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The Bayesian method of phylogenetic inference often produces high posterior probabilities (PPs)
for trees or clades, even when the trees are clearly incorrect. The problem appears to be mainly due
to large sizes of molecular datasets and to the large-sample properties of Bayesian model selection
and its sensitivity to the prior when several of the models under comparison are nearly equally
correct (or nearly equally wrong) and are of the same dimension. A previous suggestion to alleviate
the problem is to let the internal branch lengths in the tree become increasingly small in the prior
with the increase in the data size so that the bifurcating trees are increasingly star-like. In particular,
if the internal branch lengths are assigned the exponential prior, the prior mean m0 should approach
zero faster than 1=

ffiffiffi

n
p

but more slowly than 1/n, where n is the sequence length. This paper examines
the usefulness of this data size-dependent prior using a dataset of the mitochondrial protein-coding
genes from the baleen whales, with the prior mean fixed at m0Z0.1nK2/3. In this dataset, phylogeny
reconstruction is sensitive to the assumed evolutionary model, species sampling and the type
of data (DNA or protein sequences), but Bayesian inference using the default prior attaches high
PPs for conflicting phylogenetic relationships. The data size-dependent prior alleviates the problem to
some extent, giving weaker support for unstable relationships. This prior may be useful in reducing
apparent conflicts in the results of Bayesian analysis or in making the method less sensitive to
model violations.
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1. INTRODUCTION
A number of studies have noted that the Bayesian

method of phylogeny reconstruction (Rannala & Yang

1996; Mau & Newton 1997; Yang & Rannala 1997;

Li et al. 2000) often produces very high posterior

probabilities (PPs) for trees or clades (Suzuki et al. 2002;

Cummings et al. 2003; Douady et al. 2003; Erixon et al.

2003; Simmons et al. 2004). For example, in the very

first calculation of Bayesian PPs for trees, Rannala &

Yang (1996) obtained a PP of 0.9999 for the best tree

using a small dataset of 11 mitochondrial tRNA genes

from five ape species. Analyses of modern larger datasets

using the program MRBAYES (Huelsenbeck & Ronquist

2001; Ronquist & Huelsenbeck 2003) similarly pro-

duced high PPs for trees or clades. Certain biological

processes can cause the true gene trees to differ from the

species tree. For instance, horizontal gene transfer may

cause different genes or proteins to have different

histories, and gene duplications followed by gene losses

may result in paralogues being mistaken as orthologues,

again causing the gene tree to differ from the species tree

(see Rannala & Yang (2008) for a review). The gene

tree–species tree mismatch may also be caused by

lineage sorting due to polymorphisms in the common

ancestors (e.g. Takahata 1989; Rannala & Yang 2003).

In such cases, the different phylogenetic relationships
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obtained from different genes may have a biological
basis, and one may consider the high PPs as an accurate
assessment of the information content in the data.
However, in many cases, this interpretation is not
available, as it is apparent that the phylogenies
are untenable biologically even if they are supported
by high PPs. For example, the maximum posterior
probability (MAP) tree may depend on the substitution
model, species sampling (e.g. Bourlat et al. 2006) or the
type of data being analysed (DNA or protein sequences).
In such cases, there is only one true tree, even if it is
unknown, and the different MAP trees cannot all
be correct, so that the high PPs for the wrong trees
are spurious.

As the PP for a tree is the probability that the tree is
correct given the prior and data, there can only be three
possible reasons for the spuriously high PPs for trees:
(i) errors, (ii) violation of the substitution (likelihood)
model, and (iii) the impact of the prior. Numerically
incorrect PPs may be caused by errors in the theoretical
formulation or the computer program or by compu-
tational problems in the Markov chain Monte Carlo
(MCMC) algorithm, such as lack of convergence or
poor mixing. While errors are possible in isolated cases,
they are not the fundamental reason for the problem.
Misspecification of the substitution model is always
a concern in real data analysis. Computer simulations
suggest that the use of a simplistic and unrealistic
model in the Bayesian analysis may lead to inflated PPs
for trees (e.g. Buckley 2002; Huelsenbeck & Rannala
2004; Lemmon & Moriarty 2004). Nevertheless, high
This journal is q 2008 The Royal Society
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Figure 1. The MAP trees of 14 species under (a) the
nucleotide model HKYCG5 and (b) the amino acid model
MTMAMCG5. All clades in the two trees except for two in
the tree of (b) have PPZ1, and only those two are shown.
In the text, a small dataset consisting of five species
is analysed as well: Antarctic minke whale (A); fin whale
(F); blue whale (B); grey whale (G); and pygmy right
whale (P) used as the outgroup. The two trees shown
in (a,b) are tree 5 (A((FG)B)) and tree 13 (G((FA)B))
in table 4.
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PPs for trees were observed in simulations even
when the correct substitution model was assumed
(Cummings et al. 2003; Lewis et al. 2005; Yang &
Rannala 2005), suggesting that the phenomenon may
have to do with the properties of the Bayesian
methodology and the impact of the prior. This is
indeed the position argued for by Lewis et al. (2005),
Yang & Rananla (2005) and Yang (2007a).

