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Abstract

Background: Whole genome studies have highlighted duplicated genes as important substrates for adaptive evolution. We
have investigated adaptive evolution in this class of genes in the human parasite Trypanosoma brucei, as indicated by the
ratio of non-synonymous (amino-acid changing) to synonymous (amino acid retaining) nucleotide substitution rates.

Methodology/Principal Findings: We have identified duplicated genes that are most rapidly evolving in this important
human parasite. This is the first attempt to investigate adaptive evolution in this species at the codon level. We identify 109
genes within 23 clusters of paralogous gene expansions to be subject to positive selection.

Conclusions/Significance: Genes identified include surface antigens in both the mammalian and insect host life cycle stage
suggesting that competitive interaction is not solely with the adaptive immune system of the mammalian host. Also surface
transporters related to drug resistance and genes related to developmental progression are detected. We discuss how
adaptive evolution of these genes may highlight lineage specific processes essential for parasite survival. We also discuss
the implications of adaptive evolution of these targets for parasite biology and control.
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Introduction

Sub species of the parasite, Trypanosoma brucei from the family

trypanasomatidae are the causative agent of Nagana in livestock and

human sleeping sickness. No vaccines exist for this disease and

current control regimes face problems of emerging drug resistance

and toxicity [1]. This economic and medical importance of

Trypanosoma species promoted whole genome sequencing of T. brucei

and continued efforts to interpret the genome of this organism [2].

Through this genome project it was hoped that the accumulation

and interpretation of data would provide an opportunity to better

understand trypanosome biology, and hence improve disease control

by identification of potential new drug targets, and by greater

understanding of resistance to current drug control strategies. Whole

genome data can facilitate investigation of a particular trait or disease

if candidate genes are known a priori, or they can be utilised to search

globally for extraordinary evolution and adaptation of genes which

may reveal novel insights to species-specific biology.

To this end, we have inferred natural selection by estimation of v,

the ratio of non-synonymous (dN, amino acid changing) to

synonymous (dS, amino acid retaining) substitution rates (v = dN/

dS). With v,0, v = 1 and v.1 representing purifying, neutral and

adaptive evolution, respectively [3]. Identification of genes whose v
ratio is greater than 1 is thus persuasive evidence for adaptive

evolution of the gene [4]. The validity of this type of approach has

been verified both by computer simulations [5,6] and by a growing

number of cases, including recent reports of experimental verifica-

tion of statistical predictions (for review see [7]).

Previous analysis of the T. brucei genome together with related

trypanasomatidae (T. cruzi and Leishmania major) identified families of

orthologous genes shared between these species and gene families

which are specific to the T. brucei lineage [8]. Sadly, the estimated

long divergence time (200–500 MY) [9,10] between these three

species precludes the confident interpretation of methods to model

adaptive evolution across the tri-genome orthologous gene sets.

However, using pairwise comparisons of genes within these groups

we can show that for the majority of orthologous genes v is small,

confirming the general assumption that non-synonymous mutations

are selected against and that purifying selection is the dominant force

in evolution. In contrast, paralogous gene expansions in T. brucei

exhibit a relaxation of selection and are more likely to be subject to

positive selection (Figure 1). Thus we have focused our studies on the

adaptive evolution of the duplicated paralogous gene families in the

single parasite T. brucei.

We identify lineage specific genes evolving by duplication and

adaptive evolution which are surface proteins expressed in both

the insect vector and mammalian hosts, and proteins essential for

development, and survival of the parasite.

Results

Comparison of pairwise estimates of selection
The clusters of homologous T. brucei, T. cruzi and L. major genes

identified previously [8] were separated into four groups; clusters

of orthologous genes (COGs) of 1:1:1 orthologous trios without

duplication in any lineage (1174 clusters); COGs of 1:1 T. brucei:T.
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cruzi gene pairs (67 clusters); 1:1 T. brucei:L. major gene pairs (78

clusters) or T. brucei clusters of paralogous genes (CPGs, 90

clusters). Within each cluster every gene was compared in a

pairwise manner and ‘‘gene-wide’’ estimates of dN/dS were

determined. A median value for each cluster was calculated.

Where estimates from codeml are at the upper bound (999 for dN/

dS) the values were recorded as infinity and were not included in

median calculations.

A cumulative percentage frequency plot of the median cluster

dN/dS shows that for the majority of genes, comparisons between

species typically exhibit strong purifying selection (Figure 1).

