 0 , x0 , 1 x2 � 1
2b (1 � p0 � p1) p1/(p0 þ p1) x1 5 1 x2 � 1

NOTE.—Model A is the alternative hypothesis for the branch–site test of

positive selection. The null model fixes x2 5 1.
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rejected (and then all the remaining hypotheses, with smaller
p values, are rejected as well).

In this paper, we evaluate 3 step-up procedures that
control the FWER by Hochberg (1988), Hommel (1988),
and Rom (1990), respectively. The procedures differ in
the calculation of the threshold a#ðiÞ. In Hochberg’s proce-
dure, a#ðiÞ5a=ðnþ 1 � iÞ. Rom’s (1990) procedure is an
improvement over Hochberg’s and uses a more complex
method for calculating a#ðiÞ : a

#
ðnÞ5a; a#ðn�1Þ5a=2 and then

a recursive algorithm is used to calculate the remaining
threshold values:

a#ðn�iþ1Þ5

"Xi�1

j51

aj �
Xi�2

j51

�
i

j

�
ða#n�jÞ

ði�jÞ
#,

i;

for i53; 4; . . . ; n:

ð1Þ

In Hommel’s procedure, H(i) is rejected if p(i) � a/j,
where j is the largest number of t 5 1, . . ., n satisfying
the inequality p(n � t þ k) . ka/t for all k 5 1, . . ., t. If
no such j exists, all null hypotheses are rejected.

Benjamini and Hochberg’s (1995) procedure controls
the FDR. If all null hypotheses are true, it also controls the
FWER. This is a step-up procedure and uses the threshold
value a#ðiÞ5ai=n. It is known to be conservative in control-
ling FDR when some null hypotheses are false; that is, the
FDR achieved by the test is in general lower than the nom-
inal value a (Benjamini and Hochberg 1995). Note that the
p value has a uniform U(0, 1) distribution when the null
hypothesis is true and the test is exact. If all n null hypoth-
eses are true and all n p values are U(0, 1) variables, a pro-
portion a#ðiÞ of them will be less than a#ðiÞ. Thus, na#ðiÞ is an
estimate of the number of false discoveries, and na#ðiÞ=i is an
estimate of the proportion of false discoveries among the i
discoveries when one rejects the first i hypotheses with p
values � a#ðiÞ. The method of Benjamini and Hochberg thus
attempts to reject as many hypotheses as possible, subject to
the constraint that the estimated FDR is na#ðiÞ=i � a: This
reasoning, however, assumes that all null hypotheses are
true. If some of them are false, na#ðiÞ will overestimate
the number of false discoveries, and it is more appropriate
to use n0a#ðiÞ, where n0 , n is the number of true null
hypotheses (Finner and Roters 2001). Recent methods that
improve the power of the procedure of Benjamini and
Hochberg attempt to estimate n0 or the proportion of true
null hypotheses p0 5 n0/n from the observed p values
(Benjamini and Hochberg 2000; Storey 2002). Here, we
use the R-based program QVALUE, available from http://
faculty.washington.edu/;jstorey/qvalue/, and use the de-
fault setting of the program. This uses a cubic-spline smooth-
ing method to estimate p0 for a preset FDR (55%) (Storey
and Tibshirani 2003), with the smoothing parameter k 5
0.0–0.9, at step length 0.01. This is referred to later as
Storey’s method. Black (2004) demonstrated that the
method of Storey (2002) has similar performance to another
method due to Benjamini and Hochberg (2000), which uses
an alternative method to estimate p0. Note that QVALUE is
used here to estimatep0 only to implement an improved FDR
procedure. We did not use the positive FDR (or pFDR) or the
associated q value of Storey (2002). The pFDR is useful
when at least one null hypotheses is known to be wrong,

as in some analyses of microarray gene-expression data (Sto-
rey and Tibshirani 2003). It is inappropriate for branch–site
tests of positive selection, as the error rate (pFDR) is 1 when
all null hypotheses are true, that is, when no branch on the
tree is under positive selection.

Among the procedures considered here, Bonferroni’s
correction is the most conservative or least powerful. The-
oretical analysis and computer simulations demonstrate that
Hommel (1989) and Rom’s (1990) procedures are at least
as powerful as Hochberg’s (1988), but the differences in
power are often marginal (e.g., Dunnett and Tamhane
1992; Olejnik et al. 1997). The methods that control the
FDR, such as those of Benjamini and Hochberg (1995)
and Storey (2002), are expected to have greater power than
the methods that control the FWER (e.g., Olejnik et al.
1997). All methods were initially developed under the as-
sumption that the component hypotheses are independent,
but simulations suggest that they work reasonably well in
manysituationswithcorrelated test statistics (e.g.,Benjamini
and Yekutieli 2001; Storey 2002).