In particular, the case of star-tree paradox has recently
attracted much attention. Suzuki et al. (2002) noted that
the PPs for the bifurcating trees for four species
can occasionally be quite high even if the data were
simulated assuming the star tree. Further analyses
suggest that even with arbitrarily long sequences, the
PPs for the three bifurcating trees do not converge to
one-third each, as common intuition may suggest (Yang &
Rannala 2005; Steel & Matsen 2007; Yang 2007a;
Susko 2008). This phenomenon has been called the
star-tree paradox. Instead, the PPs can be very small
or very large even though, in fact, no information is
available to resolve the tree one way or another (Yang
2007a). Yang & Rannala (2005) discussed the connection
of the star-tree paradox to Bayesian model comparison,
in which the prior on unknown parameters can have a
major impact on posterior model probabilities (Lindley
1957; O’Hagan & Forster 2004, pp. 77–79).

Two strategies have been suggested to alleviate the
problem of high posterior tree probabilities, both of
which manipulate the prior used in the Bayesian
analysis. The first is the polytomy prior, which assigns
non-zero prior probabilities for multifurcating as well
as bifurcating trees (Lewis et al. 2005). The second is
a prior on the internal branch lengths in the bifurcating
trees, which depends on the data size, forcing the
bifurcating trees to converge to the star tree when
the amount of data increases (Yang & Rannala 2005).
Yang (2007a) studied Bayesian phylogenetic inference
in the case of three species under a molecular clock,
using the exponential prior on the internal branch
length with the mean m0ZcnKg, where n is the number
of sites in the sequence. Under the criteria that the PP
for (i) each bifurcating tree should approach one-third if
the star tree is true and (ii) the bifurcating tree should
approach 1 if that bifurcating tree is true, it was
determined that (1/2)!g!1. In other words, m0 should
approach zero faster than 1=

ffiffiffi

n
p

but more slowly than 1/n.
In this paper, I apply this data size-dependent prior to

an empirical dataset to evaluate its usefulness in
reducing Bayesian PPs for trees. The dataset consists
of mitochondrial protein-coding genes from the baleen
whales. In this dataset, the MAP tree is found to be
sensitive to the substitution model assumed, species
sampling and the type of data analysed (DNA or protein
sequences). The Bayesian analysis using the standard
prior produced high support for contradicting phyloge-
netic relationships, while the data size-dependent prior
appears to be useful in reducing such conflicts in
Bayesian phylogenetic analysis.
2. DATA AND METHODS
(a) Dataset

The dataset includes 12 protein-coding genes on the
H-strand of the mitochondrial genome from 14 species,
Phil. Trans. R. Soc. B (2008)
including 12 baleen whales, the sperm whale and the
hippopotamus (figure 1). There are 3535 codons or
amino acids in the alignment. The data were published
and analysed by Sasaki et al. (2005), where the
GenBank accession numbers for the sequences can be
found. The authors used the maximum-likelihood
(ML) method under various substitution models to
infer the phylogenetic relationships among the baleen
whales, with the non-parametric bootstrap (Felsenstein
1985) used to assess confidence.

Based on the ML analysis of Sasaki et al. (2005)
and a pilot Bayesian analysis, it was noted that some
clades are well supported by the data, while most
phylogenetic uncertainties concern the relationships
among the following four groups: (i) minke whales,
(ii) the clade of fin whale and humpback whale,
(iii) the clade of blue whale, Bryde’s whale and Sei
whale, and (iv) grey whale. These four clades are
identified as lineages I, II, III and IV by Sasaki et al.
(2005). Thus, I also analyse a smaller dataset
consisting of only five species, with one representative
species from each of the four clades and the pygmy
right whale used as the outgroup. The four repre-
sentative species are as follows: (i) Antarctic minke
whale (A), (ii) fin whale (F), (iii) blue whale (B), and
(iv) grey whale (G). The two datasets are referred to as
the large and small datasets.
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(b) Phylogenetic analysis

