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methods are two strategies advocated for phylogenetic analysis of sequence data
from multiple gene loci, especially when some species are missing at some loci. The supermatrix method
concatenates sequences from multiple genes into a data supermatrix for phylogenetic analysis, and ignores
differences in evolutionary dynamics among the genes. The supertree method analyzes each gene separately
and assembles the subtrees estimated from individual genes into a supertree for all species. Most algorithms
suggested for supertree construction lack statistical justifications and ignore uncertainties in the subtrees.
Instead of supermatrix or supertree, we advocate the use of likelihood function to combine data from
multiple genes while accommodating their differences in the evolutionary process. This combines the
strengths of the supermatrix and supertree methods while avoiding their drawbacks. We conduct computer
simulation to evaluate the performance of the supermatrix, supertree, and maximum likelihood methods
applied to two phylogenetic problems: molecular-clock dating of species divergences and reconstruction of
species phylogenies. The results confirm the theoretical superiority of the likelihood method. Supertree or
separate analyses of data of multiple genes may be useful in revealing the characteristics of the evolutionary
process of multiple gene loci, and the information may be used to formulate realistic models for combined
analysis of all genes by likelihood.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

There has been much discussion concerning the best strategy to
conduct phylogenetic analysis of sequence data from multiple gene
loci, especially when some genes are not yet sequenced in some
species. Two strategies have been advocated. The supermatrixmethod
concatenates sequences frommultiple loci into a super-sequence, and
uses the resulting data supermatrix to perform phylogenetic analysis.
The supertree method conducts phylogenetic analysis on individual
genes separately, and then combines the subtrees from the individual
genes into a supertree for all species. Several useful reviews of the
controversy have been published; see, e.g., de Queiroz and Gatesy
(2007) in support of the supermatrix method and Sanderson (1998),
Bininda-Emonds et al. (2002) and Bininda-Emonds (2004) advocating
supertree methods. The supermatrix–supertree debate has similarity
to an earlier debate concerning combined analysis (sometimes called
“total evidence”) versus separate analysis (see, e.g., Huelsenbeck et al.,
1996), although in the new controversy an emphasis is placed on the
fact that some species are missing at some loci.
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From a statistical point of view, neither supermatrix nor supertree
methods are ideal. The supermatrix method or combined analysis
ignores differences among genes in the substitution rates, base
compositions, or other aspects of the evolutionary process. Computer
simulations suggest that ignoring differences among sites can have an
adverse impact on phylogenetic analysis, sometimes causing the
estimated tree to be inconsistent (e.g., Kuhner and Felsenstein, 1994;
Tateno et al., 1994; Huelsenbeck, 1995; Yang, 1995). The supertree
method or separate analysis estimates an independent set of
parameters for every gene and may over-fit the data and cause large
variances in the estimates. Most supertree methods use heuristic
algorithms that cannot be justified rigorously on a statistical basis.
They also ignore uncertainties in the estimated subtrees (such as
bootstrap support values, Bayesian posterior clade probabilities, or
estimated branch lengths), although heuristic algorithms are recently
proposed to remedy this problem (Burleigh et al., 2006; Moore et al.,
2006).

The statistical likelihood provides a natural framework for
combining information from different experiments (Edwards, 1992).
Suppose two experiments have been conducted to estimate a
binomial probability p, with the first experiment generating x
“successes” out of m trials, and the second y successes out of n trials.
The simple average (x /m+y /n) /2 may not be efficient if m and n are
very different. One can use the likelihood to combine the information
from the two datasets. The likelihood is px(1−p)m− x for the first
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Table 1
Evolutionary parameters at the three loci

Parameter Locus 1 Locus 2 Locus 3

Number of sites 500 300 200
Rates 1 2 0.2
Transition/transversion rate ratio κ 1 2 4
Species sampled A, D, E, F A, B, C, D, E A, C, D, F
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experiment and py(1−p)n −y for the second. The likelihood from both
experiments is the product of the two, that is, px + y(1−p)m+n− x− y,
giving the estimate (x+y) / (m+n) for p from the combined data, as is
desired. Similarly, the likelihood can be used in multi-parameter
models to combine information from heterogeneous datasets while
accommodating their differences. One may construct the model such
that some parameters are applied to all datasets while others are
allowed to vary among datasets to account for the dataset-specific
characteristics. Such models are useful to extract the maximum
amount of information about the commonparameters of interest from
all datasets.