In theory, when their assumptions are satisfied, the
multiple test procedures are expected to work well. How-
ever, when they are applied to test for positive selection in
a phylogenetic analysis, not all the assumptions are met.
First, the correction procedures assume that the component
null hypotheses are independent and each null hypothesis is
tested under the correct model, so that the p values are uni-
formly distributed. However, the branch–site model parti-
tions branches into the foreground and background
categories, and the null hypotheses, which specify different
branches as the foreground or background branches, are not
independent and are indeed incompatible. Second, the
branch–site model makes restrictive assumptions about
the selective pressure on lineages and sites, which may be
seriously violated in real data. As a result, the p values do
not have a uniform distribution, and the standard theory
may not apply. In tests of positive selection, the robustness
of the test to violations of model assumptions has been con-
sidered a very important property (see, e.g., Anisimova et al.
2002; Wong et al. 2004; Zhang 2004; Zhang et al. 2005). We
thus use computer simulation to examine the performance of
the test, in particular its sensitivity to model violations.

Computer Simulations

Two trees, for 4 and 8 taxa (fig. 1), are used to simulate
data sets. The sequence length is 300 codons. The number
of replicates is 1000 for the 4-taxa tree and 200 for the 8-
taxa tree. The transition/transversion rate ratio is fixed at
j 5 2, and the 61 sense codons are assumed to have equal
frequencies, except if stated otherwise.

The 5 branches in the 4-taxa tree are assigned separate
selection regimes (x distribution), whereas the branches
with the same label in the 8-taxa tree are assigned the same
selection regime. Seven simulation schemes are used: NC1,
NC2, NI, SC, SI1, SI2, and SI3 (table 2). Schemes with the
abbreviation ‘‘N’’ assume no sites under positive selection
along any lineage, whereas ‘‘S’’ means that some sites are
under positive selection along certain lineages. The abbre-
viation ‘‘C’’ means that branch–site model A is used to
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simulate the data, so that model A is correct when used to
analyze the data (at least when one of the branches is being
tested), whereas ‘‘I’’ means that the simulation model is
more complex and model A is incorrect. In general, we ex-
pect the test to perform well when the model assumptions
are met, but a good test should be robust to moderate vio-
lations of its assumptions.

Schemes NC1 and NC2 conform to the assumptions of
branch–site model A, with the foreground branch being
branch B5 in NC1 and branch B1 in NC2. In scheme
NI, no site evolves with a constant x ratio throughout
the tree, so that assumptions of model A are violated. This
is used to evaluate the robustness of the LRT under the null
hypothesis of no positive selection.

Schemes SC, SI1, SI2, and SI3 allow positive selec-
tion and are used to examine the false-positive rate on
branches with no sites under positive selection and the
power on branches with some sites under positive selection.
Schemes SI1, SI2, and SI3 also serve the purpose of eval-
uating the robustness of the test when model A is incorrect.
SC is the same as NC1 but with x2 5 4 on branch B5. SI1 is
constructed by modifying the last class of scheme NI to in-
corporate positive selection on branches B5. SI2 is con-
structed by adding to SI1 another site class with positive
selection on branches B1.

Scheme SI3 is a modification of SI1 and is applied to
the 4-taxa tree only (fig. 1a). This assumes that all branches
have some sites under positive selection except B5, which
evolves nearly neutrally. Our interest is on whether the
branch–site test is misled into falsely claiming positive se-
lection on branch B5, when some sites are under positive
selection on all branches except B5. For this scheme, we
also used unequal codon frequencies, estimated from the
CD2 data set, to generate data and use the F3 � 4 model
of codon usage to analyze them.

From previous studies (e.g., Anisimova et al. 2002),
the sequence divergence level is expected to affect the in-
formation content in the data and the power of the test.

Thus, data sets of lower and higher sequence divergences
were simulated under schemes NC1, NI, SC, and SI2 along
the 8-taxa tree (fig. 1) but with the branch lengths multiplied
by a constant: ¼, ½, 2, or 5. We refer to these data sets as the
‘‘¼�,’’ ‘‘½�,’’ ‘‘2�,’’ and ‘‘5�’’ data sets.

Each simulated data set was analyzed to test for pos-
itive selection. The correct tree topology was assumed,
whereas branch lengths were estimated under the assumed
model by maximizing the log likelihood. Every branch was
designated in turn as the foreground branch, and model A
was fitted to the data, first with x2 5 1 fixed and then with
x2 � 1 estimated. The log-likelihood values under the 2
hypotheses were used to calculate the p value for the
branch–site test of positive selection on the designated fore-
ground branch using either the 1

2
v2

0 þ 1
2
v2

1 mixture distribu-
tion or the v2

1 distribution (Yang et al. 2005; Zhang et al.
2005). Thus, 5 or 13 null hypotheses of no positive selec-
tion were tested in every data set for the 4- and 8-taxa trees,
respectively. All results are presented for the significance
level a 5 5%.