The data were analysed as either DNA sequences
under nucleotide and codon substitution models or
translated protein sequences under amino acid
substitution models. For a comparison with the
Bayesian analysis, the data were also analysed using
ML, with the RELL approximate bootstrap method
(Kishino & Hasegawa 1989) used to compare the 15
possible trees relating the four clades. The BASEML
and CODEML programs in the PAML package (Yang
2007b) were used, as some of the models used in this
study were not available in other faster likelihood
programs such as PHYML (Guindon & Gascuel 2003)
or RAXML (Stamatakis et al. 2005). For the large
dataset, the tree search was thus not exhaustive. The
nucleotide substitution models used included JC
(Jukes & Cantor 1969), HKYCG5 (Hasegawa et al.
1985; Yang 1994) and HKYCCCG5 ( Yang 1995,
1996). The latter model assumed different rates,
different transition/transversion rate ratios and different
base compositions at the three codon positions. The
amino acid sequences were analysed under the MTMAM

and MTMAMCG5 models (Yang 1994; Yang et al. 1998).
The codon sequences were analysed under the
codon model M0 (one-ratio), assuming the same non-
synonymous/synonymous rate ratio u for all sites and
branches (Goldman & Yang 1994; Yang et al. 1998).

The Bayesian analysis was conducted using
MRBAYES (mb) v. 3.1.2, under the same models as in
the ML method. Under the codon model, the codon
frequencies are fixed at their observed values rather
than being estimated in the MCMC. By default, the
program specifies the same prior for all branch lengths,
which is the exponential distribution with the mean
being 0.1 changes per site.

To use the data size-dependent prior (Yang &
Rannala 2005), mb v. 3.1.2 was modified to
implement two independent exponential distributions
with means m0 and m1 for the internal and external
branch lengths, respectively. (In this notation, the
default prior in mb is m0Zm1Z0.1.) Previously, I
modified mb v. 3.0.2 for this analysis (Yang &
Rannala 2005), and the same modifications were
transferred to mb v. 3.1.2 by Will Fletcher (http://
abacus.gene.ucl.ac.uk/software.html). Note that mb
v. 3.1.2 made at least two improvements over mb
v. 3.0.2, which may be important to this study:
correction of the proposal ratio in the LOCAL move
(Holder et al. 2005) and correction of the handling of
a lower bound on branch lengths (see below). The
prior mean for the internal branch lengths is specified
as m0ZcnKg, with (1/2)!g!1. Smaller values of g in
the range (1/2, 1) lead to a more powerful method, as
it produces high PPs for the true bifurcating tree. The
value gZ2/3 (harmonic mean of 1/2 and 1) was used in
this paper. The constant c was fixed at cZ0.1, and the
prior mean for external branch lengths at m1Z0.1.
Thus, for the amino acid- and codon-based analysis,
m0Z0.1nK2/3Z0.1!3535K2/3Z0.00043, while for the
nucleotide models, m0Z0.1nK2/3Z0.1!10 605K2/3

Z0.00021. This prior is referred to also as the ‘2E’
prior for its use of two exponential distributions.

Each Bayesian MCMC analysis was run at least
twice to confirm the consistency of the results. For
Phil. Trans. R. Soc. B (2008)
most analyses in this study, 2!106 iterations were
found to be sufficient to produce reliable results. The
PPs of tree topologies were collected.

For comparison, I also applied the polytomy prior of
Lewis et al. (2005) to the mitochondrial dataset, using
the PHYCAS program (http://hydrodictyon.eeb.uconn.
edu/projects/phypy/downloads/). Only the large dataset
was analysed under two nucleotide substitution
models: JC and HKYCG5. The default polytomy
prior with CZeZ2.718 was used. This means that a
tree with mK1 internal nodes is 2.718 times more likely
in the prior than a tree with m internal modes, with a
fairly strong preference for multifurcating trees to
binary trees.
3. RESULTS
(a) Likelihood analysis

The BASEML and CODEML programs in the PAML
package were used to calculate the log-likelihood values
for 15 fixed tree topologies. For the small dataset, this
amounted to an exhaustive tree search. For the large
dataset, only the 15 trees concerning the relationships
among the four clades represented by A, F, B and G
were evaluated. The RELL approximate bootstrap
method was used to calculate the bootstrap proportions
(BPs) for the 15 trees. The log-likelihood values and
the BPs are shown in tables 1 and 2 for the small and
large datasets, respectively.