Conversely the T. brucei CPG distribution shows a definite shift to

the right representing a relaxation of purifying selection and a

higher percentage of genes with dN/dS.1 (Figure 1). As lineage

specific duplicates are often found to be the subject to adaptive

evolution [11–13] these genes offer and exciting insight into the

specific biology of T. brucei and were investigated further.

Duplicated genes subject to positive selection
Of the 90 T. brucei CPGs, 40 contained three or more genes

and could be investigated for adaptive evolution using codon

models (see methods). Using this approach 23 CPGs containing a

total of 109 genes showed robust evidence of adaptive evolution

at p,0.05 in both M2 and M8 tests (1 cluster with p,0.05, 3

clusters with p,0.01 and 28 with p,0.001 in both M1–M2 and

M7–M8 tests, Table 1). The Benjamini-Hochberg method [14]

for controlling the false discovery rate in multiple comparisons

was implemented at the a= 0.05 level. A single significant gene

cluster (procyclin precursor) was non-significant following this

method of correction. However using an additional stringent test

of selection (M8a) all 23 CPGs including the procyclin CPG

showed significant evidence of positive selection at p,0.05

following Benjamini-Hochberg correction, thus we consider

these 23 CPGs to have significant evidence of positive selection.

Parameter estimates for each positively selected cluster are

shown in Supplementary Table S1. The high proportion of

CPGs with evidence of positive selection (23/40, 57.5%)

supports the assumptions that paralogous gene expansions often

form the substrate for adaptive change. Additionally, it is evident

that multiple clusters of related genes were identified as being

subject to adaptive evolution, highlighting both the extensive

gene duplication within these families consistent with previous

studies [15] and the impact of adaptive evolution within

particular gene types (Table 1).

Functional annotation of positively selected genes
Annotation of the predicted cellular location of encoded proteins

suggests that genes at the surface or secreted from the parasite are

more often subject to adaptive evolution, (Table 2). Further

investigation of all genes highlights that whilst compared to the

COGs those genes found within CPGs are more often predicted to

be surface-located either through possession of transmembrane or

GPI anchored regions (Figure 2). However, only the secreted

category is significantly over abundant (p = 0.044 by binomial test).

Analysis of Pfam domains and gene ontology (GO) terms

showed that the positively selected genes represent a small

functional group of proteins, with only five Pfam domain types

and associated GO terms detected. Although few in number, the

domains detected are often specific or enriched in the CPGs

compared to COGs and often in positively selected genes, for

example 33 Guanylate cyclase domain containing proteins are

detected from the 300 CPGs and 26 of these 33 are encoded by

genes subject to positive selection, whilst only 14 Guanylate cyclase

domains are found amongst the 4896 COG proteins. Additionally

the Pfam domain Nucleoside_tran associated with nucleotide

transport is only present in genes in CPGs and that all six proteins

with this domain are under positive selection.

Adaptive evolution of 65 KDa and 75 KDa invariant
surface glycoproteins

Like the widely known variable surface glycoprotein (VSG)

genes involved in parasite survival by antigen switching [16], the

invariant surface glycoproteins (ISG65, ISG75) are also found at

high density on the surface of the blood-stage form of the parasite

[17]. The two forms of invariant proteins are distinguishable by

mass although a single round of a PSI-BLAST search [18]

identifies them as potential homologues (E value 3 610210).

Additionally, the conserved protein architecture of a large

extracellular domain linked to a short intracellular domain by a

single transmembrane domain betrays the likely common ancestry

of both glycoprotein families.

Two clusters of ISG65 and a single cluster of ISG75 genes were

identified to be evolving under positive selection. Of the ISG65

genes for the cluster 21719250 one codon was predicted to have

dN/dS.1 and three codons for cluster 19416372 by both M2 and

M8 models. In contrast 16 codons were predicted by M2 and M8

in the ISG75 cluster 20195704 (see table S1 for details of sites).

Although none of the positions identified in either ISG65 or

ISG75 are orthologous, all are located in the extracellular region.

Adaptive evolution of adenosine transporters
The CPG 20117965 encodes the P1 form of the nucleoside

transporter a predicted eleven transmembrane transporter protein.

The four sites with significant evidence of dN/dS.1 in both the M2

and M8 models are located in the extracellular (EC) loops of this

protein, one S55 in EC1 and three S333, M334 and F339 in EC4.