All data sets were simulated using the EVOLVER pro-
gram and analyzed using the CODEML program, both from
the PAML package (Yang 1997). As discussed by Yang
and Nielsen (2002), the branch–site model sometimes
causes the numerical optimization algorithm to fail to con-
verge to the maximum likelihood estimates. We thus ran the
same analysis at least twice using different starting values.
The results are considered reliable if 2 runs with the highest
log-likelihood values produced identical results. Use of
good starting values (such as the true parameter values)
is found to be very effective.

Results
Accuracy of the LRT in Simulations without Positive
Selection

Table 3 presents the results obtained under simulation
schemes NC1, NC2, and NI when there is no positive
selection. All significant test results are false positives.
The columns labeled ‘‘B1,’’ ‘‘B2,’’ etc. show the average
false-positive rates for every branch so labeled after apply-
ing the multiple test correction. The FWER is the propor-
tion of simulated data sets in which at least one branch was
tested significant. For schemes NC1 and NC2, the FWER
based on the mixture distribution varied from 4.3% to 5.4%,
close to the nominal 5%. For scheme NI, the FWER
based on the mixture distribution was close to 5% for 4 taxa
but was 8–10% for 8 taxa. Use of the v2

1 distribution re-
duced the false-positive rates for all simulation schemes
to below 5%.

Overall, very small differences were found under these
simulation schemes among the 4 FWER-controlling proce-
dures examined here: those of Bonferroni, Hochberg
(1988), Hommel (1988), and Rom (1990). The 2 FDR-
controlling methods (Benjamini and Hochberg 1995;
Storey 2002) had slightly higher false-positive rates, but
even they produced acceptable FWER.

We also calculated the FWER, that is, the rate of falsely
detecting positive selection on at least one branch, when no
correction for multiple testing is applied. If the p values for

2

3
1

1

2
4

5

a

b

c

d

e

f

g

h

2

1

1

2

3

4

1

2

5

4

3
a

b

c

d

(a) (b)

FIG. 1.—Two unrooted trees for 4 or 8 taxa used to simulate data. (a)
In the 4-taxa tree, each of the 5 branches has its own selection regime
(table 3) and each is tested as the foreground branch. The tree is
represented as ‘‘((a: 0.1, b: 0.2): 0.1, c: 0.3, d: 0.4),’’where the branch
length is measured by the expected number of nucleotide substitutions per
codon, averaged over the site classes. (b) In the 8-taxa tree, branches with
the same label, such as B1, are assumed to evolve under the same
selection regime. When the data are analyzed using the branch–site LRT,
each of the 13 branches is used as the foreground branch and tested
individually. Results for branches with the same label are expected to be
the same, and their averages are presented. All branches have length 0.3
except for branch B5, which has length 0.6.
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component hypotheses are calculated using the mixture
distribution, the FWER is 20–23% among schemes NC1,
NC2, and NI for data of 4 taxa and 42–54% for data of 8
taxa. If the v2

1 distribution is used instead, the FWER

is reduced to 11–12% for 4 taxa and 22–30% for 8
taxa. All these error rates are too high compared with the
nominal 5%, indicating the importance of correction for mul-
tiple testing.

Table 2
Simulation Schemes of Variable Selection Pressures Indicated by v

Site Class Proportion B1 B2 B3 B4 B5

Scheme NC1 (model A with x2 5 1 and B5 to be foreground)
Class 0: conserved 0.6 0.3 0.3 0.3 0.3 0.3
Class 1: neutral 0.2 1.0 1.0 1.0 1.0 1.0
Class 2a: variable on B5 0.15 0.3 0.3 0.3 0.3 1.0
Class 2b 5 class 1 0.05 1.0 1.0 1.0 1.0 1.0

Scheme NC2 (model A with x2 5 1 and B1 to be foreground)
Class 0: conserved 0.6 0.3 0.3 0.3 0.3 0.3
Class 1: neutral 0.2 1.0 1.0 1.0 1.0 1.0
Class 2a: variable on B1 0.15 1.0 0.3 0.3 0.3 0.3
Class 2b 5 class 1 0.05 1.0 1.0 1.0 1.0 1.0

Scheme NI
Conserved class 1 0.3 0.0 0.0 0.1 0.2 0.3
Conserved class 2 0.3 0.5 0.4 0.3 0.2 0.1
Nearly neutral class 0.2 0.7 0.8 0.9 1.0 1.0
Relaxed constraint on B1 and B2 0.2 1.0 1.0 0.1 0.2 0.2

Scheme SC
Model A with x2 5 4 on B5
Class 0: conserved 0.6 0.3 0.3 0.3 0.3 0.3
Class 1: neutral 0.2 1.0 1.0 1.0 1.0 1.0
Class 2a: positive selection 0.15 0.3 0.3 0.3 0.3 4.0
Class 2b: positive selection 0.05 1.0 1.0 1.0 1.0 4.0