Model complexity has far greater impact on the
model’s fit to data than has the tree topology, as judged
by the log-likelihood values, and improving the model’s
fit by adding more parameters generally reduces the
log-likelihood differences between trees. These appear
to be common features in molecular phylogenetic
analysis (Yang et al. 1994). For example, HKYCG5

has five more parameters (k, a and three base
frequencies) than JC, and the log-likelihood difference
between the two models is above 3000 in the small
dataset and above 8000 in the large dataset. Similarly,
HKYCCCG5 has eight more parameters (two extra
sets of k and base frequencies) than HKYCG5, and the
log-likelihood difference between them is above 2000
(or above 3000) in the small (or large) dataset. Under
the same model, the log-likelihood differences between
the best and worst trees in the small dataset are 123, 9.4
and 26 under JC69, HKYCG5 and HKYCCCG5,
respectively, and are 119, 24 and 14 in the large
dataset. The log-likelihood differences between the
best (ML) and second best trees are much smaller.

For the small dataset, the ML tree is tree 1
(A((FB)G)) under JC and HKYCG5, but tree 2
(G((FB)A)) is very slightly preferred under HKYC
CCG5. Under the codon model M0 (one-ratio) and
the two amino acid models MTMAM and MTMAMCG5,
tree 2 is the ML tree, although tree 1 is nearly equally
good under MTMAMCG5.

The large dataset produced more variable results
among models, with almost every model producing a
different ML tree. Similar sensitivity to model assump-
tions was noted in the analysis of Sasaki et al. (2005),
who commented that almost every possible rearrange-
ment concerning lineages I, II, III and IV has been
suggested. Under the nucleotide model JC and

http://abacus.gene.ucl.ac.uk/software.html
http://abacus.gene.ucl.ac.uk/software.html
http://hydrodictyon.eeb.uconn.edu/projects/phypy/downloads/
http://hydrodictyon.eeb.uconn.edu/projects/phypy/downloads/


Table 1. Log-likelihood values and RELL BPs (%) for trees for the small dataset. The number of parameters excluding branch
lengths is shown in parentheses. The log-likelihood values for the ML tree are shown, while those for other trees are shown as a
difference from that for the ML tree. The unrooted trees including the outgroup pygmy right whale are used in the likelihood
calculation while they are shown as rooted trees for A, B, F and G. The BPs are approximated using the RELL method,
evaluating all 15 trees. The MLEs for the substitution parameters are not shown. The log-likelihood values under the nucleotide
and codon models are not comparable with those under the amino acid models, as different data are analysed.

tree JC (0) HKYCG5 (5) HKYCCCG5 (13) codon.M0 (11) MTMAM (0) MTMAMCG5 (1)

1 (A((FB)G)) K29 522.9 40 K26 154.4 78 K0.7 34 K0.2 41 K7.5 16 K0.1 26
2 (G((FB)A)) K47.5 2 K3.7 4 K23 935.3 35 K23 643.2 41 K12 245.4 56 K12 166.7 30
3 ((AG)(FB)) K81.4 K3.7 5 K7.3 1 K15.5 1 K13.0 3 K1.7 13
4 (A(F(BG))) K2.6 34 K5.0 7 K14.0 2 K22.2 5 K18.8 9 K6.7 14
5 (A((FG)B)) K15.2 12 K5.2 2 K19.1 K36.1 K38.7 K16.6
6 ((BG)(FA)) K77.5 K9.0 1 K11.1 4 K31.7 1 K24.8 2 K8.7 9
7 ((FG)(BA)) K123.2 K9.0 1 K26.3 K57.0 K50.3 K22.0
8 (F((BA)G)) K90.5 K9.0 K24.5 K48.2 K42.1 K20.7
9 (G((BA)F)) K85.5 K9.0 1 K18.2 K32.4 K26.3 K16.3
10 (F((BG)A)) K55.4 1 K9.1 K19.4 K37.2 K25.6 3 K10.9 2
11 (B((FA)G)) K55.1 2 K9.2 K10.3 8 K34.0 1 K31.1 1 K15.0
12 (B(F(AG))) K64.7 1 K9.2 K19.9 K41.8 K32.6 1 K14.9
13 (G((FA)B)) K47.6 5 K9.2 K7.2 14 K18.9 10 K15.4 9 K10.7 4
14 (F(B(AG))) K62.7 2 K9.3 K22.5 K40.9 K31.7 1 K14.5 1
15 (B((FG)A)) K72.3 K9.4 K22.3 K53.0 K46.4 K21.4

Table 2. Log-likelihood values and RELL BPs (%) for 15 trees for the large dataset. The data of 14 species are analysed to
calculate the log-likelihood values for 15 unrooted trees. The trees differ in the relationships among A, B, F and G, but are
otherwise identical, as shown in figure 1. See also legend to table 1.

