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The star-tree paradox refers to the conjecture that the posterior probabilities for the three unrooted trees for four species
(or the three rooted trees for three species if the molecular clock is assumed) do not approach 1

3
when the data are

generated using the star tree and when the amount of data approaches infinity. It reflects the more general phenomenon
of high and presumably spurious posterior probabilities for trees or clades produced by the Bayesian method of
phylogenetic reconstruction, and it is perceived to be a manifestation of the deeper problem of the extreme sensitivity of
Bayesian model selection to the prior on parameters. Analysis of the star-tree paradox has been hampered by the
intractability of the integrals involved. In this article, I use Laplacian expansion to approximate the posterior probabilities
for the three rooted trees for three species using binary characters evolving at a constant rate. The approximation enables
calculation of posterior tree probabilities for arbitrarily large data sets. Both theoretical analysis of the analogous fair-coin
and fair-balance problems and computer simulation for the tree problem confirmed the existence of the star-tree paradox.
When the data size n / N, the posterior tree probabilities do not converge to 1

3
each, but they vary among data sets

according to a statistical distribution. This distribution is characterized. Two strategies for resolving the star-tree paradox
are explored: (1) a nonzero prior probability for the degenerate star tree and (2) an increasingly informative prior forcing
the internal branch length toward zero. Both appear to be effective in resolving the paradox, but the latter is simpler to
implement. The posterior tree probabilities are found to be very sensitive to the prior.

Introduction

Thanks to the implementation of efficient Markov
chain Monte Carlo (MCMC) algorithms in the computer
program MrBayes (Huelsenbeck and Ronquist 2001), the
Bayesian method of phylogeny reconstruction (Rannala
and Yang 1996; Yang and Rannala 1997; Mau and Newton
1997; Li, Pearl, and Doss 2000) has gained popularity and
is now widely used in analysis of molecular data sets. One
concern raised about the method is that it often produces
extremely high posterior probabilities for trees or clades
(Suzuki, Glazko, and Nei 2002; Cummings et al. 2003;
Douady et al. 2003; Erixon et al. 2003; Simmons, Pickett,
and Miya. 2004). For example, Rannala and Yang (1996)
calculated the posterior probability for a tree of five ape spe-
cies using 11 mitochondrial tRNA genes to be 0.9999. Even
though the tree is sensible, the posterior probability is very
high given that the human-chimpanzee-gorilla relationship
was hard to resolve and that the data set, with 759 bp, is
small. Similarly use of MrBayes in real data analysis has
produced high posterior probabilities, often mostly 100%.
Sometimes different data sets (such as different genes or dif-
ferent taxon samples) produced contradictory phylogenies,
each with strong posterior support (e.g., Bourlat et al.
2006). Simulation studies and empirical data analyses
have repeatedly found that the posterior tree probabilities
tend to be much higher than bootstrap support values
(e.g., Cummings et al. 2003; Douady et al. 2003; Erixon
et al. 2003; Simmons, Pickett, andMiya 2004). This discrep-
ancy in itself may not suggest anything inappropriate about
posterior probabilities, because the interpretation of boot-
strap support values is uncertain (e.g., Berry and Gascuel
1996; Yang and Rannala 2005). Nevertheless, there is wide-
spread concern that posterior probabilities for trees or clades
calculated from many data sets may be too high.

In a simulation study, Suzuki, Glazko, and Nei (2002)
generated data sets under the star tree for four species and
analyzed them using MrBayes, which considers binary
trees only. They found that the posterior probability for
the inferred binary tree was often too high. The study used
a wrong and simplistic model in the analysis, so that the
problem was due in part to model violation. However, ex-
treme posterior probabilities were observed in similar sim-
ulations without model violation (Cummings et al. 2003;
Lewis, Holder, and Holsinger 2005; Yang and Rannala
2005). The failure of the posterior probabilities for the three
binary trees to converge to ð1

3
; 1
3
; 1
3
Þ in large data sets sim-

ulated under the star tree is somewhat counterintuitive and is
called the star-tree paradox (Lewis, Holder, and Holsinger
2005). The concern is not so much that the posterior tree
probabilities differ from ð1

3
; 1
3
; 1
3
Þ as that they are sometimes

either very small or very large when in fact no information
is available to resolve the tree one way or another.

The posterior probability for a tree is the probability
that the tree is true given the data, the prior, and the likeli-
hood (substitution) model. There are thus three possible
reasons for high tree probabilities: (1) errors, including nu-
merical problems in the MCMC algorithm, which cause the
posterior probabilities to be calculated incorrectly; (2) mis-
specification of the substitution model; and (3) misspecifi-
cation and sensitivity of the prior. The first two reasons may
be responsible for high posterior probabilities in some stud-
ies. In particular, use of simplistic and unrealistic models
is known to inflate posterior probabilities for trees (e.g.,
Buckley 2002; Lemmon and Moriarty 2004; Huelsenbeck
and Rannala 2004). However, high posterior probabilities
have also been observed when the first two reasons clearly
do not apply (Yang and Rannala 2005). This article deals
with the third reason and studies the effect of prior speci-
fication on Bayesian phylogenetic inference.

The nature of the problemmay be better understood by
considering the analogous fair-coin problem (Lewis,
Holder, and Holsinger 2005; Yang and Rannala 2005).
Suppose a coin is fair with the probability of heads to be
h0 5 1

2
. We flip the coin n times and observe y heads.

We then calculate the posterior probabilities (P– and Pþ)
for two models that the coin is either negatively or
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positively biased: H–: h , 1
2
and Hþ: h . 1

2
. (It is inconse-

quential whether the true value h 5 1
2
is included in none,

one, or both of the two models since a point value has zero
probability in a continuous distribution.) We assign equal
prior probabilities for H– and Hþ and uniform priors for h in
each model. When n is large, we may expect P– and Pþ to
approach 1

2
, but they do not. Instead P– varies considerably

among data sets (all generated under h0 5 1
2
) even when

n /N. This is referred to as the fair-coin paradox (Lewis,
Holder, and Holsinger 2005). Indeed, the limiting distribu-
tion of P– when n / N is the uniform U(0, 1) (Yang and
Rannala 2005, equation 5). Figure 1 shows the histograms
of P– when n 5 103 and 106. Intuitively, even though the
proportion of heads y/n becomes closer and closer to 1

2
when

n increases, the number of heads y fluctuates around n/2
more and more wildly among data sets. Note that the var-
iance of y/n is 1/(4n), and the variance of y is n/4. The pos-
terior probability P– depends on the number as well as the
proportion of heads.

One has to consider how a sensible Bayesian analysis
should behave in this problem. In a significance test, the P
value has a uniform distribution U(0, 1) if the null hypoth-
esis is true and the test is exact. The true null hypothesis is
falsely rejected 5% of the time if the test is conducted at the
5% significance level. This is the case even with infinitely
large data sets, if a fixed significance level is used. How-
ever, Bayesian statistics is a more ‘‘optimistic’’ and ‘‘ag-
gressive’’ methodology (Efron 1998). In Bayesian model
selection, the posterior probability for the true model, or
the model closest to the truth among the compared models,
should converge to one when the amount of data ap-
proaches infinity. As H– and Hþ are equally distant from
the truth h0 5 1

2
, one may sensibly expect P– and Pþ to con-

verge to 1
2
when n /N. Of course, P– should converge to 1

if h0 , 1
2
(or to 0 if h0 . 1

2
). For the tree problem, the same

argument suggests that if the true tree is the star tree, one
would like the posterior probabilities for the three binary

trees to converge to 1
3
each when the number of sites

n / N. Here I take this position, as did Lewis, Holder,
and Holsinger (2005) and Yang and Rannala (2005). It
has been unclear how posterior tree probabilities behave
in very large data sets or when n / N, because problems
of phylogeny reconstruction are intractable analytically.
Numerical calculation of integrals becomes unreliable in
large data sets while MCMC algorithms are too slow
and too imprecise.

In this article I develop approximate methods to cal-
culate the posterior probabilities (P1, P2, P3) for the three
rooted trees for three species, using data of binary charac-
ters evolving at a constant rate. This is the simplest tree-
reconstruction problem (Yang 2000), chosen here to make
the analysis possible. The approximation allows Bayesian
calculation in arbitrarily large data sets, without the need for
MCMC algorithms. I conduct large-scale simulations,
which confirm the existence of the star-tree paradox; when
the data size n increases, the posterior tree probabilities do
not converge to 1

3
each, but continue to vary among data sets

according to a statistical distribution. This distribution is
characterized. I then explore the sensitivity of Bayesian
analysis to the prior and evaluate two strategies suggested
to resolve the star-tree paradox. The first assigns a nonzero
prior probability for the degenerate star tree (Lewis, Holder,
and Holsinger 2005), and the second uses a prior to force
the internal branch lengths to approach zero when n / N
(Yang and Rannala 2005). The behavior of posterior tree
probabilities in large data sets is predicted by drawing an
analogy with the fair-coin problem, and the predictions
are confirmed numerically by computer simulation.

A synopsis is provided in the next section, which sum-
marizes the major results of this study. The biologist reader
may read this section, as well as the Discussion, and skip
the Mathematical Analysis section.

Biological Synopsis
The Fair-coin and Fair-balance Problems

The fair-coin problem, as described above, has the
same behavior as the fair-balance problem discussed by
Yang and Rannala (2005), and in this study their results
are treated interchangeably. Here the results are summa-
rized for the fair-coin problem. We assign a beta prior
on the probability of heads: h ; beta(a, a), with mean 1

2
and variance 1/(8a þ 4). This is the U(0, 1) prior when
a5 1 but can be highly concentrated around 1

2
if a is large.

As long as a is fixed, the posterior probability P– for the
model of negative bias approaches the uniform distribution
U(0, 1) when the number of coin tosses n / N.

