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Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider
the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is
responsible for evolution at silent sites. Here we implement a few population genetics models of codon substitution that
explicitly consider mutation bias and natural selection at the DNA level. Selection on codon usage is modeled by
introducing codon-fitness parameters, which together with mutation-bias parameters, predict optimal codon frequencies
for the gene. The selective pressure may be for translational efficiency and accuracy or for fine-tuning translational
kinetics to produce correct protein folding. We apply the models to compare mitochondrial and nuclear genes from
several mammalian species. Model assumptions concerning codon usage are found to affect the estimation of sequence
distances (such as the synonymous rate dS, the nonsynonymous rate dN, and the rate at the 4-fold degenerate sites d4), as
found in previous studies, but the new models produced very similar estimates to some old ones. We also develop
a likelihood ratio test to examine the null hypothesis that codon usage is due to mutation bias alone, not influenced by
natural selection. Application of the test to the mammalian data led to rejection of the null hypothesis in most genes,
suggesting that natural selection may be a driving force in the evolution of synonymous codon usage in mammals.
Estimates of selection coefficients nevertheless suggest that selection on codon usage is weak and most mutations are
nearly neutral. The sensitivity of the analysis on the assumed mutation model is discussed.

Introduction

In protein-coding genes, synonymous codons that
code for the same amino acid do not appear at the same
frequency (Ikemura 1981, 1985). Whether the origin and
maintenance of such codon usage bias is due to biases in
themutation process or to natural selection has been amatter
of much controversy (see, e.g., Duret 2002 for review).
Mutation biasmust play a role, but the significance of selection
in driving the evolution of codon usage is less certain and
may depend on the species. In fast-growing organisms with
large population sizes, such as Escherichia coli, Saccharo-
myces cerevisiae, and yeast, codon usage is generally
thought to be under selective pressure, as supported by sev-
eral lines of evidence. First, codon frequencies are corre-
lated with the cellular cognate tRNA concentrations
(Ikemura 1981, 1985; Bennetzen and Hall 1982; Bulmer
1987; Sharp and Li 1987; Moriyama and Powell 1997).
Preferential use of so-called major codons to match the
most abundant tRNAs may enhance translational speed
and improve translational accuracy (for reviews, see Akashi
1995; Sharp et al. 1995; Duret 2002). In addition, major
codons may reduce the energetic cost of translation by re-
ducing the chances of amino acid misincorporations and
ribosomal drop-offs (Kurland 1992) and by freeing up
the protein synthesis machinery through faster ribosomal
elongation. Second, in both Drosophila and Caenorhabdi-
tis elegans, codon usage is correlated with gene expression,
with highly expressed genes having strongly biased codon
usage, presumably because of stronger selective pressure
(Duret and Mouchiroud 1999; Castillo-Davis and Hartl
2002). Third, silent substitution rate (measured by the se-
quence distances dS or d4 at the synonymous or 4-fold de-
generate sites) is lower in genes with highly biased codon

usage, implying stronger purifying selection on silent mu-
tations in highly biased genes (e.g., Sharp and Li 1987).
This correlation was nevertheless found to depend on the
method used to estimate silent rates (Dunn et al. 2001;
Bierne and Eyre-Walker 2003). Fourth, in Drosophila, co-
don usage is more biased for conserved amino acids than for
nonconserved amino acids (Akashi 1994). This may be ex-
plained by selection for translational accuracy because
highly conserved amino acids are expected to be function-
ally more important and less tolerant to misincorporations
of wrong amino acids and are thus under stronger selective
pressure.

In slowly growing organisms with small population
sizes such as vertebrates, natural selection may be ineffi-
cient and indeed its effect on codon usage is controversial
(see, e.g., Duret 2002 for a review). In contrast to results for
bacteria, yeast, and Drosophila, strong evidence for selec-
tion on codon usage is lacking in vertebrates. For example,
Kanaya et al. (2001) found a correspondence between co-
don bias and tRNA gene copy number (a proxy for tRNA
concentration) in Schizosaccharomyces pombe and C. ele-
gans but not in Xenopus laevis and Homo sapiens; in the
later species, highly expressed genes such as ribosomal
genes and histone genes do not have strong codon bias.
Some studies (e.g., Musto et al. 2001) found a correlation
between codon bias and putative expression levels (as mea-
sured by expressed sequence tag frequencies), but this cor-
relation could be explained by transcription-coupled repair
(Duret 2002).

Besides selection for translational efficiency and accu-
racy, recent experimental work suggests that the selective
pressure on codon usage may also be due to the need for an
optimal translation kinetics, to ensure correct protein fold-
ing. Protein folding is thought to be cotranslational, occur-
ring at the same time the protein is translated from the
mRNA (Frydman 2001). The use of preferred and unpre-
ferred codons may affect the rate at which the protein is
translated. The translation kinetics may be important in sep-
arating temporally folding events during protein synthesis
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on the ribosome, thus ensuring ‘‘beneficial’’ interactions
and avoiding ‘‘unwanted’’ interactions within the growing
peptide, to achieve high yield of the correctly folded
protein. Kimchi-Sarfaty et al. (2007) reported that certain
synonymous mutations in the multidrug resistance 1 gene
resulted in altered drug and inhibitor interactions. They
found similar mRNA and protein levels but altered protein
conformations between the ‘‘wild type’’ and mutant protein
products and hypothesized that the incorporation of
rare synonymous codons may have affected the timing
of folding. This form of selection differs from translational
selection in that preferred codons are not always advanta-
geous if the optimal folding requires a slow translation. It
is unclear how important such selection for protein
folding is to the evolutionary process of protein-coding
genes.