Scheme SI1
Conserved class 1 0.3 0.0 0.0 0.1 0.2 0.3
Conserved class 2 0.3 0.5 0.4 0.3 0.2 0.1
Nearly neutral class 0.2 0.7 0.8 0.9 1.0 1.0
Positive selection on B5 0.2 0.3 0.3 0.1 0.2 4.0

Scheme SI2
Conserved class 1 0.3 0.0 0.0 0.1 0.2 0.3
Conserved class 2 0.3 0.5 0.4 0.3 0.2 0.1
Nearly neutral class 0.2 0.7 0.8 0.9 1.0 1.0
Positive selection on 5 0.1 0.3 0.3 0.1 0.2 4.0
Positive selection on 1 0.1 5.0 0.3 0.1 0.2 0.3

Scheme SI3
Conserved class 1 0.3 0.0 0.0 0.1 0.2 0.3
Conserved class 2 0.3 0.5 0.4 0.3 0.2 0.1
Nearly neutral class 0.2 0.7 0.8 0.9 1.0 1.0
Positive selection on B1-4 0.2 5.0 5.0 5.0 5.0 0.8

NOTE.—values of x greater than 1 are shown in bold.

Table 3
Percentage (%) of Significant Replicates (Type-I Error Rate) at the 5% Level Based on the Null Mixture Distribution or
the x2

1 Distribution (in parentheses) when Data are Simulated without Positive Selection

Correction Procedure s B1 B2 B3 B4 B5 FWER

NC1
B, Hg, Hl, R 4 0.7 (0.2) 0.7–0.8 (0.5) 1.2 (0.7) 0.9 (0.4) 0.8–0.9 (0.5) 4.3–4.4 (2.3)
B–H, S 4 0.7–1.2 (0.2–0.5) 0.9–1.3 (0.5–0.7) 1.3–1.8 (0.7–1) 0.9–1.3 (0.4–0.5) 0.9–1.6 (0.5–0.8) 4.4–6.2 (2.3–3.2)
B, Hg, Hl, R 8 0.5 (0.3) 0.5 (0.3) 0 (0) 0.5 (0.3) 0 (0) 5 (2.5)
B–H, S 8 0.5 (0.3) 0.5 (0.3) 0 (0) 0.5 (0.3) 0 (0) 5 (2.5)

NC2
B, Hg, Hl, R 4 1.3 (0.6) 1.2 (0.4) 0.7 (0.4) 1.1 (0.6) 1.1–1.2 (0.7) 5.3–5.4 (2.6–2.7)
B–H, S 4 1.4–1.9 (0.6–0.9) 1.2–1.7 (0.4–0.8) 0.7–1.5 (0.4) 1.3–2.3 (0.6–0.7) 1.1–1.7 (0.7–0.8) 5.4–7.3 (2.6–3.4)
B, Hg, Hl, R 8 0.8 (0.5) 0.3 (0.1) 0 (0) 0.3 (0.3) 0.5 (0.5) 4.5 (3)
B–H, S 8 0.9 (0.5) 0.3 (0.1) 0–0.3 (0) 0.3 (0.3) 0.5 (0.5) 4.5–5 (3)

NI
B, Hg, Hl, R 4 1.1 (0.3) 1.5 (1) 0.8 (0.3) 1.2 (0.7) 0.7–0.9 (0.3) 5.1–5.3 (2.5)
B–H, S 4 1.1–1.9 (0.4) 1.6–2.3 (1–1.1) 0.9–1.6 (0.3–0.4) 1.3–2.2 (0.7–0.8) 0.7–1.6 (0.3–0.4) 5.2–7.5 (2.5–2.8)
B, Hg, Hl, R 8 1.5 (0.9) 0 (0) 0.5 (0.3) 0.3 (0) 1.5 (0) 8 (3)
B–H, S 8 1.9–2.0 (0.9) 0 (0) 0.5–0.8 (0.3) 0.5 (0) 1.5 (0) 9–10 (3)

NOTE.—s is the number of sequences in the tree, whereas branches B1–5 are labeled as in figure 1. The multiple test correction procedures are as follows: B, Bonferroni;

Hg, Hochberg; Hl, Hommel; R, Rom; B–H, Benjamini and Hochberg; and S, Storey. Note that B, Hg, Hl, and R control the FWER, whereas B–H and S control the FDR.
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Accuracy and Power of the LRT with Positive Selection

Schemes SC, SI1, SI2, and SI3 involve positive selec-
tion on some lineages. The results for those schemes are
summarized in table 4. Significant results for foreground
branches not under positive selection are false positives,
and the frequency of such cases is a measure of the accuracy
of the test. Significant results for branches under positive
selection are true positives, and the frequency of such cases
measures the power of the test.