Thus besides supermatrix and supertree, an alternative strategy is
to take a statistical modeling approach and use the likelihood function
to combine sequence data from multiple genes. Different parameters
in the substitution model may be used for different loci to
accommodate their differences in the evolutionary process. This
approach has been discussed by Yang (1996; see also Pupko et al.,
2002; Philippe et al., 2005; Shapiro et al., 2006; Bofkin and Goldman,
2007) for the maximum likelihood (ML) method of phylogenetic
analysis and by Suchard et al. (2003) and Nylander et al. (2004) for the
Bayesian method.

In this paper we conduct computer simulations to examine the
performance of the supermatrix, supertree, and ML methods when
they are applied to two problems of phylogenetic analysis. The first is
molecular-clock dating, that is, estimation of species divergence times
on a rooted tree under the molecular clock. The second is reconstruc-
tion of unrooted phylogenetic trees. The supermatrix–supertree
controversy has mostly concerned the problem of phylogeny
reconstruction. Here we consider divergence time estimation as
well, as this is a more-conventional estimation problem and its
analysis serves to illustrate the principles.

2. Materials and methods

2.1. Divergence time estimation

Replicate datasets are simulated using a small C program called
MULTIEVOLVER, written by Z.Y. This uses the EVOLVER program in the PAML

package (Yang,1997) to simulate sequence alignments at multiple loci,
and use these alignments to generate data files needed for the
analyses discussed below. The simulated datasets are then analyzed
using the BASEML program in the PAML package.

The tree of Fig. 1a is used to simulate sequence data at three loci.
The ages of ancestral nodes, measured by the expected number of
nucleotide substitutions per site at the first locus, are t0=1, t1=0.2,
Fig. 1. (a) A rooted tree for six species used in simulations to compare the supermatrix,
supertree, and ML methods for divergence time estimation. The age of the root is fixed
at t0=1, corresponding to use of fossil calibration at the node. Ages of the other nodes
t1–t4 are estimated from the sequence data. The true times are t1=0.2, t2=0.4, t3=0.6,
and t4=0.8. (b–d) The data consist of sequence alignments at three loci, with 4, 5, and 4
species, respectively.
t2=0.4, t3=0.6, and t4=0.8. The K80 model of nucleotide substitution
(Kimura, 1980) is assumed. The sequence lengths for the three loci are
500, 300, and 200 sites; the relative substitution rates are 1:2:0.2; and
the transition/transversion rate ratios (κ or α /β in Kimura's notation)
are 1, 2, and 4 (Table 1). The use of the different sequence lengths and
different parameter values for the loci mimics the real-data situation
inwhich different genes have different lengths and rates and different
information content. After all six sequences are generated at each
locus, some species are deleted at some loci. Thus each replicate
dataset consists of an alignment of four sequences for species A, D, E
and F at locus 1; an alignment of five sequences for species A, B, C, D
and E at locus 2; and an alignment of four sequences for species A, C, D,
and F at locus 3 (Table 1, Fig. 1b–d). The number of replicate datasets is
1000.

The simulated sequence alignments at three loci are used to
estimate species divergence times under themolecular clock using the
“supermatrix”, “supertree”, and ML methods. Here our use of those
terms is by analogy with the corresponding methods for tree topology
reconstruction. The supermatrix method concatenates the sequences
for time estimation without accommodating the differences among
loci. The supertree method performs separate analysis of data at
different loci, estimating times for each locus and then merging the
estimates into one set, similar to the use of supertree algorithms to
assemble the subtrees from different loci into one supertree. The ML
method conducts a combined analysis of all data, accommodating data
heterogeneity.

During the likelihood analysis, the age of the root is fixed at t0=1,
while node ages t1–t4 as well as the substitution rates and the
parameter κ are estimated from the data by ML. If one time unit
represents 100 million years (MY), the root age is fixed at 100 MY,
mimicking the use of a fossil to calibrate the molecular clock. The true
rates at the three loci are then 1, 2, and 0.2 substitutions per site per
100MY.

The three methods are implemented as follows.