A number of authors have studied population genetics
models in which the proportions of synonymous codons are
modeled as the product of interactions between mutation
bias, natural selection, and genetic drift (Kimura 1983;
Li 1987; Bulmer 1991; McVean and Charlesworth
1999). McVean and Vieira (1999) applied maximum likeli-
hood (ML) to fit such a model to counts of synonymous
codons for 2-fold amino acids in protein-coding genes in
several Drosophila species, to estimate parameters of mu-
tation bias and selective pressure. The analysis does not
consider the evolutionary relationships among species,
which may provide useful information concerning relative
mutation rates between nucleotides. This model was ex-
tended by McVean and Vieira (2001) to analyze synony-
mous differences between different species, with
nonsynonymous differences ignored. Nielsen et al.
(2007) implemented a codon-substitution model in which
a mutation is favored or disfavored by natural selection de-
pending on whether it changes an unpreferred codon into
a preferred one or vice versa. The model was applied to
Drosophila protein–coding genes to obtain ML estimates
of parameters measuring the strength of selection. This
method requires a priori partitioning of synonymous co-
dons into preferred and unpreferred categories and also as-
sumes only one selection coefficient to accommodate
selection on codon usage.

In this paper, we implement a few new models of co-
don substitution that relax those assumptions. Our motiva-
tions for this study are 2-fold. First, we devise a likelihood
ratio test (LRT) of neutral evolution of codon usage to infer
possible effects of natural selection. Whereas many previ-
ous studies have performed correlation analysis to test the
various predictions of the mutation and selection theory of
codon usage bias (see above), the LRT addresses this prob-
lem directly. Our model also provides direct measurements
of selection acting on silent sites. Second, we examine the
effects of model assumptions about codon usage on estima-
tion of sequence distances such as dS, dN, and their ratio
x 5 dN/dS. There has been considerable interest in the
use of the x ratio to detect positive selection affecting pro-
tein evolution, and some concerns have been expressed as
to whether this inference is affected by natural selection act-
ing on silent sites (Kreitman and Akashi 1995; Yang and
Bielawski 2000). We analyze 2 sets of data to address these
issues, the first of the human and chimpanzee mitochondrial

protein–coding genes and the second of 5,639 protein-
coding genes from the 5 mammalian species: human, chim-
panzee, macaque, mouse, and rat.

Theory
A Mutation-Selection Model of Codon Substitution

We construct a model of codon substitution by spec-
ifying the instantaneous rate of substitution from sense co-
dons I 5 i1i2i3 to J 5 j1j2j3, where i1 is the nucleotide at the
first position in codon I, and so on. We assume that point
mutations occur independently at nucleotide sites and thus
the rate is zero if I and J differ at more than 2 or 3 codon
positions (Goldman and Yang 1994). Thus, we focus on the
rate between 2 codons that differ at only one position, say
position k, with ik 6¼ jk. We explicitly model the process of
one codon substituting another codon, that is, mutation, se-
lection on the DNA (selection on codon usage), and selec-
tion on the protein.

Mutation Bias

Let the mutation rate from nucleotides i to j be lij per
generation. The mutation model applies to all 3 codon po-
sitions, although the base compositions at the 3 positions
may differ. We use the general time reversible (GTR or
REV) model (e.g., Yang 1994) to describe the mutation
process so that lij5aijp�j , with aij 5 aji for all i 6¼ j. Here
p�j reflects mutation bias; if p�T is large, mutations are biased
toward T. One of the mutation-bias parameters is redun-
dant, and we scale them so that

P
p�j 51. If the HKY mu-

tation model (Hasegawa et al. 1985) is used, lij5ljp�j if
i and j differ by a transition and lij5lp�j if i and j differ
by a transversion, with j to be the transition/transversion
rate ratio. Our analysis below is based mostly on the
HKY model, but GTR is used in some analyses to examine
the robustness of the results.

Selection on Codon Usage

We model selection on codon usage by introducing
a fitness parameter fI for codon I. The selection coefficient
for the mutation that changes the wild type codon I into
a new mutant codon J is thus sIJ 5 fJ � fI. The probability
of fixation of the mutation is 2sIJ

1�e�2NsIJ
, where N is the effec-

tive chromosomal population size (Fisher 1930; Wright
1931; Kimura 1957). Let FI 5 2NfI be the scaled fitness
of codon I, and SIJ 5 2NsIJ 5 2N(fJ � fI) 5 FJ � FI be
the scaled selection coefficient. As the number of the
I / J mutations in a generation is Nlik jk , the substitution
rate from codons I to J is given as

Nlik jk �
2sIJ

1�e�2NsIJ
5aikjkp

�
jk
� SIJ
1�e�SIJ

5aikjkp
�
jk
�hðSIJÞ;

ð1Þ

wherehðSIJÞ5 SIJ
�
ð1�e�SIJ Þ is the ratioof thefixationprob-

ability of the I / J mutation to the fixation probability of
a neutral mutation, with h(SIJ) , 1, 5 1 and . 1 for delete-
rious mutations (with SIJ , 0), neutral mutations (SIJ 5 0),
and advantageous mutations (SIJ . 0), respectively.
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When the model is applied to sequence data from dif-
ferent species, we have in this study assumed that the ef-
fective population size N and the selection coefficients
are the same among lineages. Those assumptions can be
relaxed at the expense of including more parameters
(McVean and Vieira 2001; Nielsen et al. 2007).

Selection on the Protein

To describe selection on the protein, we multiply the
substitution rate by x if and only if the mutation is nonsy-
nonymous (Goldman and Yang 1994; Yang and Nielsen
1998). Thus, x is the nonsynonymous/synonymous substi-
tution rate ratio. The use of one single x to describe selec-
tion on the protein is very simplistic. However, previous
models that incorporate amino acid chemical properties
to specify codon substitution rates achieved only moderate
(although statistically significant) improvements to the
model’s fit to data, and furthermore, such models produced
rather similar estimates of mutation parameters to the sim-
ple model of one x ratio (Goldman and Yang 1994; Yang
et al. 1998). Here our focus is on the effect of selection on
synonymous codon usage. We also implement the site mod-
els that assume variable x ratios among codons in the gene
(Nielsen and Yang 1998; Yang et al. 2000).

To summarize, the substitution rate from codons I to J
is specified as

qIJ5f 0; if the 2 codons differ at more than one position;
aikjkp

�
jk
hðSIJÞ; for synonymous substitution;

xaikjkp
�
jk
hðSIJÞ; for nonsynonymous substitution:

ð2Þ

The diagonals of the rate matrix Q 5 {qIJ} are determined
by the requirement that each row in the matrix sums to zero.
As only the difference SIJ 5 FJ � FI enters the probability
calculation under the model, we fix one of the 61 FI’s to
zero and estimate 60 free parameters for the universal ge-
netic code. The model thus includes the following param-
eters in the substitution rate matrix Q: 8 parameters in the
GTR mutation model (or 4 parameters in HKY: j, p�T, p

�
C,

and p�A), 60 scaled fitness parameters, and x. The sequence
distance t or branch lengths on the tree are additional pa-
rameters to be estimated from the data.