Two strategies (priors) are considered to resolve the
fair-coin paradox. In the first, a in the beta prior increases
with n so that the prior variance of h approaches 0, forcing h
to be more and more highly concentrated around 1

2
. We re-

quire that P– approach
1
2
if the coin is fair, and 1 if the coin

has a negative bias (or 0 if the coin has a positive bias).
These requirements mean that the prior variance for h
should approach 0 faster than 1/n and more slowly than
1/n2. In the second, a nonzero prior probability is assigned
to the degenerate model of no bias H0: h 5 1

2
. Then the
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FIG. 1.—The histogram of P–, the posterior probability that the coin
has negative bias (with the probability of heads h , 1

2
) in a coin-tossing

experiment. A fair coin is tossed n 5 103(s) or n 5 106(d) times. The
number of heads y in n tosses is used to calculate P–, assuming a uniform
prior h; U(0, 1), and the proportion of replicate data sets in which P–

falls into bins of 2% width is calculated to form the histogram. The
number of simulated replicates is 105. The fluctuation for n 5 103 is
mainly due to the discrete nature of the data; for example, in no data sets
is P– in the 0.50–0.52 bin because P– 5 0.5 if y 5 500 and P– 5 0.525
if y 5 499. When n 5 106, the fluctuation disappears and P– has nearly
a U(0, 1) distribution, by which the proportion in each bin is 0.02.
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posterior probability for H0 approaches 1 when n / N,
and the method behaves as desired.

The Star-tree Problem

Defining the Problem

The three binary rooted trees for three species are
shown in figure 2. The data are three sequences of binary
characters, which are assumed to be evolving at a constant
rate (that is, under the molecular clock) (Yang 2000). The
data can be summarized as counts n0, n1, n2, n3 of site pat-
terns xxx, xxy, yxx, and xyx, where x and y are any two dis-
tinct characters, while the total number of sites is
n5
P3

i50 ni. Each binary tree has two branch length param-
eters t0 and t1, measured by the expected number of changes
per site. Intuitively, we can see the three variable patterns
xxy, yxx, and xyx ‘‘support’’ the three binary trees s1, s2, and
s3, respectively. Indeed a likelihood analysis will choose
tree s1 as the maximum-likelihood tree if n1 is greater than
both n2 and n3. Let p0, p1, p2, p3 be the expected site pattern
probabilities, with

P3
i50 pi 5 1. Then tree s1 can be repre-

sented by p0 . p1 . p2 5 p3, with two free parameters,
whereas the star tree is p0 . p1 5 p2 5 p3 (Yang
2000). In a Bayesian analysis, we assign equal probabilities
ð1
3
Þ to the three binary trees, and exponential priors with

means l0 and l1 on the two branch lengths t0 and t1 in each
binary tree (fig. 2).

Star-tree Paradox

Posterior probabilities for the three binary trees (P1,
P2, P3) were calculated from data sets simulated under
the star tree, with n 5 3 � 103, 3 � 106, or 3 � 109 sites
in the sequence. It is found that (P1, P2, P3) does not con-
verge to ð1

3
; 1
3
; 1
3
Þ with the increase of n, confirming the star-

tree paradox. Instead (P1, P2, P3) vary among data sets, ac-
cording to a distribution f(P1, P2, P3), which is independent
of the branch length t in the star tree and of the prior means
l0 and l1 (see fig. 7 below). There are four modes in the
distribution, such that in most data sets, either the three
probabilities are all close to 1

3
, or one of them is close to

1 and the other two are close to 0. Suppose we consider
very high and very low posterior probabilities for binary
trees as ‘‘errors’’ since the true tree is the star tree. In
4.2% (or 0.8%) of data sets, at least one of the three pos-
terior probabilities is . 0.95 (or . 0.99%), and in 17.3%
(or 2.6%) of data sets, at least one of the three posterior
probabilities is , 0.05 (or , 0.01). Those ‘‘error’’ rates
appear too high, given that the data sets are arbitrarily large
and are supposed to represent infinite data sets.

Two Strategies to Resolve the Star-tree Paradox

Further analysis of the tree problem is through an anal-
ogy with the fair-coin problem. Note that the fair-coin and
fair-balance problems are analytically tractable, but the tree
problem is not. My analysis of the tree problem is thus nu-
merical verification by computer simulation, in which only
a finite number of replicate data sets can be generated and
each data set can only be of finite size. To see the analogy, it
is more convenient to consider the site pattern probabilities
as parameters in each binary tree instead of branch lengths
t0 and t1. In the fair-coin problem, the data have a binomial
distribution or multinomial distribution with two cells (cor-
responding to heads and tails). The two models of negative
and positive bias assume that one cell probability is greater
than the other, yet the truth (the fair-coin model) is that they
are equal. In the star-tree problem, the data have a multino-
mial distribution with four cells (corresponding to the four
site patterns). We compare three binary-tree models, which
assume that one of three cell probabilities (for the three vari-
able site patterns) is greater than the other two and that these
other two are equal. The truth (the star tree) is that all three
cell probabilities are equal. In other words, the three binary
trees are represented by s1: p1 . p2 5 p3, s2: p2 . p3 5 p1
and s3: p3. p15 p2, while the true star tree is s0: p15 p25
p3. (The probability p0 for the constant pattern may be con-
sidered an unimportant nuisance parameter, shared by all
four trees.) Both the proportions of heads and tails in the
fair-coin problem and the proportions of the site patterns
in the tree problem converge to their expected probabilities,
with variances proportional to 1/n.

We apply the same two strategies as discussed above
for the fair-coin problem to resolve the star-tree paradox.
The first uses a prior on parameters in the model to force
the binary tree to converge to the star tree, or to force the
three cell probabilities p1, p2, p3 to approach equality (p1 5
p2 5 p3), when n / N. From the analysis of the fair-coin
problem, the prior should force E(p1 – p2)

2 to approach
0 faster than 1/n but more slowly than 1/n2. This means,
as seen by translating the prior on cell probabilities into
a prior on branch lengths t0 and t1, that the mean l0 in
the exponential prior for the internal branch length t0 should
approach 0 faster than 1=

ffiffiffi
n

p
but more slowly than 1/n. This

prediction is only partially confirmed. Simulations confirm
that to resolve the star-tree paradox—that if, for (P1, P2, P3)
to converge to ð1

3
; 1
3
; 1
3
Þ if the star tree is the true tree —

l0 should approach 0 faster than 1=
ffiffiffi
n

p
. Numerical prob-

lems (see later) have prevented confirmation that l0 should
approach 0 more slowly than 1/n for P1 to converge to 1 if
tree s1 is the true tree.

The second strategy assigns a nonzero prior probabil-
ity p0 for the degenerate star tree (p1 5 p2 5 p3). Simula-
tions confirm that when n / N, the posterior probability
for the star tree approaches 1, and this prior indeed resolves
the star-tree paradox. This result is expected from previous
theoretical work. Indeed Dawid (1999) has studied the
asymptotics of Bayesian model selection when the data size
n / N. If all models considered in the Bayesian analysis
are wrong, the probability for the model closest to the truth,
as measured by the Kullback-Leibler divergence, ap-
proaches 1. If one model is correct and all others are wrong,

FIG. 2.—The three rooted trees for three species: s1 5 ((12)3), s2 5
((23)1), and s3 5 ((31)2). Branch lengths t0 and t1 are measured by the
expected number of character changes per site. The star tree s0 5 (123) is
also shown with its branch length t.
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the probability for the true model approaches 1. If several
models are true, the probability for the true model with the
fewest parameters approaches 1. The case where several
models of the same dimension are true is not well specified.
Dawid’s proof assumes that the parameters are unbounded
while here the star tree is at the boundary of the parameter
space of the binary trees. However, the qualitative conclu-
sions appear applicable to the tree problem. Here the data
are generated under the star tree, so that all four trees are
correct, but the star tree has one fewer parameter, and its
posterior probability approaches 1.

Discussion
Does the Star-tree Paradox Exist?

Kolaczkowski and Thornton (2006), referred to here-
inafter as KT06, recently argued that the star-tree paradox
does not exist. The authors performed three analyses, each
of which appears to be invalid or misinterpreted.

First, KT06 simulated data sets with up to n 5 107 sites
using a star tree of four species, with all four branch lengths
equal. The data were analyzed using MrBayes to calculate
posterior probabilities (P1, P2, P3) for the three binary un-
rooted trees without assuming the molecular clock. All five
branch lengths in each binary tree are assigned the uniform
prior U(0, 10). The variance in the posterior probability for
a binary tree, say P1, was initially small, but increased with
the increase of n to a stable value of about 0.06 when n �
103 (KT06, fig. 1b). The standard deviation (SD) of ;0.24
ð5

ffiffiffiffiffiffiffiffiffi
0:06

p
Þ is about the same as that obtained in this article

for rooted trees of three species (0.2498; see figure 8a be-
low). It is likely that these two values are indeed identical
and that the three-species problem of figure 2, studied here,
and the four-species problem with equal branch lengths in
the star tree, studied by KT06, produce the same limiting
distribution f(P1, P2, P3). It is also likely that the distribution
in the four-species case is similarly independent of the
branch length used in the star tree and the upper bound
in the uniform prior for branch lengths in the binary trees.
It would be interesting to know whether this invariance
holds also when the four branches in the star tree have dif-
ferent lengths. At any rate, the failure of P1 to converge to

1
3

confirms the star-tree paradox. KT06 appeared to have mis-
taken a stable variance for zero variance when they claimed
that their results disproved the star-tree paradox, and they
were incorrect to conclude that ‘‘With infinite data, poste-
rior probabilities give equal support for all resolved trees,
and the rate of false inferences falls to zero.’’ KT06 emphat-
ically criticized the speculation of Lewis, Holder, and
Holsinger (2005) that ‘‘Bayesian analyses become increas-
ingly unpredictable’’ with the increase of data size when the
true tree is the star tree. Technically, this speculation is con-
firmed rather than refuted by the result of KT06 (and by the
results of this study), as the variance of P1 continues to
increase with n, even though the amount of increase ap-
proaches zero (KT06, fig. 1b). Clearly, the variance cannot
increase without limit, the absolute maximum being 2/9
(with the SD to be

ffiffiffi
2

p
=35 0.4714), achieved if the poste-

rior probabilities (P1, P2, P3) take only three sets of values,
each with probability 1/3: (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Second, KT06 examined the so-called type-I error rate
in finite data sets of 5,000 sites, and find that when the true
tree is the star tree, the posterior probability for a binary tree
is . 95% (or . 99%) in less than 5% (or 1%) of data sets.
The same pattern holds also for rooted trees in this study,
although the posterior probability for a binary tree is, 5%
(or , 1%) in more than 5% (or 1%) of data sets, as men-
tioned above. It is debatable whether such ‘‘error’’ rates are
acceptable if they persist in arbitrarily large data sets. While
it is appropriate to study so-called Frequentist properties of
a Bayesian method, KT06 confused Bayesian posterior
probabilities with Frequentist P values when they claimed
that ‘‘posterior probabilities never produce strong support
for incorrectly resolved phylogenies more often than they
should.’’ Bayesian statistics in general does not provide
a guaranty of its performance under Frequentist criteria.
KY06 also claimed that the ‘‘type-I’’ error rate decreased
when n increased from 103 to 107 (KY06, fig. 2b). This re-
sult is inconsistent with the present study and appears to
contradict their finding of an increasing and asymptotically
stable variance in P1. The result may be due to numerical
problems in the MCMC algorithms in the analysis of KT06.