tree JC HKYCG5 HKYCCCG5 M0 MTMAM MTMAMCG5

1 (A((FB)G)) K56 845.1 52 K6.0 12 K6.0 3 K3.1 13 K14.8 K8.0
2 (G((FB)A)) K42.0 6 K20.2 K5.8 3 K4.6 14 K18 022.4 28 K0.3 19
3 ((AG)(FB)) K73.3 K19.8 K10.6 1 K13.5 1 K9.3 7 K3.5 11
4 (A(F(BG))) K21.3 6 K7.5 1 K4.2 12 K44 517.0 32 K14.5 2 K6.0 3
5 (A((FG)B)) K6.1 34 K48 504.6 84 K2.0 23 K4.2 12 K27.5 K14.5
6 ((BG)(FA)) K103.1 K23.7 K9.7 1 K17.0 K12.5 5 K3.6 11
7 ((FG)(BA)) K93.1 K14.7 1 K10.0 1 K24.0 K23.4 K12.1
8 (F((BA)G)) K112.6 K20.9 K13.0 K19.1 K16.5 1 K8.8 1
9 (G((BA)F)) K58.2 2 K20.6 K3.0 15 K6.2 13 K1.4 21 K1.6 13
10 (F((BG)A)) K91.2 K23.7 K14.3 K13.0 2 K10.9 11 K4.2 10
11 (B((FA)G)) K118.8 K20.5 K8.6 2 K23.1 K21.6 K8.9 1
12 (B(F(AG))) K94.8 K19.4 1 K9.9 3 K17.0 2 K17.7 1 K7.5 3
13 (G((FA)B)) K66.3 K23.2 K45 410.5 33 K7.9 7 K1.6 18 K17 564.7 20
14 (F(B(AG))) K95.8 K22.4 K11.3 2 K12.8 5 K12.9 6 K5.3 8
15 (B((FG)A)) K93.0 K13.8 2 K10.4 1 K21.7 K28.7 K13.7
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the amino acid model MTMAM, the ML trees are

consistent between the small and large datasets,

while, for all other models, they are incompatible,

indicating that species sampling has considerable effect

on phylogeny reconstruction.

In sum mary, the MLtrees are different under different

substitution models, between the analyses of DNA and

protein sequences and also between the small and large

datasets. Nevertheless, the RELL bootstrap support

values are not high (almost all of them being less than

0.8), so the differences in the ML trees in the different

analyses may be explained by sampling errors or lack

of resolution in the data. The K–H and S–H tests

(Kishino & Hasegawa 1989; Shimodaira & Hasegawa

1999; see Goldman et al. (2000) for a review) were also

used to compare trees, and the ML tree was not

significantly supported under any of the models/analyses

by any of the tests, consistent with the results from the

RELL bootstrap analysis.
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(b) Bayesian analysis

MRBAYES v. 3.1.2 (both the standard and modified

versions) were used to calculate PPs for trees under the

nucleotide, codon and amino acid substitution models.

The results for the small dataset are shown in

table 3. Tree 1 (A((FB)G)) is the ML tree and also the

MAP tree under the standard prior with one exponen-

tial for all branch lengths (m0Zm1Z0.1, column ‘1E’ in

table 3) under the nucleotide models JC, HKYCG5

and HKYCCCG5. However, the PPs for the MAP tree

are much higher than the BPs in the corresponding ML

analysis, with PPZ0.93, 0.98 and 1.00 under the three

models compared with BPZ0.40, 0.78 and 0.34

(table 1). Under the codon model M0 (one-ratio),

trees 1 and 2 have nearly identical log-likelihood values

(table 1) and PP values (table 3). Under the amino acid

model MTMAM, tree 2 is the best tree by both ML/BP

and Bayesian inference (BI)/PP, with BPZ0.56 and

PPZ1.00. In summary, in the small dataset, ML and



Table 3. Bayesian posterior tree probabilities (%) for the small dataset. (1E means the default prior in mb (m0Zm1Z0.1), while
2E means the data size-dependent prior, with two exponential priors for the internal and external branch lengths (m0sm1).)

JC HKYCG5 HKYCCCG5 codon.M0 MTMAM MTMAMCG5

tree 1E 2E 1E 2E 1E 2E 1E 2E 1E 2E 1E 2E

1 (A((FB)G)) 93 69 98 19 100 37 49 5 2 34 49
2 (G((FB)A)) 1 13 20 51 95 100 98 60 18
3 ((AG)(FB)) 1 15 23 6 33
4 (A(F(BG))) 7 31 6 2
5 (A((FG)B)) 5 2
6 ((BG)(FA)) 4 2
7 ((FG)(BA)) 4 1
8 (F((BA)G)) 5 1
9 (G((BA)F)) 4 2
10 (F((BG)A)) 4 1
11 (B((FA)G)) 4 2
12 (B(F(AG))) 4 1
13 (G((FA)B)) 4 2
14 (F(B(AG))) 4 1
15 (B((FG)A)) 4 1
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BI produced the same best tree under all models
examined, although PP is much higher than BP. The
very high PPs are not tenable biologically, as the MAP
trees cannot all be correct.