In scheme SC, only branches labeled B5 (fig. 1) have
sites under positive selection. The FWER is then the pro-
portion of replicates in which at least one of the branches
labeled B1, B2, B3, and B4 is claimed to be under positive
selection. When the mixture distribution was used, the
FWER was about 3–5% for 4 taxa and 4.5–6% for 8 taxa,
all close to the nominal 5%. When the v2

1 distribution was
used, the FWER was even lower (1–3%). The different cor-
rection procedures showed very similar performance. The
power or proportion of replicates in which positive selec-
tion was detected on B5 was 8–11% for 4 taxa based on the
mixture distribution and slightly lower (6–7%) based on the
v2

1 distribution. The power was much higher for the 8-taxa
data, at 43–44% for the mixture distribution or 37–39% for
the v2

1 distribution. We suspect that the main reason for this
large difference in power is that branch B5 in the 8-taxa tree
is much longer than B5 in the 4-taxa tree, with 0.6 instead of
0.1 nucleotide substitutions per codon, and can harbor more
substitutions, so that the 8-taxa data may be more informa-
tive. Furthermore, the 8-taxa tree has more background
branches, which may provide more information about
the selection pressures on the background branches.

Scheme SI1 is similar to SC, with only branch B5 un-
der positive selection. In this scheme, branch–site model A
is slightly violated. For 4 taxa, both the FWER and the
power under this scheme were similar to the corresponding
results under scheme SC. For 8-taxa data, the power under
scheme SI1 was slightly higher than under SC (;50% com-
pared with ;43% for the mixture distribution). The FWERs
for the 4 FWER-controlling procedures were 6–7% based
on the mixture distribution, slightly higher than but close to
the nominal 5%. The FWERs for the 2 FDR-controlling
procedures were 10–11% based on the mixture distribution,
higher than 5%, whereas their FDR was 1%, far below 5%.
Use of the v2

1distribution brought the FWER for all correc-
tion procedures down to below 5%.

In scheme SI2, 10% of sites were under positive selec-
tion along branches labeled B5 and another 10% of sites
were under positive selection on branches labeled B1
(fig. 1 and table 2). Although the model used in data anal-
ysis was incorrect, the FWER based on the mixture distri-
bution was close to or below the nominal 5% for all 6
multiple test correction procedures and for both the 4-
and 8-taxa trees. Based on the mixture distribution, the
power to detect positive selection on branch B5 was about
6–9% for the 4-taxa data and 23–29% for the 8-taxa data.
The power to detect positive selection on B5 under this
scheme was lower than under scheme SI1. This difference
in power appears to be due to the fact that only 10% of sites
evolved under positive selection on B5 under scheme SI2
compared with 20% under scheme SI1 (table 2). Based on T
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the mixture distribution, the power to detect positive selec-
tion on branch B1 was about 11–12% for 4-taxa data and
about 10–16% for the 8-taxa data. Positive selection was
correctly detected on at least one of the branches in 16–
22% and 48–56% of replicates for the 4- and 8-taxa trees,
respectively. As under other schemes, use of the v2

1 distri-
bution made all tests more conservative, with reduced false-
positive rates but also reduced power to detect positive se-
lection.

Scheme SI3, suggested by a referee, may be consid-
ered a case of serious violation of the assumptions of the
branch–site model. The same set of sites are under positive
selection along branches B1, B2, B3, and B4 of the 4-taxa
tree, whereas these sites are evolving nearly neutrally along
branch B5. The FWER, which is also the type-I error rate of
falsely detecting positive selection along the single branch
B5, was very low, at 2–4% for the mixture distribution. The
power to detect positive selection along at least one of the
branches B1–B4 was reasonably high, at 35–42%. Use of
the v2

1 distribution reduced both the FWER and the power
for all correction procedures.

The Effect of Sequence Divergence

To study the effect of sequence divergence, we simu-
lated data sets using branch lengths that are ¼, ½, 2, and 5
times those in the 8-taxa tree of figure 1. The tree lengths,
that is, the total number of nucleotide substitutions per
codon along all branches on the tree, are 1.05, 2.1, 4.2,
8.4, 21 for the ¼�, ½�, 1�, 2�, and 5� data sets, re-
spectively. Sequences in the 5� data sets are very diver-
gent, and real sequences at such divergence levels are
expected to be difficult to align reliably. We used simula-
tion schemes NC1, NI, SC, and SI2. The results for the
mixture distribution and the Benjamini and Hochberg
correction are summarized in table 5. The results for the

v2
1 distribution and for other correction procedures are

not shown.
Under scheme NC1, the FWER was 3–5% for the mix-

ture distribution, at or below the nominal 5%. Under
scheme NI, the FWER for the mixture distribution was
close to 5% in the ¼� and ½� data sets but were too high
in the 2� and 5� data sets, at 11.5% and 25%, respectively.
Use of the v2

1 distribution reduced the FWER to 5% for the
2� data sets but it remained too high at 23% for the 5� data
sets. The Bonferroni correction using the mixture distribu-
tion had the FWER 3%, 3.5%, 8%, 9%, and 25% for the
¼�, ½�, 1�, 2�, and 5� data sets, respectively. Thus,
extremely high sequence divergences combined with seri-
ous violation of model assumptions can lead to unaccept-
ably high FWER.