Third, KT06 used MrBayes to analyze a data set
consisting of the expected probabilities of the site patterns
calculated under the star tree. This ‘‘infinite’’ data set gave 1

3
as the posterior probability for each binary tree. However,
analysis of this average site is not meaningful, as it ignores
the variation among data sets and the fact that the number of
sites as well as the proportions of site patterns influences
Bayesian analysis. In the fair-coin problem, the data set con-
sisting of 1

2
heads and 1

2
tails would produce P� 5 Pþ 5 1

2
,

but this average coin toss tells us nothing about the behavior
of the Bayesian method when n / N (see fig. 1).

The position of KT06 toward the star-tree paradox is
marred by errors in the analysis. The paradox concerns the
performance of the Bayesian method in large or infinite data
sets, so that finite data sets are not the real issue. Neverthe-
less the ‘‘error’’ rates in finite data sets are higher than
KY06 suggested, because the method produced very small
posterior probabilities too often (see above). KT06 ex-
pected the ‘‘error’’ rate to reduce to zero when the data size
n / N, with the posterior tree probabilities approaching
ð1
3
; 1
3
; 1
3
Þ. This is the behavior of a sensible Bayesian analysis

assumed by Lewis, Holder, and Holsinger (2005) and Yang
and Rannala (2005), although KT06 failed to realize that the
Bayesian method does not behave in this way.

Priors and Bayesian Phylogenetics

It is a curious fact that to resolve the fair-coin paradox,
the prior probability p0 on the degenerate model of fair coin
(H0: h5 1

2
) can be constant and independent of the data size,

while the prior on parameter h (the probability of heads) has
to be increasingly concentrated around h5 1

2
, depending on

the data size n. The difference appears to be due to the fact
that any point mass has probability zero in a non-degenerate
continuous distribution. Nevertheless, both may be viewed
as priors on parameter h in models of negative and positive
biases (H– and Hþ) without considering H0 in the analysis.
The degenerate-model prior is equivalent to assigning
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a mixture distribution on h, with a component at 1
2
in pro-

portion p0 and another component from a continuous dis-
tribution in proportion 1 – p0. Similarly the star-tree prior
p0 is equivalent to a mixture-distribution for internal branch
lengths in binary trees (with the star tree excluded from the
Bayesian analysis), with a component at zero in proportion
p0 and a component from the continuous exponential dis-
tribution in proportion 1 – p0. Implementation of the data
size-dependent prior is simpler as it requires only a change
to the prior mean for internal branch lengths (Yang and
Rannala 2005). The star-tree prior is more complex because
bifurcating and multifurcating trees have different numbers
of branch length parameters so that algorithms such as re-
versible jump MCMC (Green 1995) are needed to deal
with models of different dimensions (Lewis, Holder, and
Holsinger 2005).

Both the star-tree prior and the data size-dependent
prior may be criticized. Whether truly simultaneous speci-
ation events ever occur in nature is debatable, and if they do
not, assigning a prior probability to a model known to be
false runs into a conceptual difficulty. Similarly, the use of
data size (although not the data themselves) for prior spec-
ification may appear non-Bayesian. The prior is supposed to
reflect information concerning the parameter before the data
are analyzed and should ideally be independent of the data.
Nevertheless, this ideal is often hard to achieve in ‘‘objec-
tive’’ Bayesian statistics when little information is available
about the parameter. Both Jeffreys’s prior (Jeffreys 1961)
and the reference prior (Bernardo 1979) depend on the like-
lihood function or the experimental design. One may ask
why one’s prior ignorance concerning a parameter should
depend on how one conducts the experiment to find out
about the parameter. An extreme case is Bernardo’s
(1980) use of the data (not just data size) to specify the
prior, although the idea did not appear to be warmly re-
ceived in the ensuing discussions. Data size-dependent pri-
ors were discussed by Bartlett (1957), Davison (2003, pp.
586–587), and Cox (2006, pp. 42–43, 106–107), as a pos-
sible way of resolving Lindley’s paradox (see below). One
may argue that if data sets of such large sizes are needed
to resolve the tree, the internal branch must be very short,
so that it may be sensible to assume increasingly shorter
internal branches in the prior in larger data sets. Yang
and Rannala (2005) also discussed the use of empirical
estimates of internal branch lengths from real data sets to
specify the prior, and pointed out that almost all of the pos-
sible phylogenetic trees are wrong, and that most internal
branch lengths in wrong trees are estimated to be zero.

The biologist reader should be aware that there have
been longstanding fundamental disagreements among statis-
ticians concerning principles of statistical inference. In par-
ticular, model selection is a difficult area for both Bayesian
and Frequentist statistics, and it is also an area where the
two approaches can draw very different conclusions from
the same data. A brief overview of this controversy is pro-
vided in Yang (2006, §5.1.3). As phylogeny reconstruction
unfortunately falls into this class of difficult statistical in-
ference problems (e.g., Yang et al. 1995), biologists may
have to think about what constitutes a sensible behavior
in a Bayesian phylogenetic analysis. Six decades ago, Egon
S. Pearson (1947) wrote that ‘‘Hitherto the user has been

accustomed to accept the function of probability theory laid
down by the mathematicians; but it would be good if he
could take a larger share in formulating himself what are
the practical requirements that the theory should satisfy
in application.’’ This advice may be useful even today.

Almost all controversies surrounding Bayesian infer-
ence concern the prior, which is also the focus of this study.
For the tree problem, one may take the position that the
prior implemented in current computer programs is appro-
priate and then accept whatever properties Bayesian infer-
ence under the prior possesses. The expectation for the
posterior tree probabilities to approach ð1

3
; 1
3
; 1
3
Þ when

n / N is then seen as false intuition and no paradox re-
mains. This position may be natural to some Bayesian sta-
tisticians. Another position is to judge the method by its
statistical properties. In the ‘‘objective’’ Bayesian method,
it is a common practice to specify the prior such that the
resulting Bayesian inference is deemed reasonable (e.g.,
Jeffreys 1961). I have taken that position in this study, mo-
tivated by the observation that the posterior tree probabil-
ities are often too extreme. Two a priori criteria are set up:
(1) if the true tree is the star tree, the probabilities for the
three binary trees should approach ð1

3
; 1
3
; 1
3
Þ when n / N,

and (2) if a binary tree is the true tree, its posterior proba-
bility should approach 1. Two strategies of prior specifica-
tion are then found to meet those criteria.

Based on the perception that the posterior probabilities
for trees or clades are often too high, some authors (e.g.,
Suzuki, Glazko, and Nei 2002; Simmons, Pickett, andMiya
2004) argued that the Bayesian posterior probabilities for
trees or clades are not trustable, and alternative methods
such as the bootstrap should be used to assess the reliability
of estimated trees. Similarly Douady et al. (2003) suggested
the bootstrapped Bayesian analysis, in which the Bayesian
method is used to analyze bootstrap pseudo-data sets. The
method then involves prohibitive computation and is also
a strange mix of Bayesian and Frequentist methodologies.
Instead, we consider the default priors implemented in cur-
rent computer programs to be inappropriate and attempt to
specify better priors to produce more reasonable posterior
tree probabilities. Lewis, Holder, and Holsinger (2005) also
emphasized the fact that a number of realistic evolutionary
models have been implemented in the MrBayes program,
making the method an attractive option for analyzing
ever-increasing genetic data sets.

Mathematical Analysis
Bayesian Analysis of the Fair-balance Problem

The Fair-balance Problem

In the fair-coin problem, one may also assign an infor-
mative prior on the probability of heads: h; beta(a, a). The
beta distribution with a. 1 has a mode at 1

2
, so that the coin

is more likely to be nearly even than seriously biased.
For large a, beta(a, a) can be approximated by a normal
distribution with mean 1

2
and variance 1/(8aþ 4). The likeli-

hood, given by the binomial probability of the number of
heads y ; bi(n, h), is approximated by the normal density
y/n ; N(1

2
, 1/(4n)). The posterior h|y ; beta(y þ a, n – y þ

a) can be approximated by the normal distribution with
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mean yþa
nþ2a and variance

ðyþaÞðn�yþaÞ
ðnþ2aÞ2ðnþ2aþ1Þ. (Note that the var-

iance is approximately proportional to 1/n if n is large and a
is fixed.) Thus we redefine h – 1

2
as the parameter, use the

normal distribution to approximate the prior, the likelihood,
and the posterior; and restate the problem as the following
fair-balance problem. Suppose the data consist of n inde-
pendent observations y1, y2, . . ., yn, with yi ; N(h, r2),
where h is unknown and r2 is known. The yis may be mea-
surement errors on a balance. Let �y be the sample mean. The
two models are then H�: h, 0 and Hþ: h. 0. In the prior
we assign equal probabilities (1

2
) for each model, and h ;

N(0, nr2), truncated to the appropriate range in each model.
The posterior of h is then given by hj�y

; N
�

�y
1þ1=ðnnÞ ;

r2=n
1þ1=ðnnÞ

�
, from which one can get the

posterior probability for model H� as

P� ¼ PrðH�j�yÞ ¼
Z 0

�‘

f ðhj�yÞ dh ¼ U �
ffiffiffi
n

p
�y=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=ðnnÞ
p

 !
;

ð1Þ
where U(�) is the cumulative distribution function (c.d.f.)
of the standard normal distribution (Yang and Rannala
2005, equation 6). Note that

ffiffiffi
n

p
�y=r is a random variable

from the standard normal distribution.
Suppose the true parameter is h0. As �y varies among

data sets as �y ; N(h0, r
2/n), P� has the density

f ðP�jh0Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nn

s

� exp

8<
: 1

2
½U�1ðP�Þ�2 �

1

2

"
U�1ðP�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nn

s
þ

ffiffiffi
n

p
h0

r

#29=
;; 0,P�,1; ð2Þ

where U�1(�) is the inverse c.d.f. of the standard normal
distribution (Yang and Rannala 2005, equation 12). This is
a function of P�, nn, and

ffiffiffi
n

p
h0=r.