2.1.1. Supermatrix method
Each replicate dataset consists of a sequence alignment generated

by concatenating the sequences at the three loci, with nucleotides in
the missing species coded as question marks. The data are then
analyzed under the K80 model on the full tree of Fig. 1a. Six
parameters are estimated: the times t1–t4, the rate r, and κ. All sites
in the supermatrix are assumed to be independently and identically
distributed and differences among the genes are ignored.

We also use the K80+Γ5 model in the supermatrix analysis, which
assumes a gamma distribution of rates among sites in the alignment,
with five rate categories used (Yang, 1994). This does not match the
model used to generate the data, as differences in κ are ignored and
the random gamma distribution may not accommodate adequately
the fixed rate differences among the three genes. This model involves
one extra parameter than K80, the gamma shape parameter α.

2.1.2. Supertree method
An alignment is generated for each locus and analyzed separately

on the subtree for that locus (Fig. 1b–d). The subtrees share the same
root so that the same fossil calibration is used in all three analyses. At
any locus, the rate r and parameter κ are estimated together with the



Fig. 2. (a) An unrooted tree for six species used in simulations to compare the
supermatrix, supertree, and ML methods of phylogeny reconstruction. The branch
lengths, measured by the expected number of nucleotide substitutions per site, are b0
for all three internal branches, and are a, b, c, d, e, and f for the external branches
leading to the corresponding species. (b–d) The analyzed data consist of sequence
alignments for 4, 5 and 4 species at the three loci, respectively.
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time parameters: t3 and t4 for locus 1; t1, t2 and t3 for locus 2; and t2
and t3 for locus 3 (Fig. 1b–d). The time estimates are combined into
one set of estimates by using simple averages across the loci:

t̂1 ¼ t̂
2ð Þ
1 ;

t̂2 ¼ t̂
2ð Þ
2 þ t̂

3ð Þ
2

� �
=2;

t̂3 ¼ t̂
1ð Þ
3 þ t̂

2ð Þ
3 þ t̂

3ð Þ
3

� �
=3;

t̂4 ¼ t̂
1ð Þ
4 ; ð1Þ

where tˆ1
(2)

is the estimate of t1 from locus 2 and so on. The averaging
by Eq. (1) mimics supertree algorithms for tree reconstruction, which
combines subtrees into one supertree. Here a preferred approach is
to use the variances of time estimates from the loci to calculate a
weighted average, taking into account the different sampling errors
in the locus-specific estimates. In phylogeny reconstruction, how-
ever, it is much less clear how to use measures of sampling
errors such as bootstrap proportions on the subtrees in supertree
construction.

2.1.3. ML method
This method performs a combined analysis of data at all loci. As in

the supermatrix analysis, a sequence alignment is generated by
concatenating sequences at the three loci. However, when the data are
analyzed by ML, different rates and κs are estimated for the three loci,
while the same set of time parameters are estimated for all loci. Thus
the model estimates five times (t1, t2, t3, t4, t5), three rates (r1, r2, r3)
and three κ parameters (κ1, κ2, κ3) for the three loci.

2.1.4. Calculation of the likelihood function
The probability of observing data at any locus, say locus 1, can be

calculated using either the subtree (Fig. 1b) or the full tree (Fig. 1a). On
the subtree (Fig. 1b), the probability is a function of times t0, t3, t4, the
rate r1, and κ1, and is calculated by summing over ancestral states at
nodes 0, 3, and 4 using Felsenstein's (1981) pruning algorithm. On the
full tree (Fig. 1a), the probability is considered a function of all time
parameters t0, t1, t2, t3, t4, t5, the rate r1, and κ1, and is calculated by
summing over nucleotide states at ancestral nodes 0, 1, 2, 3, and 4, as
well as over the missing nucleotides in species B and C (Felsenstein,
2004, p. 255; Yang, 2006, pp. 107–108). The probability on the full tree
is then in fact independent of t1 and t2, and is identical to that
calculated on the subtree.

The likelihood for the whole dataset, consisting of sequences at all
three loci, is the product of the probabilities across the three loci. Here
in the supermatrix andMLmethods we calculate the likelihood on the
full tree, as the implementation is simpler even though it involves
more computation than calculation on the sub trees (Yang, 2004). It is
clear that the supermatrix method is just a special model in the ML
analysis, assuming equality of rates and κ ratios across the three loci:
r1=r2= r3 and κ1=κ2=κ3.