The adenosine transporter 2 gene is part of the nucleoside

transporter family and is of particular interest as loss of function of

the paralogous TbAT1 gene which encodes the P2 type of

nucleoside transporter is related to drug resistance in T. brucei brucei

[19,20]. However, sites with significant evidence of dN/dS.1 are

not homologous to those mutations (L71V, A178T, G181E,

D239G, N276S) seen in drug resistant isolates [21].

Adaptive evolution of amino acid transporters
Two clusters of homologous amino acid transporter genes were

identified as having evolved under positive selection, CPGs

19796418 and 22063411. These CPGs exhibited six and nine

Figure 1. dN/dS values for CPG and COG genes. Cumulative
frequency plot of dN/dS values for duplicated paralogous T. brucei CPGs
in comparison to T. brucei-T. cruzi and T. brucei-L. major COGs. The T.
brucei CPGs exhibit a relaxed purifying selection and are more likely to
be subject to positive adaptive evolution.
doi:10.1371/journal.pone.0002295.g001
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codons with significant evidence of adaptive evolution respectively.

Recent analysis of the amino acid transporter genes in kinetoplas-

tid species grouped these two clusters as a single T. brucei specific

locus containing six genes (named AAT4Tb) which have

potentially evolved by tandem duplication and which exhibit

evidence of elevated evolutionary rate [22]. Here we show that

each of the two clades of the AAT4Tb cluster exhibits evidence of

positive selection. However, the sites detected are not orthologous

between the two CPGs.

Adaptive evolution of procyclin
A single cluster (CPG 19416463) of five procyclin genes

exhibited positive selection, only a single site, G51 was predicted

with dN/dS.1. The function of site G51 is unknown, but is N-

terminal to the Glu-Pro repeat region. The number of Glu-Pro

repeats and similarity searches places this procyclin in the EP3

procyclin family [23].

Adaptive evolution of receptor-type adenylate cyclase
genes

Four CPGs of receptor-type adenylate cyclase genes (ACs) were

identified, containing a total of 29 genes. Like membrane bound

cyclases of metazoans, trypanosome ACs are single transmembrane

spanning proteins with an intracellular cyclase domain which has

been crystallised (PDB 1FX2/1FX4 [24,25]) to which each cluster

was aligned.

Predicted positively selected sites were largely located within the

extracellular part of the protein, with only four codons predicted to be

subject to positive selection in the intracellular cyclase domain

(Figure 3). Previously the extracellular domain has been thought to

have no similarity to other proteins or protein domains but is predicted

to have a ligand binding role [26]. However a psi-blast search of the nr

database with the n-terminal portion of a representative AC protein

(Tb927.6.760) as a query identified a probable leucine/isoleucine/

valine-binding protein precursor from the bacteria Bradyrhizobium

japonicum (NP_773188.1 Psi-blast round 2 Evalue = 8610210) as a

candidate homologue of the kinetoplastid AC family. To confirm this

prediction, a hidden Markov model (HMM) of the n-terminal region

of ACs was used to search HMMs generated from all PDB files (PDB

version 70, April 2007) using HHpred a method of hidden Markov

model comparison tool utilising secondary structure information to

identify distant homologues with high sensitivity [27]. Using the local

alignment mode, Tb927.6.760 aligned to E. coli L-leucine-binding

protein (PDB 2LBP [28]) with a probability of 99.7 (Evalue

1.6610214).

Table 1. Summary of sites tests for positive selection.