If the balance is fair and the true parameter h0 5 0,
equation (2) becomes

f ðP�Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

nn

s
� exp

�
� 1

2nn

�
U�1ðP�Þ

�2�
; 0,P�,1

ð3Þ

(Yang and Rannala 2005, equation 13). This is a function of
P– and nn. If n is a constant, we have nn/N and f(P–)/ 1
when n / N, so that P– converges to the uniform
distribution U(0, 1) (see fig. 1). This is called the fair-balance
paradox (Yang and Rannala 2005). We would like P� to
approach 1

2
when n / N, but it fails to do so.

The Data Size-Dependent Prior

One of the ideas suggested in the discussions of
Lindley’s paradox (Lindley 1957, see below) is to let the
prior be increasingly informative with the increase of the
data size. Consider n 5 c/nc as a prior for h, as a possible
way for resolving the fair-balance paradox. From equation
(3), it is clear that if 0, c, 1, P– still converges to U(0, 1),
even though this prior forces h to be closer and closer to
0 with the increase of n, converging to a point mass at
h 5 0 in the limit. If c 5 1 so that n 5 c/n, f(P–) peaks
at P– 5 1

2
, but the distribution does not degenerate to a

point mass at 1
2
(equation 3). Figure 3 shows a few densities

when c 5 nn5 0.1, 1, and 2. Note that in this case the prior
h ; N(0, cr2/n) and the likelihood �y ; N(h, r2/n) have
the same ‘‘precision’’ about h. When c . 1, f(P�) / 0 for
all values of P� except P� 5 1

2
; that is, P� converges to

a point mass at 1
2
. Thus to avoid the fair-balance paradox,

we should have c. 1 in n5 c/nc; the variance in the prior
of h should approach 0 faster than 1/n.

The case of h0 6¼ 0 (equation 2) is summarized in table 1.
The statement of Yang and Rannala (2005, pp. 468–469) that
P– converges to 1 if h0, 0 (or to 0 if h0. 0) irrespective of c
in n 5 c/nc is inaccurate. Indeed the behavior of f(P�) de-
pends on c. To ensure that P�/ 1 if h0, 0 (and P�/ 0 if
h0 . 0), we require c , 2. Any value of c in the interval
(1, 2) will produce sensible Bayesian inference by the criteria
used here, and a smaller c corresponds to a more powerful
analysis, as it produces higher posterior probabilities for the
true model if the coin is biased. Figure 4a shows that the
posterior probability P� calculated from a data set may be
very sensitive to the prior or the value of c. Furthermore,
while f(P�) converges to a point mass at 1, 1

2
, and 0 if the

true h0 , 0, 5 0, and . 0, respectively, the rate of conver-
gence depends on c. Curves a & b in figure 5 show the den-
sity when h05 0 and 0.1 at n 5 1,000 when c5

ffiffiffi
2

p
is used.

The Degenerate-Model Prior

Another strategy is to assign a nonzero probability to the
degenerate model H0: h 5 0 (Lewis, Holder, and Holsinger
2005). The three models H0, H�, and Hþ then have the prior
probabilities p0, (1 – p0)/2, and (1 – p0)/2. The unknown
parameter in H� and Hþ is assigned the prior h ; N(0, nr2),
truncated to the appropriate range, where n is a constant.

The likelihood is given by �y|h ; N(h, r2/n). The mar-
ginal likelihoods are

FIG. 3.—The density f(P–) for the posterior model probability P– in
the fair-balance problem when the prior is h; N(0, nr2) with n 5 c/n.
The true h 5 0. The plots correspond to c 5 nn 5 0.1, 0.5, and 2,
calculated using equation (3).
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f ð�yjH0Þ5 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2=n

p �exp �n�y2

2r2

� �
;

f ð�yjH�Þ5
Z 0

�‘

2ffiffiffiffiffiffiffiffiffi
2pnr2

p e
� 1
2nr2h

2

� 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2=n

p exp �nð�y�hÞ2
2r2

� �� 	
dh

5 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ðnþ1=nÞ

p exp � n�y2

2r2ð1þnnÞ

� �
�U � n�y

r
ffiffiffiffiffiffiffiffiffiffi
nþ1=n

p

 �

;

f ð�yjHþÞ5 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ðnþ1=nÞ

p exp � n�y2

2r2ð1þnnÞ

� �
�U n�y

r
ffiffiffiffiffiffiffiffiffiffi
nþ1=n

p

 �

:

ð4Þ

The posterior probabilities for the three models are

P05PðH0j�yÞ51
Dp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

p
exp � n�y2

2r2ð1þ1=ðnnÞÞ

� �
;

P�5PðH�j�yÞ51
Dð1� p0ÞU �

ffiffi
n

p
�y

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ1=ðnnÞ

p

 �

;

Pþ5PðHþj�yÞ51
Dð1� p0ÞU

ffiffi
n

p
�y

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ1=ðnnÞ

p

 �

; ð5Þ

where D 5 p0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

p
exp
�
� n�y2

2r2½1þ1=ðnnÞ�

�
þ ð1� p0Þ.

Note that P0, P–, and Pþ are functions of
ffiffiffi
n

p
�y=r, p0, and nn.

When the sample mean �y varies among data sets ac-
cording to N(h0, r

2/n), with density

/ð�yjh0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2=n

p exp � n
2r2ð�y � h0Þ2

n o
; ð6Þ

the posterior model probabilities will have a joint density
f(P0, P–, Pþ). This appears intractable. However, the
marginal density of P0 can be derived as follows. Rewrite
P0 in equation (5) as

P0¼ 1þ1�p0
p0

1ffiffiffiffiffiffiffiffi
1þnn

p �exp n�y2

2r2ð1þ1=ðnnÞÞ

� �� 	�1

¼ 1þaeb�y2
h i�1

;

ð7Þ

with a 5 1�p0
p0

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

p
and b 5 n=½2r2ð1þ 1=ðnnÞÞ�.

Any P0 in the interval (0, 1/(1 þ a)) corresponds to two �y:

�yi5±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b
log

1=P0 � 1

a

r
; i 5 1; 2: ð8Þ

For each of them, the Jacobi determinant is

P09ð�yiÞj j ¼ dP0

d�yi

����
���� ¼ aeb�y2i � 2bj�yij

ð1þ aeb�y2i Þ2

¼ 2P0ð1� P0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b log 1=P0�1

a

q
; i ¼ 1; 2: ð9Þ

FIG. 4.—The sensitivity of posterior model probability P– to the prior in the fair-balance problem. (a) The prior is specified as h; N(0, nr2) with
n 5 c/nc, and the posterior P– is calculated using equation (1). (b) A prior probability p0 is assigned to the degenerate model H0: h 5 0, while h; N(0,
cr2) under models H– and Hþ. The posterior model probabilities P0 and P– are calculated using equation (5), and then P#

� 5 P0/2 þ P– is used in the
plot. In both (a) and (b), n 5 1000 and c 5 2 are fixed.

Table 1
Behavior of Posterior Model Probability P� in the Fair-balance Problem When the Data Size n / ‘‘ and the Prior
is u ;; N(0, js2) with j 5 c/nc

True h Prior nn P– Interpretation

h0 5 0
(equation 3)

0 � c , 1 nn / N f(P–) / 1 P– varies among data sets like a random number: P– ; U(0, 1)
c 5 1 nn 5 c P– has a distribution

with mode 1
2

P– varies among data sets, often close to 1
2
.

c . 1 nn / 0 P– /
1
2

P– is
1
2
in every data set.

h0 . 0
(eq. 2)

0 � c , 1 nn / N P– / 0 P– is 0 in every data set.
c 5 1 nn 5 c P– / 0 P– is 0 in every data set.
1 , c , 2 nn / 0 P– / 0 P– is 0 in every data set.
c 5 2 nn / 0 P– / Uð�

ffiffiffi
c

p
h0=rÞ P– converges to a constant, which is neither 0 nor 1, in every data set.

c . 2 nn / 0 P– /
1
2

P– is
1
2
in every data set.

NOTE.— P– / a means that f(P–) approaches 0 for all values of P– except P– 5 a. The case of h0 , 0 is similar to that of h0 . 0.
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Thus

where B 5 log
n

1�P0

P0

p0
1�p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

p o
, and 0 , P0 ,

1=
h
1þ 1�p0

p0
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

p i
. Note that f(P0|h0) depends on

P0, p0, nn, and
ffiffiffi
n

p
h0=r.

If h0 5 0, equation (10) reduces to

f ðP0Þ ¼
2 exp �ð1þ 1

nnÞB
n o

2P0ð1� P0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
1þ1=ðnnÞB

q

¼
1�P0

P0

p0
1�p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

ph i�1�1=ðnnÞ

P0ð1� P0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
1þ1=ðnnÞ log

1�P0

P0

p0
1�p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nn

pn or :

ð11Þ
This density is specified by p0 and nn.

Equations (10) and (11) can be used to confirm that as
long as p0 . 0, f(P0) converges to a point mass at 1 when
n /N if h0 5 0 (so that H0 is true), and that if h0 6¼ 0 (so

that H0 is false), f(P0) will converge to 0, in which case one
of P� and Pþ (the one corresponding to the true model) will
converge to 1. In other words, the probability for the correct
model always converges to 1 when n/N. This is a special
case of Dawid’s (1999) general proof of the consistency of
Bayesian model selection.