Under scheme SC, the branch–site model was correct.
The FWER was lower than or very close to 5% for all di-
vergence levels. The power to detect positive selection on
B5 was 6.5%, 27%, 43%, 34.5%, and 4.5% for the ¼�,
½�, 1�, 2�, and 5� data, respectively. As expected,
the optimal power was achieved at intermediate divergence
levels. A similar pattern concerning power was apparent
under scheme SI2, when the branch–site model was vio-
lated. The FWER based on the mixture distribution under
SI2 was either lower than or close to 5%.

Empirical Example

We analyzed gene sequences for the extracellular do-
main of the CD2 from 10 mammalian species. The data
were previously analyzed by Lynn et al. (2005). Those au-
thors used site models (Nielsen and Yang 1998; Yang et al.
2000) to detect amino acid residues under positive selection
and found that positive selection affected sites mainly
within the extracellular domain of CD2. Indeed, the CD2
enhances T-cell antigen recognition and lowers the T-cell

Table 5
Percentage of Significant Replicates of Branch–Site Test at the 5% Level at Different Sequence Divergences

Simulation Scheme Divergence B1 B2 B3 B4 B5 p1 FWER FDR

NC1 ¼� 0.4 0.1 0.5 0.3 0.5 3.0
½� 0.5 0.1 0.0 0.5 1.0 4.5
1� 0.5 0.5 0.0 0.5 0.0 5.0
2� 0.3 0.3 0.5 0.0 1.5 4.5
5� 0.1 0.1 0.5 0.5 0.5 3.5

NI ¼� 0.8 0.4 0.3 0.0 1.5 6.0
½� 0.5 0.3 0.3 0.0 0.5 3.5
1� 1.9 0.0 0.5 0.5 1.5 9.0
2� 1.1 2.3 0.3 0.5 0.8 11.5
5� 3.9 4.5 6.0 1.5 11.5 25.0

SC ¼� 0.5 0.4 0.3 0.3 6.5 4.0 0.4
½� 0.6 0.1 0.0 0.3 27.0 3.5 0.3
1� 0.25 0.75 0.5 1.5 43.0 6.0 0.7
2� 0.13 0.13 0.0 0.0 34.5 1.0 0.1
5� 0.13 0.0 0.5 0.25 4.5 2.0 0.2

SI2 ¼� 6.4 0.5 0.0 0.8 4.0 24.5 3.5 0.4
½� 10.8 0.3 0.0 0.0 19.0 41.0 1.0 0.1
1� 13.6 0.4 0.0 1.3 26.0 50.0 3.5 0.5
2� 7.9 0.8 0.0 0.5 10.0 31.0 3.5 0.5
5� 2.8 1.4 0.5 0.0 0.0 9.0 6.5 0.8

NOTE.—Data were simulated on the 8-taxa tree, with branch lengths multiplied by ¼, ½, 1, 2, or 5. p values are calculated using the mixture distribution, with the

Benjamini and Hochberg correction for multiple testing. Values for branches under positive selection are in bold. p1 is the proportion of replicates in which at least one of the

truly selected branches is detected by the test; note that under scheme SI2, one branch labeled B5 and 4 branches labeled B1 (fig. 1b) are under positive selection.
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activation threshold through interaction with its counterre-
ceptor in antigen-presenting cells. The extracellular domain
of CD2 is thus more likely to be under positive selection
than the rest of the protein. To detect lineages affected
by positive selection, Lynn et al. (2005) used the branch
models (Yang 1998). These average the selective pressure
across sites in the whole gene and often have less power
than the branch–site test (Zhang et al. 2005). Here we apply
the LRT based on the branch–site model to test every
branch of the tree for evidence of positive selection.