Description CPGa N LRT statistics Parameter estimates

M1 vs. M2 M7 vs. M8 M8 vs. M8a
% of sites with
dN/dS.1 dN/dS

M2 M8

65 kDa ISG 19416372 3 13.77** 14.58*** 13.77*** 8 8 4.34

65 kDa ISG 21719250 5 45.50*** 45.56*** 45.49*** 12 12 12.68

75 kDa ISG 20195704 3 40.73*** 41.14*** 40.73*** 18 18 3.96

Adenosine transporter 20117965 6 24.49*** 29.03*** 22.74*** 1 1 9.56

Amino acid transporter 22063411 3 23.20*** 23.24*** 23.20*** 11 11 8.14

Amino acid transporter 19796418 3 30.47*** 30.52*** 30.51*** 3 3 27.7

Procyclin 19416463 5 6.11* 8.18* 6.10* 1 1 8.24

GRESAG2 20975481 3 18.36*** 18.51*** 18.36*** 5 5 17.69

Hypothetical 20115952 3 10.89** 10.87** 10.24** 11 15 10.07

Hypothetical 19340333 4 13.43** 13.43** 13.43*** 6 6 10.72

Hypothetical 20206217 4 13.49** 13.51** 13.49*** 4 4 23.94

Hypothetical 21586974 9 16.62*** 16.63*** 16.08*** 14 14 5.86

Hypothetical 21769349 3 16.18*** 16.49*** 16.18*** 9 9 10.6

Receptor-type AC 19651441 5 46.95*** 47.02*** 46.95*** 9 9 7.21

Receptor-type AC 20115358 8 131.60*** 131.41*** 131.09*** 7 7 4.6

Receptor-type AC 21943524 8 183.29*** 182.30*** 179.44*** 6 5 6.06

Receptor-type AC 21139502 5 279.88*** 279.75*** 279.74*** 10 10 12.95

RHS 20343633 6 17.58*** 17.89*** 17.56*** 22 25 2.33

RHS 20439293 3 32.94*** 33.07*** 32.94*** 9 9 12.26

RHS 20461581 5 38.14*** 38.36*** 38.09*** 3 3 35.12

RHS 19651414 8 102.43*** 102.55*** 102.43*** 18 18 6.87

RHS 21995461 3 106.01*** 106.08*** 105.98*** 4 4 33.46

RHS 20529562 4 157.08*** 157.19*** 156.87*** 7 7 10.12

N, number of species analysed; M1 vs. M2, likelihood ratio test statistic for model M1 versus M2; M7 vs. M8, likelihood ratio test statistic for model M7 versus M8;
Parameter estimates: percentage of sites in dN/dS.1 category and estimated dN/dS parameter under model M8. ISG, invariant surface glycoprotein. RHS
retrotransposon hot spot protein. * Significance with P,0.05; ** Significance with P,0.01; *** Significance with P,0.001. A CPG jaccard cluster number from El Sayed et
al [8].
doi:10.1371/journal.pone.0002295.t001
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Discussion

Parasite genome sequencing projects provide an invaluable

resource for biologists; however the successful mining of any large

scale data set is key to new avenues of research. Thus a greater

understanding of adaptive evolution within parasitic species will

link genome studies to the biology of parasites and identify

potential new targets for intervention. Here we have used the data

from the genomes of human pathogens to scan for genes subject to

adaptive molecular evolution and highlight the areas of the protein

coding genome which have been extensively modified by natural

selection. The genes identified are frequently duplicated, often

independently in T. brucei and the majority of the expanded

adaptive proteins are surface expressed, suggesting interaction

with the external host environment.

Genes identified include adenosine transporters related to the

P2 type associated with drug resistance [19,20] and molecules

involved in life cycle progression; the procyclins expressed in late

procyclic parasites in the insect host [29], and Adenylate cyclises

(ACs) which form part of the signal transduction pathway

generating cAMP. ACs are the subject of particular interest as

cAMP is thought to influence the life-cycle progression of T. brucei

[24], and understanding of ACs may provide insight into the

mechanism of parasite development and transmission. The

extensive duplication and diversification of the ACs suggest that

these genes may be part of an essential sensory system and

exemplify the complexity of the control of parasite lifecycle

progression. The migration and development in different hosts

requires tight coupling of environmental sensing, gene expression

and parasite development. The variation of the extracellular LBP

homologous region of ACs could therefore be to detect multiple

ligands by variation of binding specificity or association/

dissociation dynamics of ligand interaction thus allowing a range

of stimuli to potentiate a signal via the ACs. For example, in T.

Table 2. Functional annotation of CPGs subject to positive selection.

Description CPGs
Predicted
Location Size a Pfam Domains Biological Process Molecular Function

65 kDa ISG 19416372, 21719250 Su 434–436 n/d n/d n/d

75 kDa ISG 20195704 Su 522–523 n/d n/d n/d

Adenosine transporter 20117965 Su 462–466 MFS_1,
Nucleoside_tran

transport nucleoside transporter
activity

Amino acid transporter 19796418, 22063411 Su 450–490 Aa_trans,
Trp_Tyr_perm

amino acid transport amine transmembrane
transporter activity

EP1 procyclin 19416463 Su 123–141 n/d n/d n/d

GRESAG2 20975481 Su 454–457 n/d n/d n/d

Receptor-type AC 19651441, 20115358,
21139502, 21943524

Su, Se 1170–1288 Guanylate_cyc intracellular signalling
cascade, cyclic
nucleotide biosynthetic
process