Similarly, the supertree method may be considered a parameter-
rich likelihood model involving the following parameters: t3

(1), t4
(1), r1

and κ3 for locus 1; t1(2), t2(2), t3(2), r2 and κ2 for locus 2; and t2
(3), t3

(3), r3
and κ1 for locus 3. (Note that as discussed above, times for the missing
ancestral nodes t1

(1), t2(1), t4(2), t1(3), and t4
(3) are not identifiable and are

not considered parameters.) As the three loci do not share any
parameters in themodel, maximization of the probability of thewhole
dataset is equivalent to separate maximizations of the probabilities at
the three loci. The drawback of the method is that even though only
one set of time parameters exist, different sets are estimated, with the
estimates combined post hoc into one set using Eq. (1). The ML
method is superior as it assumes only one set of time parameters for
all three loci, allowing one locus to borrow information from other loci
about the time parameters. This difference may be important if the
data are not informative and separate estimates at some loci are
unreliable.
2.2. Phylogenetic tree reconstruction

The simulation design is similar to that for divergence time
estimation but now unrooted trees are used. The true tree for six
species is shown in Fig. 2a. The four internal branch lengths are
assumed to be equal in the true tree, represented by b0, while a, b, c,
d, e, and f are the external branch lengths leading to species A, B, C, D,
E, and F. The simulation parameters for the three loci are the same as
before, shown in Table 1. The shape of the true tree as reflected in the
branch lengths is known to affect the relative performance of tree
tree-reconstructionmethods. To examine the impact of the tree shape,
we use four sets of branch lengths in the true tree to simulate data. The
details will be provided whenwe discuss the results. The performance
of the methods is measured by the proportion of replicate datasets in
which the three clades (or internal branches) in the true tree are
recovered.

The supermatrix, supertree, and ML methods of tree reconstruc-
tion are implemented as follows. We use exhaustive tree search to
analyze the small datasets generated in this study. This approach is
unfeasible for practical data analysis, for which efficient heuristic tree-
search algorithms have to be implemented. We also describe a
supertree-construction algorithm, called ML-supertree, and include it
in the comparison.

2.2.1. Supermatrix method
Each replicate dataset consists of an alignment of six concatenated

sequences, with undetermined nucleotides in missing sequences
coded as question marks. The data are then analyzed under the K80
model, ignoring differences among the genes. All 105 unrooted trees
for six species are evaluated to identify the ML tree. The proportion of
replicate datasets in which each of the three internal branches in the
true tree is recovered in the ML tree are calculated.

2.2.2. Supertree methods
An alignment is generated for every locus. The number of species at

the three loci are 4, 5 and 4, so that 3, 15 and 3 unrooted trees are
evaluated at the three loci, respectively. Many supertree algorithms
can be used to combine the ML trees for the three loci into one
supertree of all six species (see Bininda-Emonds, 2005 for a summary).
Here we use the program Clann 3.0.2 (Creevey and McInerney, 2005).
Its default option implements the most similar supertree method,
which uses the so-called DFIT criterion to compare all 105 possible
supertrees. First, note that every supertree induces a unique subtree
for every locus, formed by pruning the missing species off the
supertree. For instance, the supertree of Fig. 2a induces the subtrees of
Fig. 2b–d for the three loci. At every locus, the distance dij between any
two species i and j on the estimated subtree is calculated as the
number of nodes separating the two species. A similar distance dij
is calculated for the subtree induced by the supertree. Then
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1
s s�1ð Þ

P
ibj jdij � dV

ijj, with the sum over all species pairs on the subtree,
is used as the distance between the supertree and the reconstructed
subtree at the locus. This is summed over the loci to produce the DFIT

score for the supertree, and an exhaustive search is performed to find
the supertree with the best (minimum) DFIT score. Note that the
weighting factor 1/ [s(s−1)] is used to compensate for the different
sizes of subtrees at the different loci. It is somewhat arbitrary, as is the
definition of the distance between subtrees.