Here I consider the prior probability p0 as a way of
resolving the fair-balance paradox and treat P0 as equal sup-
port for H– and Hþ. Thus (P0, P–, Pþ) calculated from any
data set are converted to ðP#

�;P#
þÞ5 (P0/2 þ P–, P0/2 þ

Pþ). Then if h0 5 0, we have P0 / 1, so that P#
� / 1

2
and P#

þ / 1
2
. Similarly, if h0 6¼ 0, we have P0 / 0, so that

one of P#
� and P#

þ will approach 1. It is clear that use of the
prior probability p0 resolves the fair-balance paradox.

Nevertheless, the Bayesian analysis may be very sen-
sitive to the value of p0, and this sensitivity appears to be the
nature of the problem. For example, for a data set of size
n 5 1,000 with �y=r 5 –0.05, we have P#

� to be 0.943,
0.683, 0.560 and 0.532, if p0 5 0, 1/10, 1

3
, and 1

2
, respec-

tively (fig. 4b). Furthermore, while f ðP#
�Þ converges to a

point mass at 1, 1
2
, and 0 if the true h0 , 0, 5 0, and . 0,

respectively, the convergence may be at very different rates
depending on p0. Curves c & d in figure 5 show the density
for h0 5 0 and 0.1, with n 5 1,000 when the prior p0 5 1

3
is used. This prior produces high posterior probabilities
for the true model much more often and may be con-
sidered more powerful than the data size-dependent prior

with c 5
ffiffiffi
2

p
, that is, h ; Nð0; 2r2=n

ffiffi
2

p
Þ (curves a &

b in fig. 5).

Lindley’s Paradox

If we do not distinguish between models H– and Hþ
and define P1 5 1 – P0 5 P– þ Pþ, the problem becomes
one of comparing a sharp null hypothesis H0: h 5 0 with
a composite alternative hypothesisH1: h 6¼ 0. This is the case
for Lindley’s (1957; see also Jeffreys 1939) paradox. Ifffiffiffi

n
p

�y=r is fixed but n /N, then P0 / 1 (eq. 7). Lindley’s
paradox refers to the observation that in a data set,

ffiffiffi
n

p
�y=r

may differ sufficiently from 0 for H0 to be rejected by a sig-
nificance test, while Bayesian analysis of the same data
strongly supports H0 with posterior probability P0� 1. Thus
significance test and Bayesian analysis draw opposite con-
clusions from the same data. Indeed, if large data sets are
generated under the null model, such contradictions
will occur in ;5% of data sets if the significance test is

FIG. 5.—The effect of prior on f(P–), the density of posterior model
probability P– in the fair-balance problem. The sample size is n 5 1000.
The true parameter value is h05 0 in (a) and (c) and 0.1 in (b) and (d). In
(a) and (b), the prior is specified as h; N(0, nr2) where n5 2/nc with c5ffiffiffi
2

p
, and f(P–) is calculated using equation (2). In (c) and (d), the prior

probability p0 5 1
3
is assigned to the degenerate model h 5 0, while h;

N(0, 2r2) in used under models H– and Hþ. One million data sets are
simulated by generating �y; N(h0, r

2/n), and P0 and P– are calculated by
equation 5. Then P#

� 5 P0/2 þ P– is used to construct the histogram and
to estimate the density f(P–).

f ðP0jh0Þ5
/ð�y1jh0Þ
P

0
0ð�y1Þ

�� �� þ /ð�y2jh0Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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a

q
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 �2
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2r2
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a

q
þ h0


 �2
( )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
b log

1=P0�1
a

q

5

exp �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ 1=ðnnÞð ÞB

p
�

ffiffi
n

p
h0

r

� �2� �
þ exp �1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ 1=ðnnÞð ÞB

p
þ

ffiffi
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p
h0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1þ1=ðnnÞB
q ;
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conducted at the 5% level. As discussed above, if H0 is true
and n is large, P0 � 1 in nearly every data set, but the sig-
nificance test will still reject the true null hypothesis 5% of
the time. This result appears to suggest flaws in the method-
ology of significance test, as claimed by some Bayesian sta-
tisticians (e.g., Good 1982, p. 342; Press 2003, pp. 220–225;
Berger 1985, pp. 144–157), rather than in Bayesian analysis,
as suggested by, e.g., Bernardo (1980) and Shafer (1982).
Furthermore, Davison (2003, pp. 586–587) and Cox
(2006, pp. 42–43, 106–107) (see also, Bartlett 1957) sug-
gested the use of n5 c/n, so that h; N(0, cr2/n), to resolve
Lindley’s paradox. By the criteria used here, this prior is not
acceptable as it causes f(P0) to fail to converge to the point
mass at 1 when h0 5 0 (see equation 11)!

Nevertheless, whatever the true model or the observed
data ð�yÞ, P0 can be made arbitrarily close to 1 by the use of
a diffuse prior or a large n, as P0 / 1 when n / N in
equation (7). Bayesian analysis in this case is extremely
sensitive to the prior.

Bayesian Tree Estimation in the Three-Species Case

The Tree Problem

There are three (rooted) binary trees for three species
(fig. 2): s1 5 ((12)3), s2 5 ((23)1), and s3 5 ((31)2). We
consider binary characters, which evolve at a constant rate
according to a stationary Markov process. The data are
counts n0, n1, n2, n3 of site patterns xxx, xxy, yxx, and xyx.
Let xi 5 ni/n, i 5 0, 1, 2, 3, be the proportions of the site
patterns. The data may be represented as n 5 {n1, n2, n3}
or x 5 {x1, x2, x3}, with n to be the total number of sites.

Under tree s1, with branch lengths t0 and t1 (fig. 2), the
probabilities of observing the four site patterns are

p0ðt0; t1Þ51
4
þ 1

4
e�4t1 þ 1

2
e�4ðt0þt1Þ;

p1ðt0; t1Þ51
4
þ 1

4
e�4t1 � 1

2
e�4ðt0þt1Þ;

p2ðt0; t1Þ51
4
� 1

4
e�4t1 ;

p3ðt0; t1Þ5p2ðt0; t1Þ ð12Þ

(Yang 2000). As 0 � t0, t1 � N, we have p0 � p1 � p2 5
p3 � 0 and p0 þ p1 þ p2 þ p3 5 1. The likelihoods under
the three trees are

f ðnjs1; t0; t1Þ5pn0
0 pn1

1 pn2þn3
2 ;

f ðnjs2; t0; t1Þ5pn0
0 pn2

1 pn3þn1
2 ;

f ðnjs3; t0; t1Þ5pn0
0 pn3

1 pn1þn2
2 : ð13Þ

We assign prior probability 1
3
for each binary tree and

exponential priors with means l0 and l1 for t0 and t1:
f(t0) 5 exp{–t0/l0}/l0 and f(t1) 5 exp{–t1/l1}/l1. The
exponential priors appear more sensible than uniform
priors since most branch lengths in real trees are small
while very large branch lengths are rare. The marginal
likelihood under tree si is

Mi5f ðnjsiÞ

5

Z N

0

Z N

0

f ðt0Þf ðt1Þf ðnjsi; t0; t1Þ dt0 dt1; i51; 2; 3:

ð14Þ

The posterior tree probability is

Pi5
Mi

M1 þ M2 þ M3

; i51; 2; 3: ð15Þ

Thus analysis of each data set requires evaluation of
three two-dimensional integrals. (In contrast, the case of
four species and no molecular clock requires evaluation
of three five-dimensional integrals.) Yang and Rannala
(2005) used Mathematica (Wolfram 2003) to calculate
the integrals of equation (14) numerically. This is found
to be unreliable in large data sets, with n � 5,000, say.
A difficulty is that the integrand is nearly a spike at
its mode.

Two ideas appear promising. The first is to use the site
pattern probabilities as parameters in the binary tree instead
of t0 and t1 and construct conjugate priors on them. The
second is to use large-sample approximations. The latter
is explored in this study.

Approximate Calculation of Posterior Probabilities for
Trees

We use Laplacian expansion (Copson 1965, pp. 36–
47; Bender and Orszag 1999, pp. 261–276) to approximate
the integral M1 for tree s1 (eq. 14). The integrals M2 and M3

for trees s2 and s3 are calculated by a permutation of the
counts n1, n2, n3. In a typical Bayesian estimation problem
under a well-specified model, the likelihood function and
the posterior density can be quite accurately approximated
using a normal density in large data sets (Lindley 1980;
Tierney and Kadane 1986). However, phylogenetic trees
are different models (e.g., Yang et al. 1995). For any given
data set, the maximum likelihood estimate (MLE) of t0 is
zero in at least one tree, in which case the normal approx-
imation breaks down. Instead the tedious algorithms pre-
sented below were derived by trial and error, with
intensive testing in comparison with Mathematica.

Rewrite equation (14) as

M15

Z N

0

Z N

0

f ðt0; t1Þenhðt0;t1Þ dt0 dt1; ð16Þ

where f(t0, t1) 5 f(t0)f(t1) is the prior for t0 and t1, and

hðt0; t1Þ5x0logðp0Þ þ x1logðp1Þ
þ ð1� x0 � x1Þlogð1� p0 � p1Þ: ð17Þ

Here xi 5 ni/n is the observed site pattern frequencies.
Define hi 5 ¶h/¶ti, hij 5 ¶2h/¶ti¶tj, etc., to be the
derivatives evaluated at the MLEs t̂0 and t̂1 (see
Appendix). Let H 5 {hij} be the Hessian matrix. If H is
positive-definite, we let

R ¼ ð�nHÞ�1
5

r2
0 r01

r01 r2
1

 !
;

with the determinant

jRj ¼ r2
0r

2
1ð1� q2Þ ¼ n�2jHj�1;
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where q 5 r01/(r0r1). We use the first few terms in the
Taylor expansions of f and h as approximations

f ðt0; t1Þ ’ f ð̂t0; t̂1Þ;
hðt0; t1Þ ’ hð̂t0; t̂1Þ þ h0ðt0 � t̂0Þ þ h1ðt1 � t̂1Þ

þ 1
2

X
i;j

hijðti � t̂iÞðtj � t̂jÞ: ð18Þ

The integral of equation (16) is the volume of the
solid between the f�enh surface above the t0–t1 plane in the
quarterplane t0 . 0, t1 . 0. We consider three cases,
depending on whether t̂0 . 0 and whether @h=@ t̂05
0 (Yang 2000, Tables 2 and 3). We assume that x0 .