phosphorus-oxygen
lyase activity

RHS 19651414, 20343633,
20439293, 20461581,
20529562, 21995461

Se, Su, In 557–860 n/d n/d n/d

Predicted cellular location based on GPI signal peptide and transmembrane domain prediction for each member of each cluster (see methods) Su; surface, Se; secreted,
In; Intracellular. Pfam domains were detected using HMMER [47] to search the Pfam database [54]. Gene Ontology terms were linked to predicted Pfam domains using
Pfam2GO (http://www.geneontology.org/). For details of gene annotation and prediction of location see methods.
doi:10.1371/journal.pone.0002295.t002

Figure 2. Histogram of predicted location of COG and CPG genes. Protein products were tested for transmembrane (TM) domains, secretory
signal sequences and glycosylphosphatidylinositol (GPI) anchor sequences. Secreted; secretory signal sequence positive TM and GPI-anchor negative,
surface; TM or GPI-anchor positive, Intracellular; secretory signal, TM and GPI-anchor negative. COGs, all 1:1:1 T. brucei:T. cruzi:L. major clusters if
orthologous genes. All CPG, all T. brucei CPGs. CPGs.2 members, all CPGs tested for positive selection using codon model. dN/dS.1, CPGs subject to
adaptive evolution using codon models.
doi:10.1371/journal.pone.0002295.g002
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cruzi components of mammalian serum and cAMP are known to

stimulate differentiation of proliferative epimastigotes to infective

metacyclic trypomastigotes via adenylate cyclases [30,31]. Frai-

denraich et al 1993 showed that adenylate cyclase can bind a-

globin peptide in the insect vector gut following a blood meal.

They postulated that ‘‘T. cruzi could have several receptors with

different specificity for globin derived peptides, or alternatively,

only one receptor specific for a common domain shared by several

a-globin chain species’’ [31]. Our results support the former

hypothesis that positive selection has driven the adaptive evolution

of the extracellular domain whilst functional constraint retains the

intracellular domain by purifying selection.

This proposal is supported by experiments which demonstrate

that in the LBP amide receptor of P. aeruginosa, mutation of Thr-

Asn at position 106 alters ligand specificity, but that this is due to a

change in conformation rather than T106 binding the ligand

directly [32]. However, not all changes may alter function. For

example, it has been shown that adaptive changes in the

homologous AmiC ligand binding protein of P. aeruginosa which

affect ligand specificity result in an unstable protein [33].

Therefore only a subset of mutations may actually alter substrate

binding specificity or dynamics, whilst others may be compensa-

tory to maintain structural stability. The number of positively

selected sites residing in the 2LBP homologous region varies

between clusters from 0 in cluster 21139502 to 17 in cluster

21943524, but in all clusters a greater number of positively

selected sites were detected in the receptor 2LBP like portion

compared to the catalytic 1FX4 domain. When mapped onto the

2LBP sequence, the sites are dispersed between the two lobes of

the clam shell-like structure. Which come into close proximity to

the ligand after binding and closing of the clam shell, (Figure 3b).

Additionally a large number of sites are located in the region of

unpredicted function between the 2LBP homologous region and

the predicted TM domain.

Adaptive Evolution: Implications for Parasite Biology
The impact of adaptive evolution on parasite biology stems

from the premise that the fixation of duplicated genes is an

adaptive event; that these duplicated genes act as a source for

protein subfunctionalisation [12] by evolution of key positions in

the protein, and that this adaptation is reflective of organism-

specific selective pressures.

Importantly, the availability and continued understanding of a

gene and genome evolution allows the rational design of

experiments to assess function of positively evolving or extended

gene families. If a gene of interest is part of a gene family,

experimental procedures may result in little or unexpected results.