After the Q matrix is constructed, the stationary distri-
bution of the Markov chain, p5 {p1, p2, . . ., p61}, is given
by the system of linear equations pQ 5 0, subject to the
constraint that the pj’s sum to one. This distribution can also
be calculated directly (see eq. 4 below). The matrix is then
multiplied by a constant so that the ‘‘average’’ rate is one:
�
P

I pIqII 5 1. The transition probability matrix P(t) 5
eQt is calculated following standard theory. (Note that
we have used pJ, where the subscript J is a codon to indicate
the equilibrium frequency of codon J, and p�j , where the
subscript j is a nucleotide to represent the mutation-bias pa-
rameter in the HKY or GTR mutation models.)

The Markov model of codon substitution specified by
equation (2) is time reversible. To show this, it is sufficient
to write the rate matrix as a product of a symmetrical matrix
and a diagonal matrix (e.g., Yang 2006, p. 33–34). The rate

qIJ in equation (2) for a synonymous change can be rewrit-
ten as

qIJ 5 aikjkp
�
jk
� FJ�FI

1�eFI�FJ

5

�
aikjk � 1Q

k#6¼k
p�jk#

� FJ�FI

eFJ�eFI

�
�
�
p�j1p

�
j2
p�j3e

FJ

�
:

ð3Þ

Here
Q

k# 6¼k p
�
jk#
is the product of the mutation-bias parame-

ters for the 2 unchanged nucleotides (i.e., p�Tp
�
C if I 5 TCA

and J 5 TCG). The quantity in the square brackets, de-
noted AIJ, satisfies AIJ 5 AJI for all I 6¼ J, whereas the quan-
tity in the parentheses is a function of J only. The rate qIJ
when the I/ J substitution is nonsynonymous can be writ-
ten in this form as well. Thus, the rate matrix Q5 {qIJ} can
bewritten as a product of a symmetricalmatrix {AIJ} anda di-
agonal matrix so that the Markov process is time reversible,
with the stationary frequency for codon J given as

pJ}p
�
j1
p�j2p

�
j3
� eFJ : ð4Þ

For example, the equilibrium frequencyof codonTCGispro-
portional to p�Tp

�
Cp

�
G � eFTCG . This result makes it clear that

the stationary codon frequencies are determined by both mu-
tation bias (represented by p�j1p

�
j2
p�j3 ) and selection on codon

usage (represented by eFJ ). Themodel is referred to below as
the FMutSel model. It may also be noted that instead of the
codon fitness parameters (FJ), one may use the codon fre-
quencies (pJ) asparameters.The latterparametrization is con-
venient for an approximate implementation to be described
below.

An LRT of Selection on Codon Usage

We implement a special case of the mutation-selection
model of codon substitution (eq. 2), in which all synony-
mous codons (codons that encode the same amino acid)
have the same fitness. Thus, instead of 60 (561 � 1) codon
fitness parameters for the universal genetic code, only 19
(520 � 1) amino acid fitness parameters are used. The
model assumes that the amino acid frequencies are deter-
minedby the functional requirements of theprotein, but there
is nofitnessdifference among the synonymouscodons.From
the theory above (eq. 4), the relative frequencies of synon-
ymous codons are determined solely by the mutational-bias
parameters. This model is referred to as FMutSel0.

An LRT can be constructed by comparing models
FMutSel0 against FMutSel. Twice the log-likelihood dif-
ference between the 2 models is compared with the v2 dis-
tribution with degree of freedom 5 60 � 19 5 41 for the
universal code (or 40 for the vertebrate mitochondrial
code). This constitutes a test of the null hypothesis that co-
don usage is due to mutation bias alone and not to selection
acting at silent sites.

Measurements of Selection on Codon Usage

As our model explicitly separates mutation bias from
selection affecting codon usage, we devise a few measures
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of the strength of natural selection on codon usage. Imagine
observing the Markov process of codon substitution at any
site (any codon triplet) for an infinitely long time. In a pro-
portion pI of the time, the wild-type codon at the site in the
population is codon I. The mutation (from codon I) to codon
J, which changes the nucleotides ik into jk at codon position
k and which has scaled fitness SIJ 5 FJ � FI, occurs at the
rate lik jk . Averaged over time, the proportion of the I / J
mutation among all mutations is

mIJ5
pIlik jkP

I 6¼J

pIlik jk
5

pIaik jkp
�
jkP

I 6¼J

pIaik jkp
�
jk

; ð5Þ

where the sum in the denominator is over all pairs of codons
I and J with I 6¼ J.

One may then calculate the proportion of advanta-
geous mutations among all mutations as

Pþ5
X
I 6¼J

mIJ SIJ.0; ð6Þ

where the indicator function SIJ.0 51 if SIJ . 0 or 5 0 if
otherwise. Similarly, the proportion of deleterious muta-
tions among all mutations is

P�5
X
I 6¼J

mIJ SIJ,05 1� Pþ: ð7Þ

The strength of positive selection on an average ad-
vantageous mutation may be measured by

�Sþ5
X
I 6¼J

mþ
IJSIJ SIJ.0; ð8Þ

where

mþ
IJ5

pIlik jk SIJ.0P
I 6¼J

pIlik jk SIJ.0

; ð9Þ

is the proportion of the I / J mutation among all advan-
tageous mutations. Here mþ

IJ is defined only if the I / J
mutation is advantageous, with SIJ . 0. Similarly, the
strength of negative selection may be measured by the av-
erage SIJ among deleterious mutations with SIJ , 0.

One may also calculate the proportion of advanta-
geous mutations among all ‘‘substitutions,’’ that is, among
those mutations that have passed the filtering by natural se-
lection. This can be calculated using equation (6), with the
proportion mIJ calculated using equation (5) but with pIlik jk
replaced by pIlik jk hðSIJÞ or pIqIJ (eq. 2). Because the sub-
stitution process is reversible, the proportion of advanta-
geous mutations among substitutions is exactly 1

2
.