In addition we implement an ML-supertree method, which uses
the log likelihood scores as additive weights to weight subtrees
when they are “combined” into supertrees. Our exhaustive-search
algorithm uses all subtrees and their log likelihood scores at every
locus, and not just the best subtree for the locus. First we calculate
the log likelihood scores for all possible subtrees, evaluating 3, 15,
and 3 subtrees at the three loci, respectively. Second, we construct a
105×3 super-sub map {Mi,j}, where M9,2=3, say, means that super-
tree 9 induces (at locus 2) subtree 3. Third, the log likelihood score
for every supertree is calculated by summing, over loci, the log
likelihood scores of the induced subtrees. This is also the log
likelihood for the whole dataset under the model that assumes an
independent set of parameters (including branch lengths and
substitution parameters) for every locus. A similar procedure has
been discussed by Adachi and Hasegawa (1996) and Yang (1996) for
the case of no missing data.

2.2.3. ML method
The same data as used in the supermatrix analysis are analyzed

under the K80 model, but the sites from the three loci are assumed to
have different rates and different κs (Yang 1996). The model assumes
that the same tree topology fits data at all three loci and that the
branch lengths are proportional at the three loci. This is the truemodel
used for generating the data. TheML tree is estimated by evaluating all
105 possible trees.

2.2.4. Calculation of the likelihood function
Our discussion of likelihood calculations for divergence time

estimation applies to tree reconstruction as well. Here unrooted
trees are used and the branch lengths are parameters in place of the
divergence times.

3. Results

3.1. Divergence time estimation

Table 2 shows the means and standard errors of the estimates of
times and rates by the supermatrix (under both the K80 and K80+Γ5
models), supertree, and ML methods. We consider the ML method
first, since it has the optimal performance and provides a basis for
Table 2
Means and standard deviations (among simulated replicates) of estimates of times and
other parameters by different methods

Truth Supermatrix Supertree ML

K80 K80+Γ5

t1 0.2 0.416±0.042 0.234±0.051 0.169±0.095 0.197±0.036
t2 0.4 0.468±0.039 0.331±0.052 0.374±0.105 0.399±0.057
t3 0.6 0.701±0.042 0.543±0.068 0.577±0.107 0.599±0.057
t4 0.8 0.943±0.064 0.938±0.089 0.805±0.102 0.804±0.106
r1 1 0.785±0.034 1.792±0.468 1.019±0.092 1.040±0.512
r2 2 4.100±3.370 2.100±0.340
r3 0.2 0.201±0.026 0.201±0.023
κ1 1 1.472±0.133 1.881±0.276 1.004±0.213 1.004±0.213
κ2 2 2.059±0.428 2.050±0.422
κ3 4 4.125±0.943 4.121±0.939

Note: The supermatrix method uses one rate and one κ for all loci.
comparison. This method analyzes the data at the three loci
simultaneously, estimating different rates and κ parameters for the
three loci, with 10 parameters in total. The means of estimates of all
parameters are close to their true values.

The supermatrix method performed very poorly. The model used
ignores the differences in the substitution rate and in κ among the
three loci and is thus seriously misspecified. All four node ages (t1, t2,
t3, t4) are seriously overestimated. Previous studies suggest that the
variation in rate often has more impact than variation in κ, and
ignoring rate variation among sites leads to underestimation of
sequence distances, withmore serious bias for large distances than for
small ones (Yang, 1996). Ignoring rate variation thus has the effect of
overestimating the ages of nodes younger than the calibration point
and underestimating the ages of nodes older than the calibration. The
results of Table 2 are consistent with this interpretation. The K80+Γ5
model, by using a random gamma distribution to accommodate
variable rates among sites, produced much better estimates, even
though they are still biased.

In the supertreemethod, data at each locus are analyzed separately
under the K80 model to estimate the node ages, the rate r and
parameter κ for the locus, with 4, 5, and 4 parameters estimated at the
three loci, respectively. The estimates of shared times are averaged
using Eq. (1) to produce estimates for the whole dataset. Thus the K80
model is correct in analysis of every locus, and the only drawback of
the method is the over-fitting of the model to the data. The method
produced reasonably good estimates, with node ages t1, t2 and t3
slightly underestimated. Themean of rate r2 for locus 2 is much higher
than the true value, but estimates of r2 vary considerably among
replicates, and the median (2.10) is close to the true value. Note that
locus 2 consists of highly divergent short sequences, which lack
information. Compared with ML, the time estimates produced by the
supertree method have larger variances.

3.2. Tree topology reconstruction

Four sets of branch lengths for the true tree of Fig. 2a are used in
the simulation, referred to as four trees. We use short internal
branches in the true tree, so that the tree is hard to reconstruct and it is
easy to tell the different methods apart. Method performance is
measured by the proportion of replicate datasets in which each of the
three internal branches, referred to as clades (AB), (CD) and (EF), is
recovered in the ML tree. The results are shown in Table 3.