The maximum likelihood tree was reconstructed using
PHYML (Guindon and Gascuel 2003), and one poorly sup-
ported branch was collapsed, resulting in the topology of
figure 2, which is also the tree used by Lynn et al.
(2005). Table 6 summarizes maximum likelihood estimates
and test statistics for 16 LRTs corresponding to the 16
branches of the tree. Three branches in the tree, that is,
branches 2 (cow), 5 (cat), and 6 (ancestral to the clade in-
cluding pig, cow, horse, and cat), were detected to be under
positive selection at the 5% significance level based on the
mixture distribution by all 6 multiple test correction proce-
dures. By Storey’s (2002) method, branch 3 (ancestral to
pig and cow) was significant at the 5% level as well. When
the more conservative v2

1 distribution was used, branches 2
(cow) and 5 (cat) were significant at the 5% level by all
correction procedures, but the procedure of Benjamini
and Hochberg also detected branch 6, and Storey’s method
detected branches 6 and 3 (ancestral to pig and cow) as well.
As many as 11 branches had estimates x̂2.1; but for the
majority of them the LRT was not significant (table 6). Note
that branches showing the strongest evidence of positive
selections (as indicated by the LRT statistic) may not have
the largest estimate x̂2; as the evidence is influenced not
only by the x ratio but also by the absolute numbers of syn-
onymous and nonsynonymous substitutions.

Lynn et al. (2005) used the branch models to identify
lineages potentially under positive selection. The 1-ratio
model M0 is compared with the free-ratios model, which
assumes that every branch on the tree has a free x ratio
and averages the x ratio across all codons in the gene
for every branch. The test was significant, indicating that
the x ratio is variable among branches. Maximum likeli-
hood estimates of the x ratio were greater than one for
branches 1, 2, 3, 4, 5, and 15. Nevertheless, this branch-

based test does not directly examine whether any x ratio
is significantly greater than one. The branch–site test explic-
itly tests whether some codons in the gene have x ratio sig-
nificantly greater than one. Nevertheless, the results of the 2
analyses are quite similar. Branches 2 (cow) and 5 (cat)
showed the strongest evidence for positive selection in table
6 and also had the highest estimates of the average x ratio
(Lynn et al. 2005). Branch 6 is detected to be under positive
selection in table 6 with an average x ratio at 1.01. Branch 3
(ancestral to pig and cow) also showed marginal evidence
for positive selection, as discussed above, and its average x
estimate was 1.25.

The factors potentially driving such lineage-specific
positive selection in CD2 are not well understood. As dis-
cussed by Lynn et al. (2005), CD2 has different counterre-
ceptors in different species (CD58 in humans, pigs, and cats
but CD48 in rodents). As a result, there may be selective
pressure to optimize the interaction of CD2 with its counter-
receptor. Interactions with viral proteins could also be re-
sponsible for species-specific positive selection driving
adaptive evolution in CD2, as different mammals act as
hosts for different viruses.

Discussion

As mentioned in the Methods section, some of the con-
ditions required for the multiple test correction procedures
are not met when they are applied to test multiple branches
on a phylogeny for positive selection. Nevertheless, our
simulation results suggest that these procedures, when com-
bined with the branch–site test of positive selection, were
reliable and also had reasonable power. We examined the
correlations between test statistics for the true null hypoth-
eses in our simulation and found them to be in general very
low (around or below 0.1), so that the independence as-
sumption made by those procedures were almost right.
Another reason for the low error rates of the procedures
appears to be that the modified branch–site test was

Pig
Cow

Horse
Cat5

3
6

13
9

12

Rhesus Monkey 7
Baboon 8

Human 10
Chimp 11

Rat
Mouse 0.1

1
2

4

15

16

14

FIG. 2.—The maximum likelihood tree for mammalian CD2, with
branches labeled. The branch lengths, measured as the expected number
of nucleotide substitutions per codon, are estimated under the 1-ratio
(M0) model.

Table 6
Maximum Likelihood Estimates and LRT Statistics for the
Extracellular Domain of CD2 Gene

Foreground
Branch 2D‘ p1=2v2

0
þ1=2v2

1
pv2

1
p̂0 p̂1 x̂0 x̂2

1 1.75 0.093 0.186 0.24 0.459 0.15 2.79
2 15.45 0.000 0.000 0.22 0.41 0.15 11.12
3 4.41 0.018 0.036 0.28 0.52 0.16 24.14
4 0.87 0.176 0.352 0.31 0.61 0.17 5.69
5 8.88 0.001 0.003 0.29 0.51 0.18 6.64
6 7.69 0.003 0.006 0.30 0.61 0.17 N
7 0.00 0.475 0.950 0.34 0.66 0.17 12.32
8 0.00 0.475 0.950 0.34 0.66 0.17 1.00
9 0.00 0.475 0.950 0.34 0.66 0.17 1.00
10 0.00 0.475 0.950 0.30 0.58 0.17 2.69
11 0.00 0.475 0.950 0.31 0.60 0.17 2.69
12 0.00 0.475 0.950 0.34 0.66 0.17 1.00
13 2.66 0.051 0.103 0.32 0.64 0.17 38.57
14 1.06 0.152 0.304 0.33 0.63 0.16 7.50
15 0.00 0.475 0.950 0.34 0.66 0.17 1.00
16 0.00 0.475 0.950 0.34 0.66 0.17 1.00

NOTE.—See figure 2 for designation of foreground branches. Branches 2, 5,

and 6 are detected to be under positive selection by all test procedures.
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designed to guide against false positives due to model
misspecification and that as a result the test tends to be con-
servative with the p values smaller than the significance
level.