An Approximate Implementation

In the FMutSel and FMutSel0 models, the codon fit-
ness and amino acid fitness parameters are estimated by nu-
merical optimization under ML. We also implement
approximate versions of these models by fixing the pre-
dicted codon or amino acid frequencies to the observed fre-

quencies in the sequence data. These are referred to as
‘‘FMutSel-F’’ and ‘‘FMutSel0-F,’’ respectively. This strat-
egy reduces the number of parameters to be estimated by
numerical iteration by 60 under FMutSel-F for the universal
genetic code and by 19 under FMutSel0-F. Early models
concerning codon usage, such as F1 � 4, F3 � 4, and Fco-
don, were all implemented using the observed base or co-
don frequencies as parameter estimates (Yang 1997). For
fair comparison, they are now also implemented using
proper numerical optimization of the frequency parameters.
Models implemented using the approximation are referred
to using the suffix ‘‘-F’’ (e.g., F1 � 4-F).

Analysis of Real Data

We analyze 2 sets of data. The first consists of the mi-
tochondrial genes of the human (GenBank accession num-
ber D38112) and the chimpanzee (D38113) of Horai et al.
(1995). The 12 protein-coding genes on the same strand of
the genome are concatenated into one ‘‘supergene,’’ with
3,569 codons in the alignment. The data were analyzed pre-
viously by Hasegawa et al. (1998). We fit both the new
models implemented in this paper and many old models im-
plemented in the CODEML program (Yang 1997). Several
distances between the 2 sequences are calculated under dif-
ferent models, and our objective in this analysis is to exam-
ine the impact of model assumptions concerning codon
usage on distance estimation.

The second set of data consists of the 5,639 human–
chimpanzee–macaque–mouse–rat quintet alignments of or-
thologous genes from the macaque genome-sequencing
project (Rhesus Macaque Genome Sequencing and Analy-
sis Consortium 2007). Codons that had alignment gaps in at
least one species are removed. The data were analyzed as
the primate pair of human and macaque genes, the rodent
pair of mouse and rat genes, as well as the quintet including
all 5 species. Our objectives in those analyses are to conduct
the LRT of neutral evolution at silent sites and to estimate
the coefficients of selection acting on codon usage.

Effects of the Model of Codon Usage on Distance
Estimation

The log-likelihood values and estimates of sequence
distances are shown in table 1 for the human and chimpan-
zee mitochondrial data set. The assumed mutation model is
HKY, but different models are used concerning codon us-
age. The F1 � 4, F3 � 4, and Fcodon models specify the
codon-substitution rate to be proportional to the frequency
of the target codon, with the codon frequencies calculated
using the 4 nucleotide frequencies (F1 � 4), the nucleotide
frequencies at the 3 codon positions (F3 � 4), or with all
codon frequencies treated as free parameters (Fcodon)
(Yang 1997). The F1 � 4MG model was proposed
by Muse and Gaut (1994) and assumes that the codon-
substitution rate is proportional to the frequency of the tar-
get nucleotide. F3 � 4MG is an extension of F1 � 4MG
and uses different base frequencies at the 3 codon positions.
F1 � 4MG and F1 � 4 predict the same equilibrium codon
frequencies, as do F3 � 4MG and F3 � 4.
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The new FMutSel model has a much higher log-
likelihood value than all the old models, indicating better
fit to the data. Note that except for F1 � 4MG, which is
equivalent to FMutSel with all codons having the same fit-
ness, none of the other old models are nested within FMut-
Sel and the v2 distribution cannot be used to compare them.
However, use of the Akaike information criterion (Akaike
1974) leads to clear preference of FMutSel over all old
models (table 1). Besides the better fit, we emphasize the
better explanatory power of the new model.

We are interested in whether model assumptions
concerning codon usage affect estimation of the distances
between 2 protein-coding genes. The familiar nonsynony-
mous and synonymous distances dN and dS are calculated
according to Goldman and Yang (1994). Previous studies
have found that those distances are sensitive to assumptions
about codon usage (e.g., Yang and Nielsen 1998, 2000).
Estimates of dN are very similar among models, but esti-
mates of dS vary considerably. Estimates of the x ratio dif-
fer by 2-folds among models. Nevertheless, the new
FMutSel model produced estimates that are within the
range of the old estimates. The estimates of x under the
commonly used F3 � 4 and Fcodon models are slightly
smaller than that under FMutSel.

Distances d̂
�
N and d̂

�
S are the number of nonsynony-

mous substitutions per nonsynonymous site and the number
of synonymous substitutions per synonymous site, respec-
tively, based on the ‘‘physical site’’ definition of sites (Yang
2006: eq. 2.20). These distances are more stable across
models, as noted previously. d̂3B is the number of nucleo-
tide substitutions per site at the third codon position before
selection on the protein, whereas d̂4 is the number of nu-
cleotide substitutions per 4-fold degenerate site, estimated
from the codon model under ML (Yang 2006, p. 63–64).
Distances d3B and d4 are very similar to each other and their
estimates are also similar among different models of codon
usage (table 1). See Yang (2006) and Bierne and Eyre-
Walker (2003) for a discussion of those distances in anal-
ysis of codon usage bias.

Overall, estimates of sequence distances and x ratio
under the old models, especially models F3 � 4 and Fco-

don, are similar to estimates under the new FMutSel model.
We also note that FMutSel produced almost identical re-
sults to FMutSel-F, indicating that the approximation of fix-
ing the equilibrium codon frequencies at their observed
values worked well in the data set. FMutSel-F has a big
computational advantage and may be useful in real data
analysis.