For example, gene knockout is a powerful tool, but may not

remove a phenotype if only part of the complement of a gene

family is removed, e.g. McGwire et. al. [34] noted that the

knockout of a single GP63 gene in Leishmania did not completely

attenuate the parasite migration through the extracellular matrix

and where removal of seven GP63 genes was required to reduce

infectivity of L. major [35]. This residual enzymatic action can be

explained by subfunctionalization of the duplicated genes. Thus

experiments should be targeted to identify more subtle effects or

Figure 3. Codon-specific analysis of receptor-type adenylate
cyclase genes. Homologous extracellular codons with predicted v.1
are mapped to the tertiary structure of E. coli leucine-binding protein
(PDB 2LBP [28]) or L-leucine-binding protein with leucine bound (PDB
1USK [56]). Intracellular codons that are predicted to be under positive
selection are mapped to the tertiary structure of T. brucei receptor-type
adenylate cyclise (PDB 1FX2 [25]). A) Hypothetical representation of the
intact Trypanosome adenylate cyclase molecule. The extracellular
region is composed of an N-terminal region homologous to 2LBP and
a region of unknown function. A single transmembrane region links to
the conserved C-terminal catalytic domain. Positively selected sites
(posterior probability $0.95) homologous to crystal structures are
shown as space filled residues. Red, CPG 21943524. Blue, 20115358.
Green, 19651441. Positively selected sites in regions not homologous to

a known crystal structure are shown as coloured circles. B) Position of
positively selected sites following conformation change of extracellular
binding region upon binding to leucine (coloured orange). Orientation
is as for part A.
doi:10.1371/journal.pone.0002295.g003

r
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should incorporate the genomic information such as the knockout

of multiple genes or clusters of duplicated genes.

Adaptive Evolution: Implications for Parasite Control
Selection of a protein as a target for therapeutics or for vaccine

design follows some basic tenets; drug targets should ideally be

pathogen specific genes/pathways so as to avoid affecting the

individual being treated, and vaccine targets should be surface

located to be accessible by the primed host immune system. With

available genome data one can rapidly screen for genes which

encode proteins fitting the above criteria. However, this study

highlights that gene duplication and adaptive evolution should be

considered during screening for potential targets. With regard to

drug therapy, an anti-parasitic drug should be designed differently

depending on whether it is to bind a single protein or to bind all

proteins of a multi-gene family. Thus therapies which target one or

a subset of duplicate genes may not be effective, at low doses due

to binding affinities to variable targets. In this case, it may be more

effective to target a single-copy gene, where removal of function

should offer more complete perturbation of a pathway and hence

more tractable control. Alternatively a drug would need to target a

conserved region of the protein or have large effects at low affinity

when binding to variable members of a protein family.

With respect to parasite vaccine design, it seems logical as

proposed in the context of bacterial and virus vaccine design, that

genes or gene regions undergoing adaptive evolution should be

avoided when considering drug targets [36,37]. This is exemplified

by the long term success of poliovirus vaccines, which has been

related to purifying selection maintaining the sequence and hence

structure of targeted surface proteins [38] conversely targeting the

rapidly evolving proteins of HIV may have contributed to

developing resistance [39]. However, the complexity of this

argument is exemplified in current vaccine candidates for

Plasmodium falciparum control, where the relative merits and

problems of sequence variation in vaccine candidates are currently

discussed [40]. Indeed, both conserved regions [41] and full length

proteins [42] of known polymorphic merozoite surface protein 3

(MSP3) are under investigation as important vaccine candidates,

and it has been reported that polymorphic regions may induce a

stronger immune response [43].

The conflict within these arguments are that potential candidate

genes which are surface expressed and elicit a strong immune

response and hence are good vaccine candidates are also those most

likely to be subject to adaptive evolution. We propose these adaptive

genes may simply be more malleable by natural selection and thus be

more likely to change in the future, especially under the strong

selective pressure of choreographed therapeutic intervention.

Theoretically therefore the challenge for future design of

vaccines is to identify parasite specific molecules which do not

bear the signature of rapid adaptive change, or to target regions of

proteins distant from rapidly evolving regions. However, the

practicality of design and the biology of the immune response may

require that variable sites in multiple gene families are necessary as

targets. Hence, the availability of complete genome sequence data

is central to this as it allows evolutionary analysis to be

incorporated in vaccine design from inception, stimulating novel

hypotheses relating to the biology of these parasites, and a greater

understanding of pathogen genome evolution.

Materials and Methods

Data collection and manipulation
Predicted protein and cDNA sequences were obtained from the

Sanger Institute ftp server (ftp.sanger.ac.uk/pub/databases/).

Membership of gene families based on reciprocal blastp searches

and single linkage clustering using a jaccard similarity coefficient

was taken from table S1 of El-Sayed et al [8]. Using this approach

8080 T. brucei genes, not labelled as pseudogenes, were grouped

into clusters of orthologous genes (COGs) with T. cruzi and L. major

(6585 3-species and 571 2-species COGs). 924 genes were labelled

as T. brucei specific. Of these 924, 624 were present as single copy

genes and 300 were duplicated in the T. brucei lineage and formed

what we refer to as clusters of paralogous genes (CPGs).