In tree 1, all three internal branches have the length b0=0.01, while
the external branches have the lengths a=c=e=0.02 and b=d= f=0.2.
The supermatrix method (K80 model) ignores differences among loci
and performed poorly. Use of the K80+Γ5 model leads to some
improvement. The supertree method (DFIT) recovered the (AB) clade
with high probability, but not the (CD) and (EF) clades. The ML-
supertree method recovered the (AB) clade less often than DFIT but
recovered the (CD) and (EF) clades with much higher probabilities.
The ML method performed best, recovering all three clades with
probabilities N80%.

In tree 2, the internal branch length is b0=0.04, while all external
branches have the same length 0.4. For this tree, the supermatrix
method has the worst performance, and inclusion of the gamma
model (K80+Γ5) led to very little improvement. Awrong tree topology
is found to be the ML tree in most datasets: (AB(((CF)D)E)). This is also
the consensus tree among the 1000 ML trees, with the clade support
values 99% for (CF), 37% for (AB), and 27% for (ABE). The two supertree
methods performed similarly, with DFIT being better in recovering the
(AB) clade and ML-supertree being better for clades (CD) and (EF). ML
performed the best, recovering all three clades with higher prob-
abilities than all other methods.

Tree 3 has a similar shape to tree 2, but with less sequence
divergence. The internal and external branch lengths are 0.01 and 0.1,
respectively. The supermatrix method had overall the poorest



Table 3
Proportions of datasets in which a clade is correctly recovered by different methods

Supermatrix

Clade K80 K80+Γ5 Supertree ML-supertree ML

Tree 1 (b0=0.01, a=c=e=0.02, b=d= f=0.2)
AB–CDEF 0.820 0.827 0.849 0.805 0.846
CD–ABEF 0.399 0.421 0.378 0.764 0.811
EF–ABCD 0.374 0.392 0.685 0.718 0.831

Tree 2 (b0=0.04, a=b=c=d=e= f=0.4)
AB–CDEF 0.373 0.395 0.426 0.347 0.477
CD–ABEF 0.010 0.013 0.428 0.433 0.538
EF–ABCD 0.007 0.012 0.405 0.417 0.564

Tree 3 (b0=0.01, a=b=c=d=e= f=0.1)
AB–CDEF 0.659 0.653 0.699 0.645 0.713
CD–ABEF 0.213 0.216 0.460 0.647 0.707
EF–ABCD 0.203 0.205 0.517 0.612 0.747

Tree 4 (b0=0.02, a=b=0.1, c=d=0.2, e= f=0.3)
AB–CDEF 0.863 0.858 0.686 0.600 0.747
CD–ABEF 0.023 0.000 0.551 0.599 0.655
EF–ABCD 0.019 0.000 0.488 0.490 0.621
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performance, with very little difference between the twomodels (K80
and K80+Γ5). The supertree method (DFIT) is slightly better than ML-
supertree at recovering clade (AB) but considerably worse at
recovering clades (CD) and (EF). ML performed considerably better
than all other methods, especially in recovering clades (CD) and (EF).

Tree 4 has internal branch length b0=0.02, and external branch
lengths a=b=0.1, c=d=0.2, and e= f=0.3. The supermatrix method
(under both K80 and K80+Γ5 models) performed poorly. It recovered
clade (AB) with very high probability, but clades (CD) and (EF) were
rarely recovered. The true tree is theML tree in only 1.1% of datasets. In
48% of datasets, the ML tree is the wrong tree (AB(((CF)D)E)), which is
also the consensus tree among the 1000 ML trees, with clade support
values 98% for (CF), 86% for (AB), and 55% for (ABE). The two supertree
methods had similar performance, with DFIT being better than ML-
supertree at recovering clade (AB) and worse at recovering (CD) and
(EF). The ML method performed the best.

In sum, the supermatrix method recovers clade (AB) well, but not
clades (CD) and (EF); in trees 2 and 4, the true tree is not the most
frequently recovered tree. In those simulations, the violations of
model assumptions appear to be very serious, so that the supermatrix
method does not perform well. The supertree method (DFIT) tends to
recover clade (AB) better than the ML-supertree method but worse
with clades (CD) and (EF). Overall, the ML method performed best in
all four trees.