Test of Selection on Synonymous Codon Usage

We applied the LRT of neutral evolution of codon us-
age to nuclear genes from the mammalian species. The
FMutSel and FMutSel0 models are fitted to each of the
5,639 genes for the human–macaque pair, the mouse–rat
pair, and the 5-species quintet. The histograms of the
log-likelihood difference between the 2 models (D‘) are
shown in figure 1. Table 3 lists the number and proportion
of genes in which the LRT is significant. At the 5% level,
the null hypothesis of neutral evolution is rejected in 87%,
90%, and 94% of genes for the primate pair, the rodent pair,
and the quintet, respectively. The differences in the propor-
tions appear to reflect the information content in the data
sets rather than any real biological differences between pri-
mates and rodents. The mouse–rat pair is more divergent
than the human–macaque pair so that the data are more in-
formative and the test has higher power. Similarly, the quin-
tet data are most informative so that the null hypothesis is
rejected in the greatest number of genes. The analysis thus
provides statistical evidence that synonymous codon usage
in most genes is influenced by natural selection. Neverthe-
less, the LRT may be sensitive to the mutation model as-
sumed in the FMutSel and FMutSel0 models, and we
suggest caution should be exercised in interpreting those
results (see Discussion).

We also conducted the LRT by comparing FMutSel0-F
against FMutSel-F, using the approximation of fixing equi-
librium codon frequencies at their observed values. This ap-
proximate test produced very similar results to those of
figure 1. The test statistics (D‘) calculated using the 2 pro-
cedures are plotted against each other in figure 2 for the
quintet data sets.

Table 1
Estimates of Parameters between the Human and Chimpanzee Mitochondrial Genes under Different Models

Model p p# t̂ x̂ ‘ d̂N d̂S d̂
�
N d̂

�
S d̂3B d̂4

F1 � 4-F 6 3 0.488 0.063 �17,190.2 0.026 0.414 0.022 0.590 0.426 0.442
F1 � 4 6 6 0.482 0.062 �17,172.5 0.025 0.408 0.022 0.590 0.424 0.424
F1 � 4MG-F 6 3 0.431 0.075 �17,132.0 0.026 0.355 0.023 0.513 0.366 0.364
F1 � 4MG 6 6 0.431 0.072 �17,115.5 0.026 0.357 0.022 0.521 0.370 0.367
F3 � 4-F 12 3 0.534 0.039 �16,565.2 0.024 0.629 0.024 0.631 0.418 0.416
F3 � 4 12 12 0.491 0.041 �16,538.6 0.023 0.578 0.023 0.582 0.387 0.380
F3 � 4MG-F 12 3 0.460 0.051 �16,503.5 0.025 0.485 0.024 0.535 0.380 0.376
F3 � 4MG 12 12 0.449 0.051 �16,487.2 0.024 0.475 0.023 0.525 0.370 0.366
Fcodon-F 62 3 0.603 0.040 �16,186.6 0.025 0.613 0.023 0.718 0.477 0.441
Fcodon 62 62 0.553 0.042 �16,175.6 0.024 0.577 0.023 0.656 0.443 0.409
FMutSel0-F 25 6 0.457 0.070 �16,233.9 0.027 0.383 0.023 0.532 0.376 0.369
FMutSel0 25 25 0.457 0.070 �16,233.9 0.027 0.382 0.023 0.533 0.376 0.369
FMutSel-F 65 6 0.490 0.054 �16,093.3 0.025 0.467 0.023 0.570 0.424 0.405
FMutSel 65 65 0.490 0.054 �16,093.2 0.025 0.467 0.023 0.570 0.414 0.405

NOTE.—p is the number of parameters, whereas p# is the number of parameters estimated by ML iteration. The -F models use observed base or codon frequencies as

parameter estimates. Estimates of j range from 22 to 34 among models.
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The Distribution of Selection Coefficients

We used the FMutSel model to calculate the propor-
tions of mutations with different selective coefficients (S),
generating an estimation of the distribution of S among new
mutations. For this analysis, we use 4 large data sets: the
concatenated mitochondrial genes from the human and
chimpanzee and the concatenated nuclear genes for the hu-
man–macaque pair, the mouse–rat pair, and the quintet. We
used both model M0 (1-ratio), which assumes the same x
ratio for all codons, andM3 (discrete), which assumes 2 site
classes in proportions p0 and p1 with different x ratios
x0 and x1 (Yang et al. 2000). The results are shown in
table 2. The log-likelihood values under models M0
(1-ratio) andM3 (discrete) are hugely different, indicating that
the x ratio is highly variable among codons. Nevertheless,
estimates of the mutation bias parameters (p�T; p

�
C; p

�
A) and

codon fitness parameters (not shown) are very similar be-
tween the 2 models in each of the 4 large data sets (table 2).

We used parameter estimates obtained under model
M0 (1-ratio) to calculate the scaled selective coefficients
(S) for mutations that involve 2 codons differing at exactly
one position and thus have nonzero rates. Those are the pos-
sible mutations allowed by the model, and their probabil-
ities of occurrences are given by equation (5). There are 526
and 508 such mutations (codon pairs) for the universal and
mitochondrial codes, respectively. The S values for those
mutations were binned into 21 bins to generate a histogram,
with the mid value in each bin used as the representative for
that bin and with the proportion for the bin calculated as the
sum of proportions (mIJ in eq. 5) of all mutations falling into
that bin. The results are shown in figure 3a. The proportion
(Pþ) of advantageous mutations among all mutations is
shown in table 2, as well as the average selective coefficients
of advantageous and deleterious mutations (�Sþand �S�).
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FIG. 1.—Histograms of the log-likelihood difference (D‘) for test of
selection on codon usage for (a) the human–macaque genes, (b) the
mouse–rat genes, and (c) the quintet of all 5 species. Values greater than
150 are grouped into the last bin. As 2D‘ is asymptotically distributed as
v241 under the null model, the critical values for D‘ are 28.47 and 32.48 at
the 5% and 1% levels, respectively.
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FIG. 2.—The log-likelihood difference (D‘) for test of selection on

codon usage when the codon frequency parameters are estimated by ML
iteration (exact) or by fixing them at the observed values. The 5-species
mammalian genes are analyzed.
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Because preferred codons with higher fitness are more com-
mon and most mutations lead to unpreferred codons with
lower fitness, the distribution of S among new mutations
is skewed to the left, with the proportion Pþ,

1
2
. The pro-

portion of advantageous mutations among substitutions is
higher thanPþ because an advantageousmutationhas a high-
er fixation probability and makes a greater contribution to
substitutions than does a deleterious mutation. Indeed, the
proportions of advantageous mutations among substitutions
is 1

