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ABSTRACT

Motivation: Cancer is well known to be the end result of somatic
mutations that disrupt normal cell division. The number of such
mutations that have to be accumulated in a cell before cancer
develops depends on the type of cancer. The waiting time Tm

until the appearance of m mutations in a cell is thus an important
quantity in population genetics models of carcinogenesis. Such
models are often difficult to analyze theoretically because of the
complex interactions of mutation, drift and selection. They are also
computationally expensive to simulate because of the large number
of cells and the low mutation rate.
Results: We develop an efficient algorithm for simulating the waiting
time Tm until m mutations under a population genetics model of
cancer development. We use an exact algorithm to simulate evolution
of small cell populations and coarse-grained τ-leaping approximation
to handle large populations. We compared our hybrid simulation
algorithm with the exact algorithm in small populations and with
available asymptotic results for large populations. The comparison
suggested that our algorithm is accurate and computationally
efficient. We used the algorithm to study the waiting time for up
to 20 mutations under a Moran model with variable population
sizes. Our new algorithm may be useful for studying realistic models
of carcinogenesis, which incorporates variable mutation rates and
fitness effects.
Contact: z.yang@ucl.ac.uk
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1 INTRODUCTION
Cancer is a genetic disease caused by mutations in cancer
susceptibility genes, including oncogenes, tumor suppressor genes
and genetic instability genes (see e.g. Michor et al., 2004 for a
review). Mutations that activate oncogenes can confer a selective
advantage to the cell when one of the two alleles is mutated, but
typically involve specific amino acid changes at specific residues
of the protein. Mutations that inactivate both alleles of a tumor
suppressor gene also lead to fitness benefits to the cell, and such
mutations do not have to be specific as many mutations in a gene can

∗To whom correspondence should be addressed.

disrupt its normal function (Forbes et al., 2010). Genetic instability
refers to a diversity of changes in the genome on the nucleotide or
chromosomal levels. The former is caused by mutations in the DNA
repair pathways and involves substitutions, insertions or deletions
of one or a few nucleotides. The latter includes gains or losses of
whole chromosomes as well as inversions, deletions, duplications
and translocations of large chromosomal segments. Mutations in
genetic instability genes may cause increased mutation rates in the
cell, leading to the so-called ‘mutator phenotype’ (Lengauer et al.,
1998). For example, p53 mutations may impair the detection of and
response to DNA damage. Many cancers have a mutator phenotype
that results from mutations in genes involved in DNA mismatch
repair.

It is now generally accepted that the rate-limiting step in
the process of carcinogenesis is the accumulation of new
mutations. Both fitness advantages and increased mutation rates can
significantly shorten the waiting time until the required number of
mutations. The relative importance of selection followed by clonal
expansion versus raised mutation rates is somewhat controversial.
Tomlinson et al. (1996) argue based on a computer simulation
that advantageous mutations and clonal expansion were sufficient
to initiate tumor without increased mutation rates. However, if
more than two mutations in tumor suppressor genes are needed for
carcinogenesis, increased mutation rates appear to be an important
factor.

The number of mutations required for tumorigenesis depends
on the type of cancer. Armitage and Doll (1954) used age-specific
cancer incidence data to estimate the number of mutations necessary
to develop colon cancer to be about 6. Knudson (1971) inferred from
an analysis of the incidence of retinoblastoma in children that the
cancer is caused by mutations to the two alleles of a gene (which was
later identified to be RB1, the first tumor suppressor gene), one of
which may be in the germline and inherited. Calabrese et al. (2005)
analyzed data from 1022 colorectal cancers from nine hospitals in
Finland and estimated that about five to six oncogenic mutations
are required for hereditary cancers or seven or eight mutations for
sporadic cancers. In contrast to those early studies which suggested
that a handful of mutations were sufficient to cause cancer, recent
efforts using next-generation sequencing technologies to identify
mutations in protein-coding genes in common tumor types have in
general identified far more genes (Sjöblom et al., 2006, Wood et al.,
2007, Jones et al., 2008, Parsons et al., 2008). For example, Sjöblom
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et al. (2006) analyzed >13000 protein-coding genes in breast and
colorectal tumors, and found that individual tumors accumulate an
average of ∼90 mutations. Only a small subset of those mutations
may be ‘drivers’, which offer the cell a selective advantage and are
responsible for carcinogenesis, while the others are ‘passengers’,
which provide no fitness benefits to the cell but hitchhike to fixation
by chance. Sjöblom et al. (2006) estimated that as many as 14
mutations may be required to initiate colon cancer and as many
as 20 may be involved in breast cancer (see Wood et al., 2007 for
an updated analysis).