1
4
.

Case I: x1 . (1 – x0)/3. We have t̂05� 1
4
logðx0�

x1Þ þ 1
4
logð2ðx0 þ x1Þ � 1Þ . 0, and t̂15� 1

4
logð2ðx0þ

x1Þ � 1Þ . 0, with @h=@ t̂0 5 @h=@ t̂1 5 0 (Yang 2000,
Table 3). The integral can then be approximated by the vol-

ume at the neighborhood of theMLE ðt̂0; t̂1Þ, where the like-
lihood surface is nearly that of a bivariate normal density
function.

M1 ’ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ

�
Z ‘

0

Z ‘

0

exp �1
2
ðt� t̂ÞTð�nHÞðt� t̂Þ

n o
dt0 dt1

¼ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ � 2pjRj1=2:
ð19Þ

As discussed by Lindley (1980, equation 2), a few more
terms may be used in the Taylor expansion of f and h, but
this was found to lead to minimal improvement to the
approximation. More importantly, the MLE t̂0 is often
close to 0, or t̂0=r0 is small (say, ,3), in which case
equation (19) is not very reliable. The bivariate normal
integral can then be calculated using the algorithm of
Drezner and Wesolowsky (1990), which was found to
produce good results.

Case II: x1 5 (1 – x0)/3. We have t̂0 5 0,
t̂15� 1

4
logðð4x0 � 1Þ=3Þ . 0, with @h=@ t̂0 5 @h=@ t̂1 5

0. The integral is then half that in case I as the volume above
the half plane t0 , 0 is missing.

M1 ’ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ � pjRj1=2: ð20Þ

Case III: x1 , (1 – x0)/3. We have t̂0 5 0 and
t̂15� 1

4
logðð4x0 � 1Þ=3Þ . 0, with @h=@ t̂0 , 0 and

@h=@ t̂1 5 0. This situation is complex, and is broken into

two cases, depending on whether the Hessian matrix H is
positive definite.

In case IIIa, H is positive definite. We then use all
second-order terms in the Taylor expansion of h.

M1 ’
Z ‘

0

Z ‘

0

f ðt0; t1Þ exp nhð̂t0; t̂1Þ þ nh0t0f

þ n
2

X
i;j

hijðti � t̂iÞðtj � t̂jÞg dt0 dt1

¼ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ �
Z ‘

0

Z ‘

0

enh0t0

� exp n
2

X
ij

hijðti � t̂iÞðtj � t̂jÞ
n o

dt0 dt1: ð21Þ

Apply the variable transform y0 5 t0/r0, y15ðt1 � t̂1Þ=r1,
and we have

If –nh0r0 � 1, we may apply Watson’s Lemma to approx-
imate the integral in equation (22). Write this asRN
0

qðyÞe�cy dy, where q(y) 5 e�y2=2Uða þ byÞ, with
a 5 t̂1=ðr1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ, b 5 q=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
, and c 5 –

nh0r0. From the MacLaurin expansion of q(y), we haveZ ‘

0

qðyÞe�cy dy¼
Z ‘

0

X‘

k¼0

qðkÞð0Þyk

k! e�cy dy

¼
X‘

k¼0

qðkÞð0Þ
ckþ1 ; ð23Þ

where qk(0) is the kth derivative of q, evaluated at y 5 0.
The first few derivatives are as follows:

qð0Þ5UðaÞ;
q#ð0Þ5bUðaÞ;
q##ð0Þ5� UðaÞ � ab2/ðaÞ;
q###ð0Þ5� 3b/ðaÞ þ b3ða2 � 1Þ/ðaÞ; ð24Þ

where /(�) is the probability density function (p.d.f.) of
a standard normal variate. Thus

M1’ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ�r0r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�q2Þ

p
� UðaÞ

c 1� 1
c2

 �
þb/ðaÞ

c2 1�ab
c �

3�b2ða2�1Þ
c2

� �h i
: ð25Þ

The algorithm of Hill (1973) is used to calculate U(�).
However, if c 5 –nh0r0 is small (, 1), as may be the

case if h0 is nearly zero, equation (25) is unreliable. Then I
use the Gauss-Legendre quadrature to calculate the one-
dimensional integral of equation (22) numerically, which
was found to produce reliable results.

M1 ’ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ
Z ‘

0

enh0t0

Z ‘

�t̂1=r1

exp � 1
2ð1�q2Þ y20 � 2qy0y1 þ y21

 �n o
� r0r1dt1 dt0

¼ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þr0r1

Z ‘

0

enh0r0y0

Z ‘

�t̂1=r1

exp � 1
2ð1�q2Þ ðy1 � qy0Þ2 þ ðy20 � q2y20Þ

h in o
dy1

" #
dy0

¼ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þr0r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� q2Þ

p Z ‘

0

e�
1
2
y2
0U t̂1=r1þqy0ffiffiffiffiffiffiffiffi

1�q2
p


 �
enh0r0y0 dy0: ð22Þ
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In case IIIb, x1 , (1 – x0)/3, so that t̂0 5 0 and t̂1 . 0,
with h0 5 @h=@ t̂0, 0 and h1 5 @h=@ t̂15 0, but H is not
positive-definite. This case occurs mainly when the data are
very unlikely on the tree and h0 is very negative. We then
use the linear term for t0 and quadratic term for t1 in the
Taylor expansion of h, as follows.

Change variables from t1 to z 5 ðt1 � t̂1Þ=r1, where
r1 5 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�nh11

p
.

Here t̂1=r1 � 1, and thus the integral from�t̂1=r1 toN is
nearly the same as from �N to N, while 1/(1 þ a) 5 1 –
a þ a2 – a3þ . . .when |a|5 h01r1=h0, 1. The last equality
uses the result that if z is a random variable from the stan-
dard normal distribution, E(zk)5 0 for odd k or (k – 1) (k –
3) � 3 � 1 for even k (e.g., Johnson et al. 1994, p. 89).

Suppose in the data set, n1. n2. n3. ThenM1.M2.
M3. Calculation of M1 makes use of equation (19) for
case I, and calculation of M3 makes use of equations
(22) or (27) for case IIIa. Calculation of M2 uses each of

these two cases about half of the time. Cases II (equation
20) and IIIb (equation 27) are rarely encountered.

The above discussion assumes that the prior on branch
lengths are fixed, with l0 and l1 to be fixed constants.
When l0 depends on the data size n, some modifications
to the above algorithm are necessary.

The exact calculation using Mathematica is reliable
for small data sets, and unstable for large ones (say, with

n . 5,000). The approximate calculation is the opposite.
It is reliable for large data sets only, say with n � 1,000.
Figure 6 shows posterior tree probabilities calculated using
the two methods, while table 2 shows the effect of sample
size n on the approximation. On a 3.2GHz Pentium IV, an-
alyzing 105 data sets took a few seconds using the approx-
imate method and ;15 days using Mathematica. Both
methods are much faster than MCMC for this small prob-
lem. The approximation allows us to calculate posterior tree
probabilities for arbitrarily large data sets.

FIG. 6.—The posterior probability P1for tree s1calculated using exact
(Mathematica) and approximate methods in 100 data sets, simulated using
the star tree with t 5 0.2. The sequence length is n 5 3 �103. The prior
means are l0 5 0.1 and l0 50.2.

Table 2
The Log Marginal Likelihood log(Mi) and the Posterior
Probabilities for the Three Trees Calculated Using Exact
(above) and Approximate (below) Methods

n Log Marginal Probability Posterior Probabilities

300 �285.42 �286.00 �286.43 0.521 0.291 0.188
�285.43 �286.01 �286.44 0.521 0.290 0.188

500 �473.78 �474.58 �475.13 0.586 0.263 0.151
�473.79 �474.59 �475.14 0.587 0.262 0.152

1,000 �944.21 �945.48 �946.22 0.706 0.199 0.095
�944.22 �945.49 �946.22 0.707 0.198 0.095

3,000 �2,824.62 �2,827.46 �2,828.57 0.928 0.054 0.018
�2,824.62 �2,827.46 �2,828.58 0.928 0.054 0.018

5,000 �4,704.53 �4,708.86 �4,710.18 0.984 0.013 0.003
�4,704.53 �4,708.86 �4,710.18 0.984 0.013 0.003

10,000 �9,403.77 �9,411.78 �9,413.41 0.9996 0.0003 0.0001
�9,403.77 �9,411.79 �9,413.41 0.9996 0.0003 0.0001

The data are x1 5 0.11, x2 5 0.10, and x3 5 0.09 (with x0 5 0.70), while the

number of sites is n. The prior is exponential with means l0 5 0.1 and l1 5 0.2.

Equations (19), (20), and (25) are used to calculate log(Mi) for the three trees,

respectively.

M1 ’ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ � r1

�nh0

Z ‘

�t̂1=r1

1� h01r1

h0
z þ h01r1

h0
z

� �2
� h01r1

h0
z

� �3
þ . . .