Corrections for multiple tests are clearly necessary in
such tests of multiple hypotheses, as otherwise the FWER
may be unacceptably high. Both theory and our simulations
confirm that Bonferroni’s correction is the most conserva-
tive, followed by Hochberg’s (1988) method, and then by
Hommel’s (1989) and Rom’s (1990) methods. Neverthe-
less, the difference in either FWER or power among those
4 FWER-controlling procedures was very small in our sim-
ulations. In particular, the simple Bonferroni correction
appeared almost as good as the other less-conservative cor-
rections. The 2 methods that control the FDR, by Benjamini
and Hochberg (1995) and by Storey (2002), had slightly
higher power but also elevated FWER in some simulation
schemes, making them not very attractive.

We observed that extremely high sequence divergen-
ces combined with serious violations of model assumptions
may cause the test to generate excessive false positives,
with the FWER above the significance level. The reasons
for this result are not well understood. We note also that
highly divergent sequences are often accompanied by other
problems as well, such as difficulty in constructing a reliable
alignment, and different base compositions and codon fre-
quencies in different sequences, which indicate a clear vi-
olation of the homogeneity and stationarity assumption of
the codon substitution model (Goldman and Yang 1994). It
may be noted that detection of positive selection through
the x ratio requires information on both synonymous
and nonsynonymous changes, so that neither too similar
nor too divergent sequences are suitable for such analysis.
Highly similar sequences have little variation and little in-
formation content. Extremely divergent sequences on the
other hand involve too many substitutions; in particular,
the synonymous sites may well be saturated. We thus ad-
vise that caution should be exercised when the branch–site
test is applied to highly divergent sequence data.

Furthermore, the branch–site model makes a number
of restrictive assumptions about the evolutionary process of
the gene. In particular, the assumptions about the x values
on branches and across sites are rather rigid, unlikely to be
satisfied by real data. It is not always clear which of the
simplifying assumptions have the greatest impact on the re-
liability (or type-I error rate) of the test. In this paper, we
constructed simulation schemes to examine the perfor-
mance of the test when the selection regime, as indicated
by the distribution of the x ratio over sites, is more complex
than assumed in the model. For example, the null and al-
ternative hypotheses used in the branch–site test assume
only a few site classes and only 2 types of branches
(foreground and background). In our simulation, many
more site classes and branch types were used, and under
some schemes, 2 or 4 branches were simultaneously under
positive selection. The results suggest that the test was ro-
bust to these violations of assumptions. Nevertheless, our
results may not apply to other situations not evaluated in
this study, and caution should be exercised against over-
generalization. We welcome suggestions of simulation
schemes under which the test may be expected to fail, as

understanding such situations may help improve the
selection-detection methods.

Recently, Kosakovsky Pond and Frost (2005) sug-
gested a genetic algorithm to assign branches on the tree
to several classes of x ratios, searching for the best-fitting
model using a genetic algorithm, with the fit of the model
evaluated using Akaike’s Information Criterion (AIC,
Akaike 1974; Sugiura 1978). This approach does not re-
quire a priori specification of the lineages to be tested
but does not appear to be a valid statistical test of positive
selection. First, the AIC may not provide sufficient control
for multiple testing, especially given that even the number
of models explored in the genetic algorithm is unknown.
Second, the procedure is not constructed to test the null hy-
pothesis of no positive selection and may thus generate ex-
cessive false positives; the genetic algorithm may identify
a best-fitting model with estimates of x . 1 for some
branches, but it does not test or reject the null hypothesis
of no positive selection (x5 1). Third, searching for the best
set of foreground branches in a genetic algorithm may be less
appropriate than testing one branch at a time because the
branch–site model assumes that the same set of amino acid
sites are under positive selection along all foreground
branches, an assumption that may be hard to justify when
our knowledge of the selective pressure on the protein is lim-
ited. The branch model does not have this problem, but it has
too little power to be effective in this kind of test.

Another recent study (Guindon et al. 2006) discussed
multiple test correction and calculation of the FDR in tests
of positive selection affecting amino acid sites using the
site-based codon models (Nielsen and Yang 1998; Yang
et al. 2000). The authors discussed 2 approaches: the direct
posterior probability approach of Newton et al. (2004) and
a parametric bootstrap method devised by the authors. The
former is a straightforward use of posterior probabilities
that each site is from the class of positive selection as cal-
culated by the CODEML program (Yang 1997; Nielsen and
Yang 1998), whereas the latter appears to blur the distinc-
tion between Bayesian and Frequentist concepts. Neverthe-
less, all those studies serve to highlight the importance of
multiple test corrections in large-scale analysis of genomic
data.
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