The early work of Armitage and Doll (1954) and Knudson
(1971) has prompted a large body of theoretical work, which uses
population genetics models to describe mutation, drift and selection
and to study the waiting time until the accumulation of m mutations.
Iwasa et al. (2004) studied a two-stage model for a population of
cells evolving according to the Moran model. By assuming that
the first mutation is either neutral or deleterious while the second
mutation is advantageous, they studied an interesting scenario called
stochastic tunneling, in which a population fixed for cells of no
mutation can reach fixation for the second mutation without ever
reaching fixation for the first mutation. Schweinsberg (2008) and
Durrett et al. (2009) derived the asymptotic distributions of the
waiting time until m mutations. Due to the complexity of the
problem, they assumed selective neutrality and a constant mutation
rate. Numerical simulations were conducted to confirm analytical
results, but only for small populations (103 ∼104). Beerenwinkel
et al. (2007) studied the waiting time until m mutations under
the Wright–Fisher model with large population sizes (106 ∼109).
With numerical simulation, they were able to show how varying
population size, mutation rate and selection affect the waiting time.

As pointed out by Beerenwinkel et al. (2007), the Moran model
is more natural than the Wright–Fisher model for describing the
evolution of somatic cells. However, simulation under the Moran
model is expensive, even more expensive than under the Wright–
Fisher model. The large population sizes and small mutation rates
mean that one has to simulate many transitions, which change the
compositions of the population only slightly. In this article, we
develop an approximate algorithm to simulate the waiting time until
m mutations under the Moran model. We explore the similarity of the
model of cancer initiation to a chemical reaction system and develop
simulation algorithms that have been studied in that context.

The evolutionary process of mutation, drift and selection under
the Moran model is described by a variable rate Markov chain,
as is a chemical reaction system. The process can be simulated
using standard algorithms by generating exponential waiting times
until the next event and then deciding what event has happened.
This is the so-called Gillespie algorithm (Gillespie, 1977, 2007).
However, with a large population size, simulation using this exact
algorithm is prohibitively slow. The τ-leaping algorithm (Gillespie,
2001; Li, 2007) was proposed to speed up the simulation by leaping
over a time interval τ in which changes to the state and rates of
the chain are expected to be small. However, this coarse-grained
approximation does not work well for our problem, because of the
existence of cell types whose population sizes may be small.

Here we develop a hybrid algorithm that can efficiently simulate
the evolutionary processes of large populations. We use the exact
algorithm to simulate transitions involving small populations,
which may introduce substantial changes to the rates, and coarse-
grained τ-leaping algorithm to simulate transitions within each

large population, where transitions are unlikely to cause large
changes to the state and the event rates. We test our new hybrid
algorithm against the exact simulation in small populations and
against asymptotic results in large populations. The results suggest
that the hybrid algorithm is reliable and computationally efficient.
The fast simulation algorithm may be useful for studying realistic
carcinogenesis models that allow different cell types to have
different finesses and different mutation rates.

2 METHODS
We consider a population of N cells, evolving according to the Moran
model (Moran, 1958). Each cell’s life span is an independent exponentially
distributed random variable with parameter 1. When a cell dies, it is replaced
by a new cell whose parent is chosen at random from the N cells in the
population (including the one being replaced). We distinguish cells by the
number of mutations that have accumulated, so that a type j cell has j
mutations, and a new mutation in a type j cell changes the cell to type j+1.
Initially all cells are of the wild type, i.e. type 0. The mutation rate depends on
the cell type, and is µj for cells of type j. Thus models of mutator phenotypes
can be accommodated using the model by assuming large ujs for large j.
Genes are clonally inherited, so that the daughter cell inherits the mutations
of the mother cell. This process continues until a cell has accumulated m
mutations, when cancer develops. We are interested in the waiting time Tm

until the appearance of the first type m cell.
Note that cells of different types may have different fitness. In particular,

new mutations may increase the fitness, so that a type j cell may be fitter
than a type (j−1) cell. Each type j cell is characterized by its mutation rate
µj and fitness 1+sj .

The evolutionary process of the cells is described by a Markov chain. The
state of the chain at time t is X(t)= (x0(t),x1(t),...,xm(t)), where xj(t) is the
number of type j cells at time t. There are in total m+1 cell types. The initial
state is X(0)= (N,0,...,0), and the process stops when xm(t)>0.

Suppose there are K possible events that can change the state of the chain.
Note that some events do not change the system state (such as a type j cell
being replaced by another type j cell), so we do not need to simulate them. Let
the rates of the events be aj(X(t)) for j=1,2,...,K , and they cause the state
of the chain to change by νj . In the language of chemical reaction (Gillespie,
2001), aj is the reaction rate and νj the state-change vector corresponding to
reaction j. With this characterization, the Markov chain is described by the
Kolmogorov forward equation (or master equation),

∂

∂t
p(x,t|x0,t0)=

K∑
j=1

aj(x−νj)p(x−νj,t|x0,t0)−
K∑

j=1

aj(x)p(x,t|x0,t0),

where the transition probability p(x,t|x0,t0) is the probability that X(t)=x
given that X(t0)=x0.

Under the Moran model, two kinds of events are possible in each
generation:

(1) A type j cell is replaced by a type j′ cell, with j,j′ =0,...,m−1, j �= j′.
This event occurs with rate ajj′ =xj(1+sj′ )xj′/

∑m−1
l=0 (1+sl)xl . Here

xj cells of type j die at rate xj , and the new born cell will be of type j′

with probability (1+sj′ )xj′/
∑m−1

l=0 (1+sl)xl . The state-change vector
is: νjj′ =ξ j′ −ξ j , where ξ j is a vector with the j-th element being one
and others zero.