The use of the data size-dependent prior (column
2E in table 3) was effective in reducing the PP values for
almost all models in the small dataset. For example,
PPZ0.93, 0.98 and 1.00 under the three nucleotide
models for the standard prior, and are 0.69, 0.19 and
0.37 for the 2E prior. However, the opposite result was
observed under the codon model M0. Here, PPZ0.49
and 0.51 for trees 1 and 2 for the standard prior, and
become 0.05 and 0.95 for the 2E prior, which are even
more extreme. Under the two amino acid models
(MTMAM and MTMAMCG5), the PP values are much less
extreme for the 2E prior. Under MTMAMCG5, the MAP
tree was tree 2 for the standard prior but tree 1 for the
2E prior. Thus, the relationship between the prior
mean m0 and the posterior tree probabilities is not a
simple monotonic one.

The results for the large dataset are shown in table 4.
Under the standard prior, the PPs for the MAP trees
are very high, although the MAP trees are different for
different models. For example, the MAP tree is tree 1
under JC and tree 5 under HKYCG5 and HKYCCC
G5, but in each case PPZ1.00. The codon model M0
and amino acid models MTMAM and MTMAMCG5

produced yet different MAP trees, but with weaker
support (PP%0.93). Overall, the Bayesian analysis
produced more MAP trees in the large than the small
datasets, indicating greater sensitivity to model
assumptions in the large dataset. Note that the
Bayesian analysis was conducted without any con-
straint on the tree topology, but only the trees listed in
table 4 had non-negligible PPs.

The results under the 2E prior for the large dataset
are listed in table 4 (columns headed 2E). Under the
JC model, the 2E prior produced the same MAP tree
as the standard prior, but with reduced support
(PPZ0.99 compared with 1.00). Under the HKYC
G5 and HKYCCCG5 models, the 2E prior attached
Phil. Trans. R. Soc. B (2008)
substantial probabilities for trees not listed in table 4.
The placement of the sperm whale was unstable. The
MAP tree grouped the sperm whale with Balaenidae
(the clade of the bowhead whale and the right
whales), with PPZ0.63 under HKYCG5 and 0.60
under HKYCCCG5. The next tree groups the sperm
whale with the clade of Neobalaenidae (pygmy right
whale), Eschrichtiidae (grey whale) and Balaenopter-
idae, with PPZ0.32 under HKYCG5 and 0.37 under
HKYCCCG5. The third tree is the one shown in
figure 1a. The relationships among A, F, B and G
are (((FG)B)A) in all those three best trees, so that
PPZ1.0 for the clade (((FG)B)A). Under the codon
model M0, the 2E prior produced the same MAP
tree as the standard prior, but with slightly higher
support (PPZ0.97 compared with 0.93), so the
effect is opposite to expectation. Under the amino
acid substitution model MTMAM, the results are
almost identical between the two priors. Under
MTMAMCG5, trees not listed in table 4 received
substantial PPs. The MAP tree has PPZ0.33, and
groups the sperm whale with Balaenidae (the clade of
the bowhead whale and the right whales) and favours
tree 13 (G(FA)B) concerning the relationship among
A, F, B and G.

In summary, in the small dataset, the 2E prior was
very effective in reducing the high PPs for trees and the
overconfidence of BI under the standard prior. The 2E
prior also reduced the PPs for the MAP tree in the large
dataset. However, the alternative trees that attracted
some probabilities in the large dataset are apparently
wrong. The fact that the 2E prior can lead to changes of
the order of the binary trees may be an undesirable
feature of the prior.

The polytomy prior (Lewis et al. 2005) is applied to
the large dataset, using the PHYCAS program. Under the
nucleotide substitution model JC, the MAP tree is
tree 1, with PPZ1.00, compared with PPZ1.00 from
the standard prior in mb and 0.99 from the 2E prior
(table 4). Under HKYCG5, the MAP tree is tree 5,
with PPZ0.94, compared with PPZ1.00 from the



Table 4. Bayesian posterior tree probabilities (%) for the large dataset.