The poor performance of the supermatrix method and the
importance of accommodating among-partition heterogeneity high-
lighted by our results may appear inconsistent with Wiens's (2005)
simulation results, in which adding sites in the alignment was found
to improve performance in ML and Bayesian methods of tree
reconstruction even when some species had incomplete data. The
different results may be due to the different experimental designs in
the two studies. In Wiens's simulation, the same sites were missing in
all species, and the included and missing sites were of the same
nature. Our simulation included a hierarchy of sites and loci, with
different loci having very different evolutionary characteristics while
sites in a locus evolve in similar ways. Missing data are represented by
missing whole loci. Thus at any locus, removal of some species may
make tree reconstruction particularly prone to the problem of long
branch attraction. Our design may be expected to generate harder
tree-reconstruction problems, situations in which accommodating
among-loci heterogeneity is much more important than in Wiens's
simulation.
4. Discussion

In our simulation, the ML method achieved better statistical
performance than the supermatrix and supertree methods in
estimating species divergence times and in reconstructing species
phylogenies. This result is consistent with statistics theory, according
to which the likelihood function is the carrier of information in the
data about the parameters and is the natural means for assembling
information from heterogeneous data sources. Here we use likelihood
to combine sequence data from multiple loci to estimate common
parameters of interest (such as species divergence times or species
phylogenies) while allowing other parameters (such as the substitu-
tion rate, transition/transversion rate ratio, base compositions etc.) to
differ to describe the idiosyncrasies in the evolutionary process at
different loci. From this viewpoint, the supermatrix analysis is a
simplistic under-fitting likelihood model that assumes equality of all
parameters across loci. Similarly, the supertree analysis is equivalent
to an over-fitting likelihood model that assumes different free
parameters for every locus, followed by a post hoc treatment to
merge separate estimates into one set of estimates. The likelihood
method advocated here strikes a middle ground, and attempts to
combine the strengths of both supermatrix and supertree methods
while avoiding their drawbacks.

We emphasize that our simulations have used only small trees,
assumed simple models, and examined limited numbers of parameter
combinations. The simple experimental design was used partly to
simplify the interpretation of the results. In real data analysis, more
sophisticated models have to be used to analyze much larger datasets.
For example, in our simulation on divergence time estimation, we
ignored possible violations of the molecular clock (Thorne et al., 1998)
and uncertainties in the fossil record (Drummond et al., 2006; Yang
and Rannala, 2006). In our simulation on tree topology estimation, we
assumed the simple K80 model with no rate variation among sites
within each locus, and ignored the possibility that the different loci
may have different evolutionary histories (for procedures to deal with
such problems, see Rannala and Yang, 2008). The assumption of
proportional branch lengths across loci may be seriously violated in
real data due to lineage- and gene-specific selective pressures.
Nevertheless, we expect that the general principles highlighted in
our simulations should apply to larger datasets and more complex
models as well.

Here we discuss some practical difficulties in implementing the
approach advocated here, which is to combine datasets from multiple
loci while accommodating their important differences. First, parti-
tioning of sites may not be straightforward, and other ways of
partitioning sites rather than by gene may be more appropriate. For
example, the differences among the three codon positions in protein-
coding genes are often even greater than differences among genes, in
which case the codon positions may be treated as heterogeneous site
partitions (e.g., Yang, 1996; Buckley et al., 2001; Ren et al., 2005;
Shapiro et al., 2006; Simon et al., 2006; Bofkin and Goldman, 2007).
Second, careful thought may be needed to identify the appropriate
models and to decide which parameters should be held constant
across genes or site partitions and which should be allowed to differ.
Using one rate for every gene may lead to use of too many parameters
when datasets of hundreds or thousands of genes are analyzed
(Felsenstein, 2001). A standard approach in this case is to construct a
random-effects model, treating gene-specific rates as random vari-
ables with a statistical distribution. This is straightforward to
implement in a hierarchical Bayesian framework (Suchard et al.,
2003; Nylander et al., 2004), but will cause considerable computa-
tional burden for the ML method. Instead a pragmatic approach may
be to partition the genes according to rough estimates of substitution
rates (Nishihara et al., 2007), with the same rate assigned for genes in
the same partition and different rates for different partitions. Leigh
et al. (2008) also evaluated a formal procedure to concatenate



124 F. Ren et al. / Gene 441 (2009) 119–125
sequences from multiple genes or proteins based on likelihood ratio
tests of congruence. Third, the idea of using the likelihood function to
combine information across datasets applies to both the ML and
Bayesian methods (even though we did not examine the Bayesian
method in this study), but may not work for distance and parsimony
methods. It may not be useful for analysis of other kinds of data for
which realistic likelihood models are unavailable.