Sequences with less than 10 amino acids were removed and the

remaining aligned using muscle [44]. Protein alignments were

then parsed to remove poorly aligned regions using the Gblocks

algorithm [45] with the following criteria; maximum number of

contiguous non-conserved positions = 10, minimum length of a

block = 5, gap positions allowed in all sequences. These parsed

alignments were then used to construct a corresponding cDNA

alignment. Initial phylogenetic trees were inferred by neighbor

joining under the JC69 model [46].

To predict cellular location, protein products were tested for the

presence of transmembrane (TM) domains using TMHMM

Server v2.0 [47], secretory signal sequences using the Sigcleave

prediction module [48] and glycosylphosphatidylinositol (GPI)

anchor sequences using DGPI (http://129.194.185.165/dgpi/

index_en.html). Sequences were annotated as secreted if they were

secretory signal sequence positive but TM and GPI-anchor

negative, surface expressed if TM or GPI-anchor positive and

intracellular if secretory signal, TM and GPI-anchor negative. All

sequences were compared to a library of Pfam HMMs (obtained

from www.sanger.ac.uk/Software/Pfam/ftp.shtml on 27/06/

2007) using HMMER [49].

Detection of adaptive evolution
A ‘‘gene-wide’’ estimate of adaptive evolution was estimated by

pairwise calculation of dN/dS between all members of a cluster.

Additionally, as adaptive evolution is likely to act on a small subset

of amino acid residues and hence averages of substitution rates

across the gene may not strictly indicate positive selection [4] we

scanned the CPGs with three or more members (40 CPGs, 171

genes) for adaptive evolution using a codon model. To achieve

this, data are fitted to codon-based substitution models that allow

v to vary among sites, with the parameters of the model estimated

using maximum likelihood [4]. The analysis was conducted using

the CodeML application from the PAML package version 3.15

[50]. For each pair of nested models the log likelihood values are

compared using the likelihood ratio test (LRT). If the model

allowing positive selection fits the data significantly better, as

judged by the LRT, positive selection is inferred [51]. In this study

we used two pairs of models: M1 (neutral) versus M2 (selection)

[52]; and M7 (beta) versus M8 (beta+v) [3]. M1 allows two v site

classes with v0,1 estimated from the data or v1 = 1. Whilst M2

allows an additional v2 value to be estimated from the data which

may be .1. M7 fits v to 10 site classes between 0 and 1

approximating a beta distribution and M8 adds an additional site

class with an v possibly .1, estimated from the data. Both M1-

M2 and M7-M8 comparisons were performed with 2 degrees of

freedom. To speed the likelihood iterations M0 was used to

estimate branch lengths based on the topology of the neighbour

joining trees and the estimates of branch lengths were used as

initial values in estimations by other models. To ascertain

convergence of the likelihood iterations multiple runs were

conducted until the difference between two log likelihoods for

each model were less than or equal to 0.01.

When a gene cluster shows a signature of adaptive evolution

according to the LRTs, the empirical Bayes method [52,53] was
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used to identify specific codons which reside within the site class of

v.1. Codons are identified as undergoing adaptive evolution if

both tests are significant and if the posterior probability under

both M2 and M8 models was $0.95.

Additionally, to stringently test for evidence of positive selection

and to remove the potential identification of relaxed purifying

selection, we conducted a comparison of M8 model (where a single

class of sites is allowed with dN/dS.1) to M8a, where dN/dS = 1

[54]. The reliance of three M2 vs M3, M7 vs M8 and M8 vs M8a

nested LRTs to infer positive selection also provides some

protection against false positives identified as a result of potential

recombination events [55].

All sequences predicted to be subject to positive selection were

used to search for homologous sequences in the PDB database of

protein structures (http://www.rcsb.org/pdb/ accessed August

2006) using BLAST [18]. Molsoft ICM browser (molsoft.com) was

used for structural manipulations.

Supporting Information

Table S1 Parameter estimates for all positively selected CPGs.

Clusters of orthologous genes and descriptions from El-Sayed et al

[8]. Parameter estimates predicted by PAML models M0, M1,

M2, M7 and M8.

Found at: doi:10.1371/journal.pone.0002295.s001 (0.19 MB

DOC)
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