t

JC HKYCG5 HKYCCCG5 codon.M0 MTMAM MTMAMCG5

tree 1E 2E 1E 2Ea 1E 2Ea 1E 2E 1E 2E 1E 2Ea

1 (A((FB)G)) 100 99 5 1
2 (G((FB)A)) 72 72 36 23C11C1
3 ((AG)(FB)) 1 1C1
4 (A(F(BG))) 93 97
5 (A((FG)B)) 1 100 63C32C4 100 60C37C3 2 3
6 ((BG)(FA)) 1 1C1
7 ((FG)(BA))
8 (F((BA)G))
9 (G((BA)F)) 14 17 8 7C4
10 (F((BG)A)) 1
11 (B((FA)G))
12 (B(F(AG)))
13 (G((FA)B)) 14 11 52 33C16C1
14 (F(B(AG)))
15 (B((FG)A))

a Under the 2E prior and models HKYCG5, HKYCCCG5 and MTMAMCG5, the PPs shown are the sums of several tree topologies. See text for
details, and also legend to table 3.
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standard prior in mb and 0.63 from the 2E prior
(table 4). Thus, the polytomy prior also ameliorates the
problem of high PPs to some extent.
4. DISCUSSION
(a) The usefulness of the data size-dependent

prior in reducing apparent conflicts in Bayesian

phylogenetic analysis

In both the small and large datasets, the data size-
dependent prior almost always led to reduced PPs for
the MAP trees. It thus appears useful in reducing the
apparent conflicts in Bayesian phylogenetic analysis.
The implementation here involves some arbitrariness.
The theoretical prediction (Yang 2007a) is that one
should have (1/2)!g!1 if the mean in the exponential
prior for the internal branch lengths is m0ZcnKg.
However, the constant c is arbitrary and is fixed at 0.1
in this study. Furthermore, the theory was based on the
analysis of the simple case of estimating the rooted trees
for three species under the molecular clock, and no
proof yet exists that the same prediction should apply
to the general case of estimating unrooted trees for
many species, even though the structures of the
problems appear similar. More tests using both real
and simulated datasets may be necessary to confirm
the usefulness of the prior in resolving the star-tree
paradox and in reducing the overconfidence of BI of
molecular phylogenies.

A technical issue in the current implementation of
MRBAYES may affect the use of the data size-dependent
prior. Both versions 3.0.2 and 3.1.2 truncate branch
lengths to the interval (10K6, 100). The exponential
priors studied in this paper are truncated from both
ends. In the likelihood calculation, one needs to
constrain branch lengths away from 0 to avoid zero
probability of observing the data (as it occurs if there is
a difference between two sequences but their distance
is 0). For analysis under the standard prior, this
constraint may not cause any problem since the branch
Phil. Trans. R. Soc. B (2008)
lengths are typically far away from the lower bound.
However, for the data size-dependent prior explored in
this study, the constraint may affect the results if the
prior mean m0 is very small. In theory, it should be
sufficient to apply the lower bound to the external
branch lengths only, which will ensure a strictly positive
distance between any two sequences.
(b) Possible approaches to reduce spuriously high

PPs for trees

The concern about BI of phylogenetic trees is not so
much that different MAP trees are produced depending
on the assumed substitution model, the sampled
species or the data type, but that the PPs for the
MAP trees are often very high. As there is only one true
tree underlying the data, not all the different MAP trees
can be correct, so that one cannot escape the
conclusion that the high PPs attached on the wrong
trees are spurious. It should be stressed that the
problem of high PPs for trees discussed in this study
(and in Yang & Rannala 2005; Yang 2007a) is not
due to implementation in the MRBAYES program
but rather reflects the statistical properties of the
Bayesian method. Bayesian model selection, of which
phylogeny reconstruction is a special case, is a con-
troversial area. In the case of comparing two simple
models, theory predicts that the model closer to
the truth will dominate when the sample size increases
(Dawid 1999), but in finite datasets, the Bayesian
method may quite often attach high PPs to the
wrong model.

In the analysis of real sequence data, misspecifica-
tion of the substitution (likelihood) model is a serious
concern. Models are simplistic descriptions of reality
and will never (and are not supposed to) catch all the
complexities and nuances of the real biological
process. This study has used a number of substitution
models, some being the most sophisticated currently
available. It is possible that the PPs for trees
may become more moderate if the assumed model
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is made even more complex. In particular, by
ignoring interactions and dependencies among sites
in the sequence, the widely used i.i.d. models, which
assume that the data at different sites have indepen-
dent and identical distributions, may exaggerate the
information content in the data, thus producing
spuriously high PPs. For example, the paired sites
in the stem regions of an RNA molecule do not
evolve independently, and they may contain only
about half as much information as if the sites are
independent. However, this effect appears to be too
small, even if the ‘effective sequence length’ is only
one-tenth the real sequence length, i.e. even if our
dataset is as informative as one of 10 per cent its size
but with independent sites. In the star-tree
simulations (Yang & Rannala 2005), high PPs occur
commonly with only 200 or 1000 sites, while,
nowadays, real datasets of 10 Kb or even 10 Mb are
routinely analysed. We have too much data. It should
also be noted that increasing model complexity may
both decrease and increase posterior tree probabilities
(tables 3 and 4).