A number of supertree-constructionmethodshavebeendeveloped,
such as matrix representation by parsimony (MRP) and its variants
(Baum, 2002; Ragan, 1992), MINCUT (Semple and Steel, 2000), semi-
strict supertree (Goloboff and Pol, 2002), ANCESTRALBUILD (Berry and
Semple, 2006), etc. Some methods are also suggested to work
specifically with the distance or Bayesian methods of phylogeny
reconstruction (Criscuolo et al., 2006; Ronquist et al., 2004). The
different supertree methods appear to have very different statistical
properties and their relative performance is a focus of much recent
research (e.g., Goloboff and Pol, 2002; Pisani and Wilkinson, 2002;
Gatesy et al., 2004; Bininda-Emonds, 2004b; Eulenstein et al., 2004;
Wilkinson et al., 2005; Goloboff, 2005). However, all of them appear to
lack a rigorous statistical justification and fail to account for
uncertainties in the estimated subtrees. For example, Eulenstein et al.
(2004) compared several supertree algorithms in a simulation study.
The different loci had the same sequence length, the same rate and the
same number of species, so that the information content is about the
sameat all loci. Evenunder thismost favorable condition, the supertree
algorithms did not perform very well, with some having deteriorating
rather than improving performance with the addition of loci. Some
supertree analyses used the same gene sequences in constructing
subtrees, causing data reuse, as pointed out by, e.g., Springer and de
Jong (2001), Gatesy et al. (2002), and Bininda-Emonds (2004b).

Supertree algorithms have been advocated on several grounds, and
we appreciate their utility in particular applications (e.g., Bininda-
Emonds, 2005; Burleigh et al., 2006). First, the source data may
sometimes be unavailable or they are of different types, so that
traditional tree tree-reconstruction algorithms may not be used.
Second, supertree algorithms are suggested to constitute a divide-
and-conquer strategy, useful for circumventing the computational
difficulty in analysis of large datasets includingmany species andmany
genes and for dealing with missing data (Bininda-Emonds, 2004b).
Strategies for generating smaller datasets for subtree reconstruction
have also been suggested, such as disk covering (Huson et al.,1999) and
biclique (Sanderson et al., 2003). However, we suspect that the simpler
alternative of focusing on particular species groups may be more
effective. Consider inference of the phylogeny of mammals. One may
take the supertree strategy of constructing and analyzing several
datasets, each consisting of primates, carnivores and artiodactyls, and
of then using the subtrees to construct a supertree. Alternatively, one
may study the relationships among primates, among carnivores and
among artiodactyls separately and then join the estimated trees to
form one big tree for different orders of mammals, requiring a trivial
supertree construction. The latter may have better statistical perfor-
mance, as simulation studies suggest that increased taxon sampling
improves phylogenetic accuracy if the phylogenetic scope is kept fixed
(e.g., Hillis, 1998; Rannala et al., 1998; Poe and Swofford, 1999; Pollock
et al., 2002; Zwickl and Hillis, 2002; Rosenberg and Kumar, 2003).

Current research in supertree algorithms has emphasized their
combinatorial and computational properties, with insufficient atten-
tion paid to their statistical properties. The supermatrix–supertree
debate does not appear to have appreciated the fact that statistical
likelihood is a natural tool for combining information from hetero-
geneous datasets and for dealing with problems such as missing data,
non-random taxa sampling and non-overlapping taxa sets. Recently a
few attempts have been made to develop bootstrap algorithms to
assess and incorporate uncertainties in the subtrees in supertree
construction, using parsimony for tree reconstruction (Burleigh et al.,
2006; Moore et al., 2006). Some insights may be gained into this
problem from a statistical modeling framework, by examining how
the likelihood function incorporates information and accommodates
uncertainties in multiple heterogeneous datasets.
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