� 	
e�z2=2dz

’ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ �
ffiffiffiffiffiffi
2p

p
r1

�nh0

1þ h01r1

h0

� �2
þ3 h01r1

h0

� �4
þ15 h01r1

h0

� �6� 	
: ð27Þ

M1 ’
Z ‘

0

Z ‘

0

f ðt0; t1Þ exp nhð̂t0; t̂1Þ þ nh0t0 þ nh01t0ðt1 � t̂1Þ þ 1
2
nh11ðt1 � t̂1Þ2

n o
dt0 dt1

¼ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ �
Z ‘

0

e
1
2

nh11ðt1�t̂1Þ2
Z ‘

0

eðnh0þnh01ðt1�t̂1ÞÞt0dt0 dt1

¼ f ð̂t0; t̂1Þenhð̂t0 ;̂t1Þ �
Z ‘

0

e
1
2

nh11ðt1�t̂1Þ2 1
�nh0�nh01ðt1�t̂1Þdt1: ð26Þ
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Simulation of Data

Consider simulation of data sets under tree s1 with
given branch lengths t0 and t1. Simulation under the star
tree s0 can be done using the same algorithm by fixing
t05 0. The counts of sites follow a multinomial distribution
with four cells: MN4(n; p0, p1, p2, p2), with cell probabilities
given in equation (12). For large n, the data have approx-
imately a trivariate normal distribution: n 5 (n1, n2, n3) ;
N3(nh0, nS0), where

nh05n

0
@p1

p2
p2

1
A;nS05n

0
@p1ð1�p1Þ �p1p2 �p1p2

�p1p2 p2ð1�p2Þ �p22
�p1p2 �p2

2 p2ð1�p2Þ

1
A:

ð28Þ

We have |nS0| 5 n3p0p1p2p2, and

ðnS0Þ�1

5
1

np0p1p2

0
B@

p2ð1�2p2Þ p1p2 p1p2

p1p2 p1ð1�p1�p2Þ p1p2

p1p2 p1p2 p1ð1�p1�p2Þ

1
CA:

ð29Þ

The normal density is

/ðn1;n2;n3jp1;p2Þ

5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pnÞ3p0p1p22

q exp
n
�n

2
ðx�h0ÞTS�1

0 ðx�h0Þ
o
; ð30Þ

where (x – u0)
T 5 (x1 – p1, x2 – p2, x3 – p2)

T, and T is the
transpose.

The Cholesky decomposition of the variance matrix is
given as nS0 5 LLT, with

L5
ffiffiffi
n

p
�

0
@ a 0 0

b d 0

c e f

1
A; ð31Þ

where

a5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

p
;

b5c5� p1p2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1� p1Þ

p
;

d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1� p1 � p2Þ=ð1� p1Þ

p
;

e5� p2
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1� p1Þð1� p1 � p2Þ

p
;

f5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ð1� p1 � 2p2Þ=ð1� p1 � p2Þ

p
: ð32Þ

Thus to generate a data set, we generate three independent
N(0, 1) random variables z1, z2, and z3 to form z 5 (z1, z2,
z3)

T. Then n 5 nu0 þ Lz will be the desired counts of site
patterns.

Two Strategies to Resolve the Star-tree Paradox

We now consider the two priors for resolving the star-
tree paradox, following our discussions of the fair-coin and
fair-balance paradoxes above. The first is to let the prior
mean for the internal branch length approach zero when
the data size increases, and the second is to assign a nonzero
probability p0 for the degenerate star tree.

Data Size-Dependent Prior. This forces the mean l0 in
the prior for internal branch length t0 to approach 0, or,
equivalently, to force the probabilities of the three variable
site patterns p1, p2, and p3 to approach equality (p1 5 p2 5
p3), when n / N (Yang and Rannala 2005). In the fair-
coin problem, 1 – h and h are the two cell probabilities in the
multinomial (binomial) distribution, the models of negative
and positive bias are specified as H–: 1 – h. h and H–: 1 –
h , h while the fair-coin model is H0: 1 – h 5 h. The dis-
tance between H– (say) and H0 may be measured by |1 – h –
h| 5 |1 – 2h|. It was determined that the prior should force
E(1 – 2h)2 or the variance of h to approach 0 faster than 1/n
but more slowly than 1/n2. In the tree problem, the binary
tree, say s1, is represented by p1 . p2 5 p3 while the star
tree s0 is p1 5 p2 5 p3, where p1, p2, p3 are three cell prob-
abilities in a multinomial distribution. The distance between
s1 and s0 can be measured by |p1 – p2|, and by analogy with
the fair-coin problem, we require the prior on branch
lengths t0 and t1 should force E(p1 – p2)

2 to approach 0 faster
than 1/n but more slowly than 1/n2.

Let l0 5 c/nc with c . 0. The prior for branch
lengths t0 and t1 is given by the independent exponential
distributions

f ðt0; t1Þ5
1

l0
e�t0=l0 � 1

l1
e�t1=l1 : ð33Þ

In place of t0 and t1, we use p0 and d 5 p1 – p2 as the new
parameters in the binary tree; the two sets of parameters
are related by equation (12). The prior distribution of p0
and d is obtained from equation (33) through a variable
transform as

f ðp0; dÞ5
1

6l0l1



4p0 � 1þ 4d

3

� 1
4l1

�2

�


1þ 6d

4p0 � 1� 2d

�� 1
4l0

þ1

;

0,d,2p0 �
1

2
; d,1� p0: ð34Þ

We have E(d2) 5
RR

d2f ðp0; dÞ dd dp0 ’ l20=

1
8
þ l1

�
.

Thus l0 should approach 0 faster than 1=
ffiffiffi
n

p
but more

slowly than 1/n; in other words we require 1
2
, c , 1 in

l0 5 c/nc.

Degenerate-Model Prior p0. We assign a prior proba-
bility p0 . 0 for the star tree s0, while the three binary trees
are assigned prior probabilities p1 5 p2 5 p3 5 (1 – p0)/3
(Lewis, Holder, and Holsinger 2005). The branch length t in
the star tree is assigned the prior f(t) 5 exp{–t/l1}/l1. The
marginal likelihood M0 under s0 is a one-dimensional inte-
gral over t, similar to equation (14). This is reliably calcu-
lated by approximating the likelihood with a normal
density, similarly to the calculation with equation (19).
The marginal likelihoods for the three binary trees M1,
M2, and M3 are calculated as before. Then piMi, i 5 0,
1, 2, 3, are rescaled to sum to one to give the posterior
probabilities for all four trees. As the star tree is a special
case of the three binary trees with one fewer parameter, all
four trees are correct when the data are generated from the
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star tree. Thus we expect the posterior probability for
the star tree s0 to converge to 1 as the star-tree model
has a lower dimension (Dawid 1999). Here we consider
p0 as a way of resolving the star-tree paradox and divide
P0 among the three binary trees to calculate their posterior
probabilities

Pi5
1
3
p0M0 þ 1�p0

3
Mi

p0M0 þ 1�p0
3

ðM1 þ M2 þ M3Þ
; i51; 2; 3: ð35Þ

Thus P1, P2, P3 will converge to the point mass at
ð1
3
; 1
3
; 1
3
Þ when n / N if the data are generated under

the star tree, and to (1, 0, 0) if the data are generated under
the binary tree s1.

Simulation Results

The Star-tree Paradox. We use computer simulation to
study the variation in posterior tree probabilities (P1, P2, P3)

when data sets are generated under the star tree. The branch
length is fixed at t 5 0.2. Each of the 105 replicate data sets
is analyzed using the Bayesian method to calculate P1, P2,
P3, using equal prior probabilities (1

3
) for the three binary

trees and exponential priors for branch lengths with means
l0 5 0.1 and l1 5 0.2 (equation 15). The distribution f(P1,
P2, P3) across data sets is estimated by a kernel-density
smoothing algorithm (Silverman 1986). Three sequence
lengths are used: 3 � 103, 3 � 106, and 3 � 109. For
n 5 3 � 103, both exact calculation using Mathematica
and the approximate method by Laplacian expansion are
used, while for the two large data sizes, only the approxi-
mate method is used.

Figure 7 shows the joint density f(P1,P2,P3) forn53�
103 and 3 � 109. Figure 8 shows three univariate densities
derived from the samedata, forP1, forPmin5min(P1,P2,P3)
and for Pmax 5max(P1, P2, P3). For n 5 3� 103, the exact
and approximate methods produced results that are indistin-
guishable, suggesting that the approximation is reliable. The
results for n5 3� 103, 3� 106 (not shown), and 3� 109 are
very similar, indicating that for the parameter values used,

FIG. 7.—Estimated joint density, f(P1, P2, P3), of posterior probabilities for the three trees over replicate data sets. The star tree with branch length
t 5 0.2 is used to generate 105 data sets. Each is analyzed to calculate the posterior probabilities P1, P2, and P3 (equation 15), which are then collected
to construct a 2-D histogram and to estimate the 2-D density using an adaptive kernel smoothing algorithm (Silverman 1986). The sequence length (and
method used to calculate the integrals) is (a) n 5 3 �103 sites (exact), (b) n 5 3 �103 (approximate), and (c) n 5 3 �109 (approximate), where exact
calculation is achieved using Mathematica while approximate calculation is based on Laplacian expansion. The density f is shown using the color
contours, with green, yellow, to red representing low to high values. The total density mass on the triangle is 1. Note that in the ternary plot, the
coordinates (P1, P2, P3) are represented by lines parallel to the sides of the triangle. The two points shown in the key have the coordinates A(0.1, 0.2,
0.7) and B(0.5, 0.3, 0.2), while the center point is ð1

3
; 1
3
; 1
3
Þ.
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n 5 3� 103 is close to infinity, although it is noticeable that
the posterior probabilities tend to become more extreme
(near 0 or 1) in larger data sets (fig. 8a). The SD for P1 is
0.2440 for n 5 3 � 103 and 0.2498 for n 5 3 � 106 and
3� 109. In general, themeans and SDs forP1,Pmin, andPmax

are identical to the fourth decimal place between n5 3� 106

and 3 � 109.
For n 5 3 � 109, data sets are also simulated using

different values of the branch length t in the star tree (such
as 0.1, 0.3, 0.4, 0.5, and 1.0), and they are analyzed using
different prior means l0 and l1 (such as l0 5 0.2, 0.5, 10
and l1 5 0.1, 0.3, 0.7). The number of replicates is also
raised to 107. As far as can be judged, the distribution
f(P1, P2, P3) is independent of t, l0 and l1. The invariance
of f(P1, P2, P3) to parameters t, l0 and l1 may be generally
true as it parallels the fair-balance analysis in which the lim-
iting distribution f(P�) is uniform, independent of param-
eter n in the prior h ; N(0, nr2). It also indicates that the
distribution is unlikely to change when n increases beyond
3 � 109. In all cases examined, every Pi has mean 1/3 and
SD 0.2498, and pairwise correlation coefficient �0.5000.
The correlation should be exactly � 1

2
, according to the fol-

lowing symmetry argument (Peter Green, pers. comm.).
From 1 5 P1 þ P2 þ P3, we have

05
X3
i51

varðPiÞ þ
X
i6¼j

covðPi;PjÞ

53varðP1Þ þ 6covðP1;P2Þ; ð36Þ

so that corr(P1, P2) 5 cov(P1, P2)/var(P1) 5 – 1
2
. There are

four modes in the distribution, at the center and the three
corners of the ternary graph (fig. 7).