Thus, I suggest that model improvement may not
be the ultimate solution to the problem of high
posterior tree probabilities. First, one has to analyse
the data using existing models and methods, and it is
impractical to claim that existing models are
unrealistic and cannot be used. Second, extreme
sensitivity to the assumed model is not a desirable
property of any analytical method. The Bayesian
MCMC machinery has the power to enable
researchers to implement sophisticated multi-par-
ameter models. It is somewhat ironic if the need to
implement such models is not that they offer any
insights into the biological process but that the
Bayesian method is oversensitive to model assump-
tions. Similarly, model averaging may not be the
solution to the problem. If the true model is not
included in the set of models that the MCMC is
averaging over, the model that is closest to the truth
will dominate and the results will not be very
different from those obtained using that model
alone. For example, given the huge log-likelihood
differences between JC and HKYCG5 in the analysis
of the mitochondrial data (tables 1 and 2), it seems
certain that averaging over JC and HKYCG5 in the
MCMC will produce very similar posterior tree
probabilities as using HKYCG5 alone.

The problem appears to lie deeper than model
violation. The polytomy prior and the data size-
dependent prior may both be viewed as extreme
measures for a difficult problem. Here, it is interesting
to note their similarities and differences. First, the
polytomy prior is slightly more complex to implement.
As bifurcating and multifurcating trees have different
numbers of branch lengths and thus different dimen-
sions, algorithms such as reversible-jump MCMC
(Green 1995) are necessary (Lewis et al. 2005).
Second, both priors may be considered ‘non-Bayesian’.
The data size-dependent prior has the prior mean
dependent on the size of the data. The polytomy prior
does not depend on any aspects of the sequence data
but assigns positive probabilities to multifurcating
trees, which are not biologically meaningful models
Phil. Trans. R. Soc. B (2008)
(see below). Third, asymptotic theory of Bayesian
model selection predicts that the polytomy prior
resolves the star-tree paradox, and the theory applies
to phylogenies of any size (Dawid 1999; Yang 2007a).
The performance of the data size-dependent prior in
large trees is unknown.

Fourth, the use of the data size-dependent prior
may change the order of the PPs for the binary trees,
as seen in the analysis of this study. The situation
with the polytomy prior is more complex and
may depend on the measure of accuracy used.
The marginal likelihood for the binary trees (i.e.
the integral of the likelihood under the tree over the
branch lengths and substitution parameters) is not
affected by the introduction of the polytomy prior,
nor is the order of the PPs for the binary trees.
However, it is not sensible to consider only the
binary trees because much of the PP may be
attached to the multifurcating trees. Wheeler &
Pickett (2008; see also Yang 2006, p. 176) argued
that the PPs for clades, unlike PPs for binary trees,
are not very meaningful measures of accuracy.
Furthermore, it appears generally accepted that
polytomies are an intuitive way of representing lack
of resolution but do not represent biological truth.
Thus, to calculate the PPs for binary trees, one
should reapportion the PPs for the multifurcating
trees among the compatible binary trees. In the case
of four species, the PPs for the four trees (the star
tree and three binary trees) (P0, P1, P2, P3)Z
(0.9, 0.06, 0.03, 0.01) should be considered
equivalent to (P1, P2, P3)Z(0.36, 0.33, 0.31) for the
three binary trees only. This discussion suggests that
two measures may be useful when both binary and
multifurcating trees are evaluated in the Bayesian
analysis, as under the polytomy prior: (i) the PPs for
clades, calculated by summing up PPs for all trees,
both binary and multifurcating, that contain the
clade, and (ii) the PPs for binary trees, calculated
by apportioning the PPs for multifurcating trees
among the compatible binary trees. The former is an
intuitive measure, useful when the data are not
informative and the PPs for binary trees are very
low. Under both measures, the order of the PPs for
clades or binary trees may change between the
standard prior and the polytomy prior or with
different Cs in the polytomy prior.

Lastly, the polytomy prior may also be viewed as
a prior on the internal branch lengths; that is, the
prior on each internal branch length is a mixture of a
component at 0 (with probability p0) and another
component from the exponential distribution (with
probability 1Kp0). For unrooted trees of four
species, the two formulations are equivalent with
p0ZC/(CC3). For larger trees, the prior probabilities
assigned to the multifurcating trees with different
numbers of internal nodes may differ depending
on the details of the prior specification. It may be
useful to explore other forms of prior on the internal
branch lengths.
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