2
, due to the reversibility of the substitution model.
The estimates of �Sþ and �S� are greater and thus selec-

tion on silent sites is stronger in the mitochondrial genes
than in the nuclear genes (table 2). In the former, ;31%
of new mutations are advantageous, whereas in the latter,
the proportion is 37–40%. The much lower x ratios in
the mitochondrial genes than in the nuclear genes indicate
that the mitochondrial proteins are under much stronger se-
lective constraint than the nuclear proteins. The difference is
more striking when one considers the fact that the effective
population size for mitochondrial genes is ; 1

4
that of the

nuclear genes and that selection is less efficient in smaller
populations. The higher efficiency of selection in mtDNA,
with respect to both codon usage and protein evolution, may
be due to the fact that the haploid mitochondrial genome
makes it easy to remove recessive mutations, whereas they
may remain hidden in the heterozygous state in nuclear
genes. Another possible explanation is the hypothesis of se-
lection for translational accuracy, which predicts stronger
selection on codon usage on highly conserved proteins or
on highly conserved amino acids in a protein because the
fitness cost of translational misincorporation should depend
on how the amino acid change affects protein function (Aka-
shi 1994). If mitochondrial genes perform crucial biological
functions and are more highly expressed than nuclear genes,
this hypothesis may explain both the stronger selection on
protein evolution and the stronger selection on codon usage.

It should be noted that in our model, all S values are
nonzero, and Pþ in table 2 includes mutations with S only

very slightly positive, the evolutionary dynamics of which
may be indistinguishable from that of neutral mutations.
For example, mutations with |S| . 2 are rare in all data sets.
The estimated proportions of mutations with S . 2 and
S, �2 are 0.2% and 1.7%, respectively, for the mitochon-
drial genes, 0.2% and 1.6% for the human–macaque pair,
0.1% and 1.0% for the mouse–rat pair, and 0.1% and 0.9%
for the quintet. Thus, although the LRT rejects the null
model of neutral evolution of silent sites, selection on codon
usage is mostly weak, and most mutations appear to be
nearly neutral with respect to selection on codon usage.

We are also interested in how natural selection on co-
don usage changes the fitness distribution of mutations, that
is, how mutations of different fitness contribute to substi-
tutions. A histogram of S after filtering by natural selection
on codon usage can be generated using the same procedure
as described above, except that the proportion mIJ is calcu-
lated using equation (5), with pIlik jk replaced by
pIlik jk hðSIJÞ. The resulting histograms (fig. 3b) show the
proportion of mutations with scaled fitness S that has sur-
vived natural selection on codon usage. Similarly, If we re-
place pIlik jk by pIqIJ in equation (5), the resulting
histograms (fig. 3c) represent the proportion of mutations
with fitness S among observed substitutions, that is, among
mutations that have passed the filtering by selection both on
codon usage bias and on amino acid replacements. Because
of the detailed balance condition of the reversible Markov
model of substitution, the distributions in figure 3b and c are
all symmetrical. Note that here the distinction between se-
lection on codon usage and selection on amino acid replace-
ments is more conceptual than temporal, with no
implication that one necessarily occurs before the other.

Discussion
Mechanistic Models of Codon Usage and Protein Evolution

A number of authors have studied the frequencies of
synonymous codons for 2-fold degenerate amino acids as

Table 2
Parameter Estimates under the Mutation-Selection (FMutSel) Model in 4 Concatenated Data Sets

Data Sets p b̂ ĵ x̂ p̂�T p̂�C p̂�A p̂�G ‘ Pþ �Sþ �S�

Human–chimpanzee mitochondria

M0 (1-ratio) 65 0.490 29.0 0.054 0.213 0.186 0.419 0.182 �16,093.2 0.319 0.612 �0.916

M3 (discrete) 67 0.501 28.7
p̂0 5 0.848, p̂1 5 0.151
x̂0 5 0.006, x̂1 5 0.374 0.222 0.181 0.363 0.234 �16,079.9 0.306 0.645 �1.017

Human–macaque
M0 (1-ratio) 66 0.072 4.1 0.149 0.169 0.316 0.227 0.288 �10,095,235.6 0.370 0.435 �0.648

M3 (discrete) 68 0.076 4.2
p̂0 5 0.997, p̂1 5 0.003
x̂0 5 0.125, x̂1 5 17.2 0.167 0.319 0.225 0.290 �10,091,520.6 0.368 0.444 �0.662

Mouse–Rat

M0 (1-ratio) 66 0.195 3.5 0.111 0.190 0.284 0.275 0.252 �10,903,772.7 0.385 0.390 �0.562

M3 (discrete) 68 0.199 3.6
p̂0 5 0.982, p̂1 5 0.018
x̂0 5 0.079, x̂1 5 2.623 0.189 0.284 0.274 0.253 �10,897,867.4 0.385 0.390 �0.563

5 species

M0 (1-ratio) 72 0.657 3.2 0.119 0.183 0.287 0.262 0.268 �14,743,509.9 0.385 0.393 �0.565

M3 (discrete) 74 0.676 3.3
p̂0 5 0.882, p̂1 5 0.118
x̂0 5 0.040, x̂1 5 0.851 0.184 0.284 0.261 0.271 �14,683,601.6 0.386 0.388 �0.560