We now use the distributions of P1, Pmin and Pmax for
n 5 3 � 109 to examine how often the Bayesian method
produces extreme posterior probabilities, assuming that this
sequence length represents the limiting case of infinite data
(fig. 8). Pmin has mean 0.1298 and SD 0.0769 while Pmax

has mean 0.6319 and SD 0.1698. In 4.23% of data sets,
Pmax. 0.95 (that is, at least one of the three posterior prob-

abilities is. 0.95), and in 0.79% of data sets, Pmax . 0.99.
In 17.3% of data sets, Pmin, 0.05 (that is, at least one of the
three posterior probabilities is, 0.05), and in 2.6% of data
sets, Pmin , 0.01. If we consider any particular binary tree,
such as s1, we find that the proportion of data sets in which
P1 , 0.05 (or 0.01) is 8.1% (or 1.31%), and the proportion
of data sets in which P1 . 0.95 (or 0.99) is 1.41% (or
0.26%). Because the true tree is the star tree, we would
not want any binary tree to have either a very high or a very
low posterior probability. The method appears to produce
extreme posterior probabilities, especially very small ones,
quite often.

Data Size-dependent Prior. This prior forces the mean
l0 of internal branch lengths to approach 0 when n / N.
We let l0 5 0.1/nc and use different values for c. When the
data are simulated under the star tree, the means of the pos-
terior probabilities for the three binary trees are always 1

3
.

Figure 9a shows the SD of P1 for tree s1 when c 5 0,
0.5, 0.51, 0.707, and 0.8. Our theoretical analysis suggests
that c has to be greater than 1

2
for P1 to converge to the point

mass 1
3
. If c 5 0, the SD of P1 converges to 0.2498 when

n / N; this is the case of the star-tree paradox discussed
above. If c 5 0.5, the SD stabilizes to 0.064 instead of 0.
Thus (P1, P2, P3) have a distribution, which depends on
parameters such as branch length t in the star tree, and
l1 and c in the prior (in l0 5 c/nc). This is analogous to
the case of h0 5 0 and c 5 1 in table 1 for the fair-balance
problem (fig. 3). When c 5 0.51, slightly larger than 1

2
, the

SD decreases monotonically from 0.0608 at n 5 103 to
0.0522 at n 5 3 � 109. The limit when n / N should
be 0, according to the theoretical analysis. If c 5 0.707
or 0.8, the SD clearly converges to 0 when n / N.

Results obtained when the data are simulated under the
binary tree s1 with t0 5 0.01 and t1 5 0.2 are shown in
figure 9b. The theoretical analysis predicts that one has
to have c, 1 for P1 to converge to the point mass at 1 when
n / N. If c 5 0, 0.5, or 0.707 (all less than 1), the mean

P1
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FIG. 8.—The density functions (a) for the posterior probability P1 for any binary tree such as s1, (b) for the smallest of the three posterior
probabilities Pmin, and (c) for the largest of the three probabilities Pmax. The data of figure 7 are used to estimate the density functions.
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of P1 indeed converges to 1 while the SD converges to 0,
so that the probability for the true model converges to 1
(fig. 9b). Numerical problems are encountered with larger
values of c, so that the cases in which c is close to or larger
than 1 are not examined. Nevertheless, as long as the star-
tree paradox is resolved (with c. 1

2
), small values for c are

preferred to larger ones, as small values lead to higher pos-
terior probabilities for the true tree when the true tree is bi-
nary. Three convenient values for c are 0.667, 0.707, and
0.75. These are the harmonic, geometric, and arithmetic
means of 1

2
and 1, and may represent conservative, moder-

ate, and liberal priors, respectively.

Degenerate-Model Star-tree Prior p0. Here a nonzero
probability p0 is assigned for the degenerate star tree s0,
while the three binary trees have prior probabilities p1 5
p25p35 (1 – p0)/3. The posterior probabilities for the three
binary trees are calculated using equation (35).We are inter-
ested in the behavior of the joint density f(P1, P2, P3) when
the data size n /N and when the data are generated under
either the star tree or a binary tree.

A few different values are used for p0: 1/10, 1/4, and 1
3
.

In every case, the joint density f(P1, P2, P3) converges to
ð1
3
; 1
3
; 1
3
Þ when n / N. For example, with t 5 0.2 in the

star tree and p0 5 0.25, l0 5 0.1, and l1 5 0.2 in the prior,
the SD of P1 is calculated to be 0.125, 0.025, and 0.004 for
n 5 3� 103, 3� 106, and 3� 109, respectively. The mean
of the distribution is clearly ð1

3
; 1
3
; 1
3
Þ, and the convergence of

the SD to 0 means that the distribution is becoming degen-
erate to the point mass at the mean. When p0 5 0.1, the SD
of P1 is 0.177, 0.044, and 0.007 for the three values of n,
and the rate of convergence is slower than when p0 5 0.25.

Furthermore, analysis of data sets simulated under a bi-
nary tree with t0 . 0 confirms that when n increases, the
posterior probability for the true binary tree approaches
1. In sum, use of the prior p0 resolves the star-tree paradox,
as long as 0, p0, 1. This result is expected from Dawid’s
(1999) general proof of consistency of Bayesian model
selection.

Addendum

Steel and Matsen (2007) recently published a mathe-
matical analysis of the star-tree problem (fig. 2), proving
that when the number of sites n / N, the posterior prob-
ability for any binary tree, say, P1, does not converge to

1
3

and will maintain a strictly positive probability of being
large (say,. 0.99). The result is consistent with this study,
contra Kolaczkowski and Thornton (2006). Note that the
limiting distribution f(P1, P2, P3) when n / N remains
unknown.
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Appendix. Derivatives for Laplacian Expansion

Consider tree s1. The data can be represented as x0 5
n0/n, x1 5 n1/n, and the likelihood L 5 nh, where

hðx0; x1jt0; t1Þ5x0logðp0Þ þ x1logðp1Þ
þ ð1� x0 � x1Þlogðp2Þ:

ð37Þ

where p0, p1, p2 are given in equation (12). Let
e0 5 e�4ðt0þt1Þ and e15 e�4t1 and note that

@p0
@t0

¼ �2e0;
@p1
@t0

¼ 2e0;
@p2
@t0

¼ 0;
@p0
@t1

¼ �e1 � 2e0;
@p1
@t1

¼ �e1 þ 2e0;
@p2
@t1

¼ e1:
ð38Þ

Then the gradient g 5
�

@h
@t0

; @h
@t1

�
and Hessian matrix H 5n

@2h
@ti@tj

o
are

FIG. 9.—(a) The SD in the posterior probability P1 for tree s1 is plotted against the data size n when the data are simulated under the star tree with
branch lengths t0 5 0 and t1 5 0.2 and analyzed using the prior means l0 5 0.1/nc and l1 5 0.2. The values of c are 0, 0.5, 0.51, 0.707, and 0.8 from
top to bottom. The theoretical expectation is that the SD / 0 (so that P1 /

1
3
) when n / Nif and only if c . 0.5. (b) The SD in P1 is plotted against

the sample size n when the data are simulated under a binary tree with branch lengths t0 5 0.01 and t1 5 0.2. The same priors are used to analyze the
data as in (a), with c to be 0, 0.5, and 0.707. The theoretical expectation is that the SD / 0 (so that P1 / 1) if c,1 but P1 / 1

3
if c . 1; this

expectation is not confirmed here as values of c around 1 caused computational problems.
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h105
@h
@t0
5�2e0

�
x0
p0
� x1

p1

�
;

h015
@h
@t1
5�2e0

�
x0
p0
� x1

p1

�
�e1

�
x0
p0
þ x1

p1
� 1�x0�x1

p2

�
; ð39Þ

and

h20 ¼ @2h
@t2

0

¼ 8e0
x0
p0
� x1

p1

� �
� 4e20

x0
p2
0

þ x1
p2
1

� �
;

h11 ¼ @2h
@t0@t1

¼ 8e0
x0
p0
� x1

p1

� �
� 4e20

x0
p2
0

þ x1
p2
1

� �
� 2e0e1

x0
p2
0

� x1
p2
1

� �
;

h02 ¼ @2h
@t2

1

¼ 8e0
x0
p0
� x1

p1

� �
� 4e20

x0
p2
0

þ x1
p2
1

� �
� 4e0e1

x0
p2
0

� x1
p2
1

� �
þ 4e1

x0
p0
þ x1

p1
� 1�x0�x1

p2

� �
� e21

x0
p2
0

þ x1
p2
1

þ 1�x0�x1
p2
2

� �
:

ð40Þ

The third derivatives are

h30¼ @3h
@t3

0

¼�32e0
x0
p0
� x1

p1

� �
þ48e20

x0
p2
0

þ x1
p2
1

� �
�16e30

x0
p3
0

þ x1
p3
1

� �
;

h21¼ @3h
@t2

0
@t1

¼ @3h
@t3

0

þ8e0e1
x0
p2
0

� x1
p2
1

� �
�8e20e1

x0
p3
0

þ x1
p3
1

� �
;

h12¼ @3h
@t0@t2

1

¼ @3h
@t3

0

þ24e0e1
x0
p2
0

� x1
p2
1

� �
�16e1

x0
p0
þ x1

p1
�1�x0�x1

p2

� �
�16e20e1

x0
p3
0
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p3
1

� �
�4e0e21
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0

� x1
p3
1

� �
;

h03¼ @3h
@t3

1
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x0
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� x1

p1

� �
þ8e0

x0
p2
0

ð2e0þe1Þþ x1
p2
1

ð2e0�e1Þ
� �

þ32e20
x0
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0

þ x1
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1

� �
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The above formulae are confirmed by using the difference
method to approximate the derivatives.
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