NOTE.—p is the number of parameters in the model. b̂ is the distance between 2 sequences or the tree length for the 5-species data, measured by the expected number of

nucleotide substitutions per codon. Estimates of the 60 (for the mitochondrial data) or 61 (for nuclear genes) codon fitness parameters are not shown. Pþ is the proportion of

advantageous mutations. �Sþ and �S� are the average selection coefficients of advantageous and deleterious mutations, respectively.
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the result of interactions between mutation, genetic drift,
and natural selection (Kimura 1983; Li 1987; Bulmer
1991; McVean and Charlesworth 1999). Let the 2 alleles
be 1 (preferred codon) and 0 (unpreferred codon), with
the mutation rate from 0 to 1 to be l1 and that in the reverse
direction be l0. Suppose that the 2 alleles have fitness f0 and
f1 so that the selection coefficient of the 0 / 1 mutation in
the allele-0 population is s 5 f1 � f0 and that of the 1 /
0 mutation in the allele-1 population is �s. At mutation-
selection-drift equilibrium, the probability density of the
frequency p of allele 1 is given as

f ðpÞ} e2Nspp2Nl1�1ð1� pÞ2Nl0�1; ð10Þ

(Wright 1931). This theory can be used to analyze codon
usage in a single species, under the assumption that one
of the alleles is fixed. The probability that the population
is fixed at the preferred codon can be obtained by inte-
grating the density f(p) from 1 � 1/N to 1 (e.g., Li 1987),
as

pi } lie
2Nfi ; i 5 0; 1; ð11Þ
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FIG. 3.—Estimated distributions of selection coefficient S 5 2Ns from 4 data sets: concatenated human–chimpanzee mitochondrial genes,
concatenated human–macaque nuclear genes, concatenated mouse–rat nuclear genes, and concatenated data for all 5 mammalian species. The
histograms show the proportion of mutations with scaled selection coefficient S (a) among all mutations, (b) after filtering by natural selection on codon
usage, and (c) after filtering by selection on both codon usage and on amino acid replacements. Model M0 (1-ratio) is used, with the same x ratio for all
nonsynonymous changes. Parameter estimates are shown in table 2.
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where the proportionality constant is determined to ensure
that p0þ p1 5 1. If we assume that the same selective pres-
sure applies to synonymous codons for all 2-fold degener-
ate amino acids in a gene, p1 will be the proportion of
preferred codons in the gene. The contributions of mutation
and selection to the equilibrium frequencies of synonymous
codons are apparent from equation (11). This may also be
considered a special case of equation (4), which gives the
equilibrium distribution of the codon-substitution process.

McVean and Vieira (1999) used equation (11) to an-
alyze observed counts of preferred codons for 2-fold amino
acids in severalDrosophila species, fitting binomial models
by ML. The analysis used information on codon usage but
ignored differences between species. McVean and Vieira
(2001) implemented a population genetics model that is
very similar to equation (2) to describe substitutions be-
tween synonymous codons between species. The authors
analyzed between-species synonymous differences to esti-
mate the strength of natural selection on synonymous codon
usage, with nonsynonymous differences ignored. The
FMutSel models extend the work of McVean and Vieira
to a full codon substitution model, which is suitable for
comparative analysis of protein-coding genes frommultiple
species.

Previous models of codon substitution (Goldman and
Yang 1994; Muse and Gaut 1994) aim to describe nucle-
otide substitutions and do not explicitly accommodate mu-
tation bias and natural selection acting on the DNA level.
The models may thus be ill suited for studying the forces
and mechanisms of the evolutionary process at silent sites.
The mutation-selection models implemented in this paper
address this drawback, by introducing parameters that ex-
plicitly describe mutation bias and natural selection acting
on codon usage. We suggest that such models, with the easy
interpretation of the model parameters, may be very useful
for studying the process of molecular sequence evolution.

There has been considerable interest in incorporating
fitness effects of new mutations in constructing substitution
models for phylogenetic analysis. Halpern and Bruno
(1998) considered a codon-substitution model in which
at every amino acid site in the protein, different amino acids
have different fitness and thus different equilibrium fre-
quencies. The model was developed for distance calcula-
tion but is not practical for real data analysis due to its
use of too many parameters. Moses et al. (2003) adapted
the theory to describe nucleotide substitutions and to esti-
mate site-specific substitution rates in noncoding regulatory
elements such as transcription factor–binding sites. Note
that from equation (4), we have

pI
pJ

�
lik jk
ljk ik

5
p�ike

FI

p�jke
FJ
�
aikjkp

�
jk

ajk ikp
�
ik

5 eFI�FJ ; ð12Þ

from which equation (9) of Halpern and Bruno (1998) can
be seen to equal h(SIJ) in equation (1), with h(SIJ) 5 1 for
SIJ 5 0. Thus, the underlying population genetics theory is
the same although the applications are very different. Note
that given a reversible mutation model such as HKY or
GTR, reversibility of codon substitution is a natural prop-
erty of the model and not an additional assumption, as made
by Halpern and Bruno (1998) and Moses et al. (2003).

The FMutSel model also has similarities to the site-
class models of amino acid replacement implemented by
Koshi et al. (1999), which assume that different site classes
have different amino acid frequencies and different substi-
tution patterns and that in each site class, every amino acid J
has its own ‘‘propensity’’ FJ. Koshi et al. (1999, eq. 4) ap-
plied a truncation on the substitution rate, equivalent to fix-
ing h(SIJ) 5 1 whenever the difference in propensity
SIJ 5 FJ � FI . 0. Like FMutSel, this model is also time
reversible, with the same equilibrium distribution, where
the frequency of amino acid J is proportional to eFJ . Except
for the truncation mentioned above, the model of Koshi
et al. (1999) can be given a population genetics interpreta-
tion, with the propensity interpreted as the scaled fitness FJ.
However, the truncation of rates means that the model as-
sumes that an advantageous mutation is fixed at the same
rate as a neutral mutation, which is unrealistic biologically.
A similar criticism was made by Thorne et al. (2007).

More recent work by Yu and Thorne (2006), Thorne
et al. (2007), and Choi et al. (2007) assigned a fitness to the
sequence when they developed mutation-selection models
to describe the evolution of RNA or protein sequences. An
advantage of those models is that they allow dependence
among sites due to RNA or protein structural constraints.

We note that there has been some debate in the liter-
ature concerning whether use of the x ratio to detect natural
selection acting on the protein (for reviews, see Yang and
Bielawski 2000; Yang 2002) requires the assumption of
neutral evolution at silent sites. Many authors take it for
granted that this assumption is needed. A concern is that
if selection acts on codon usage, codon models may be mis-
led to produce an x ratio greater than one because selection
on silent sites has reduced dS and not because positive se-
lection has elevated dN. From the mutation-selection mod-
els implemented in this paper, it is clear that the assumption
is not necessary and it is possible to use the x ratio to detect
positive selection acting on the protein even if silent sites
are under natural selection, as assumed in FMutSel. Com-
parison between dS and dN is a contrast between the rates
before and after the action of selection on the protein (Yang
2006, eq. 2.19) so that the comparison is valid whether evo-
lution at silent sites is driven by mutation or selection. In
this regard, selection on silent sites may be more accurately
described as selection on the DNA level as it affects both
silent and replacement sites.

Sensitivity of the LRT to the Mutation Model

The mutation-selection model of codon substitution
makes many simplistic assumptions about the evolutionary
process. For our purpose of testing for selection acting on
silent sites, the most worrying assumptions appear to be
those concerning the mutation process as the mutation-bias
and codon-fitness parameters are expected to be highly cor-
related in such an analysis. Indeed, the effects of the 2
would be virtually impossible to separate if we had used
only information on codon frequencies (see eqs. 4 and 11).

To examine the impact of the assumed mutation model
on the LRT of selection on codon usage, we implemented
the GTR mutation model (e.g., Yang 1994). The codon fre-
quency parameters are estimated using the observed
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frequencies rather than by ML iteration. Application of the
LRT under the GTR model to the mammalian data pro-
duced results very similar to those obtained under HKY.
The proportions of genes for which the LRT is significant
under GTR (table 3) are slightly lower (by 1–2%) than un-
der HKY. Figure 4 plots the test statistic (D‘) for the 2 mu-
tation models for the quintet data sets. The results suggest
that the LRT may not be very sensitive to the assumed mu-
tation model.

However, the estimates of codon-fitness parameters
for the concatenated data under the 2 mutation models
are very different (results not shown). This is the case even
though both mutation models predicted very similar codon
frequency parameters, which closely match the observed
frequencies. Our estimates of the selection coefficients
are affected by the mutation model. Thus, we found that
the LRT is somewhat insensitive to the assumed mutation
model but the estimates of codon fitness parameters are.

Both HKY and GTR assume independent mutations at
nucleotide sites. There is considerable evidence suggesting
that the mutation rate of a nucleotide may depend on neigh-
boring nucleotides (e.g., Bulmer 1986; Hwang and Green
2004; Siepel and Haussler 2004). One well-known example
of such context effects is the high mutation rate of CpG di-
nucleotides in mammalian genomes. As the cytosine in
CpG is prone to methylation and deamination, CpG dinu-
cleotides have a very high rate of mutating into TpG
(Scarano et al. 1967). With such mutational context effects,
both the null and alternative hypotheses (FMutSel0 and
FMutSel) in the LRT are violated, but the 2 models may
not be affected to the same extent, in which case the vio-
lation of assumptions may cause the test to generate exces-
sive false positives. For example, FMutSel0 predicts that
the relative frequencies of 4-fold degenerate codons encod-
ing the same amino acid are given by the mutation-bias pa-
rameters (pj3 ), independent of the encoded amino acid. If
the mutation rate and pattern at the third codon position de-
pend on the nucleotides at the first and second positions,
FMutSel0 may fit the data poorly, but FMutSel may still
achieve a reasonable fit because of its use of a separate co-
don fitness parameter FJ for each target codon J. Although
both FMutSel0 and FMutSel make use of information from
nonsynonymous differences as well as synonymous differ-
ences, the test may nevertheless be sensitive to such muta-

tional context effects. It has also been suggested that one
mutation event may affect multiple nucleotides and the as-
sumption of independent mutations may be unrealistic (e.g.,
Yang et al. 1998; Whelan and Goldman 2004). However,
those studies typically analyze substitutions instead of mu-
tations, and the apparent double or triple substitutions may
reflect artifacts of the inadequate substitution model rather
than true double or triple mutations. The models developed
here concern the mutation process, and it would appear that
double or triple mutations, if not rare, should affect the 2
models in similar ways. At any rate, the sensitivity of
the LRT to violations of the assumed mutation model is
not well understood and merits further research.

We consider several strategies that may alleviate the
confounding effect of mutation and selection. The first is
to make certain assumptions concerning either the mutation
or the selection process. For example, the method of Nielsen
et al. (2007) required prior knowledge of preferred and un-
preferred codons and also assumed the same selective
strength acting on all codons. The latter assumption may
be unrealistic in some data sets. A second strategy is to an-
alyze pseudogenes or noncoding DNA to estimate mutation
parameters and then use them in the mutation-selection
model of codon substitution to analyze coding genes. Sim-
ilarly, one may analyze coding and neighboring noncoding
regions jointly, with the same mutation-bias parameters ap-
plied to both regions and the selection parameters applied to
the coding regions only. This requires that the same muta-
tion process operates in both coding and noncoding regions,
an assumption that may be violated due to translation-
coupled repair (Duret 2002). A third strategy, suitable for joint
analysis of many genes from the same set of species, is to
assume that the mutation parameters are shared among
genes or at least among genes with similar codon usage bias
or GC content at the third codon positions, whereas the
strengths of selection on codon usage may differ among
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FIG. 4.—The log-likelihood difference (D‘) for test of selection on
codon usage when the assumed mutation model is HKY or GTR. The
5-species mammalian genes are analyzed.

Table 3
Number and Percentage (in Parentheses) of Mammalian
Genes for Which the Null Model of Neutral Evolution at
Silent Sites Is Rejected

Data

Significance Level

5% 1%

HKY mutation model

Human–macaque 4,909 (87%) 4,336 (77%)
Mouse–rat 5,073 (90%) 4,587 (81%)
5 species 5,282 (94%) 4,945 (88%)

GTR mutation model

Human–macaque 4,815 (85%) 4,216 (75%)
Mouse–rat 4,988 (88%) 4,479 (79%)
5 species 5,240 (93%) 4,870 (86%)

NOTE.—A total of 5,639 genes are analyzed.
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genes. In this paper, we analyzed the 5,639 mammalian
genes separately, fitting 66 or more parameters to each
gene, so that the model is rather parameter-rich. Finally, de-
veloping models that explicitly accommodate mutational
context effects may also be very useful in improving the
realism of the models implemented here. In this regard,
our likelihood model provides a natural framework for such
extensions.

Program Availability

The new FMutSel and FMutSel0 models developed in
this paper are implemented independently by the 2 authors
for error checking. All models described in this paper are
implemented in the CODEML program in PAML 4 (Yang
2007).
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