(2) A type j cell mutates into type (j+1), with j=0,...,m−1. This occurs
at rate aj =µjxj , and the state-change vector is νj =ξ j+1 −ξ j .

We would like to simulate the trajectories of X(t) until appearance of the
first cell of type m. There are a total of m(m−1)+m=m2 possible events,
and we index them as k =1,2,...,m2. Below we review two algorithms
developed for simulating such a system: the exact simulation algorithm
(Gillespie, 1977, 2007) and the approximate τ-leaping algorithm (Gillespie,
2001), before describing our new hybrid algorithm.
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2.1 Exact simulation algorithm
One can generate the exponential waiting time τ until the next event using
the total event rate, and then sample the event among all possible events in
proportion to their rates.

Algorithm 1. Exact algorithm
Initialization: set t =0 and initial value X(0)= (N,0,...,0). Store the state-
change vector νk,k =1,...,m2.

(1) Compute the rates ak =ak(X(t)),k =1,...,m2.

(2) Generate the waiting time τ until the next event, which is an
exponentially distributed random variable with parameter atotal =∑m2

k=1 ak .

(3) Generate a random number u∼U(0,1). Find j such that

j−1∑
k=1

ak ≤uatotal <

j∑
k=1

ak .

(4) Update time as t′ = t+τ and state as X(t′)=X(t)+νj . If xm(t′)>0,
set Tm = t′ and stop. Otherwise go back to step 1 with t = t′.

This algorithm is called the ‘direct method’ by Gillespie (1976). Some
variations are possible, and furthermore, smart bookkeeping can lead to
considerable improvement in its computational efficiency (Gibson and
Bruck, 2000). However, all those exact algorithms are prohibitively slow
when the cell population sizes are large (in the order of 106–109, say),
because atotal is of order N and the expectation of the waiting time between
two successive events is of order 1/N .

2.2 The τ-leaping algorithm
To illustrate the idea of τ-leaping, consider the Moran model with only two
cell types. The state vector is X(t)= (x0,x1), with N =x0 +x1 �1. Suppose
there are no mutations (µj =0) and no selection (sj =0), so that the model is
a pure drift model. Two kinds of events drive the evolution of the population.
(i) A type 0 cell is replaced by a type 1 cell with rate a1 =x0x1/N ; (ii) A type
1 cell is replaced by a type 0 cell with rate a2 =x1x0/N . If x0 =x1 =N/2�1,
then a1 +a2 =N/2�1, so that the average step size in the exact algorithm
(the average waiting time until the next event) is 2/N �1. However, note
that each event changes X, and hence a1 and a2, only by a tiny proportion.
The τ-leaping approximation is to consider the rates a1(X(t0)) and a2(X(t0))
to be constant in a time interval t ∈[t0,t0 +τ), so the numbers of occurrences
of the two kinds of events over the time interval are approximately Poisson
distributed with parameters a1(X(t0))τ and a2(X(t0))τ . The leaping time τ

can be chosen reasonably large so that many events can be updated in one
step, and yet small enough so that the changes to the rates over the time
interval are small to achieve good accuracy.

A widely used leaping condition (Cao et al., 2006) is

E

[
|Xi(t+τ)−Xi(t)|

∣∣∣Xi(t)=xi(t)
]
≤εxi(t), (1)

for all i and a small ε, say, in the range 0.01∼0.1.
The τ-leaping algorithm may not be reliable if any xi is small. In our

model of cancer development, it is common to have some xi ∼O(1) (e.g. the
occurrence of mutation creating a new cell type), and thus the τ-leaping
approximation cannot be applied directly.

2.3 A novel hybrid algorithm
The exact method is very inefficient as the step size is of O(1/N). However,
the τ-leaping algorithm is not directly usable as there may exist cell types with
very small population sizes. Naive use of the τ-leaping algorithm may even
lead to negative population sizes. We thus implement a hybrid algorithm.

We partition the cell types into two subgroups depending on the population
size. We then use the exact algorithm to simulate events that involve any
small population, and τ-leaping approximation to simulate events within each

large population. Similar ideas have been used to speed up the simulation of
multiscale chemical reaction systems (Haseltine and Rawlings, 2002).

Acell type i belongs to the major set � if xi(t)>Nc, where Nc is a threshold
value, or to the minor set σ otherwise. We set Nc =10 in our implementation.
We further partition the possible events into the non-critical set �, which
changes only the major cell types, and the critical set �, which changes at
least one minor cell type.

The algorithm is as follows:

Algorithm 2. The hybrid algorithm
Initialization: Set t =0 and initial state X(0)= (N,0,...,0). Store the state-
change vector νk,k =1,...,m2.

(1) Compute rates ak =ak(X(t)),k =1,...,m2.

(2) Partition the cells into the major and minor sets � and σ.

(3) Determine the τ-leaping step length τ. See below for details.

(4) Determine the waiting time for the next critical event: e∼exp(a�),
where a� =∑k∈�ak .

(5) If e<τ, simulate a critical event. Generate a random number u∼
U(0,1) and find j∈� such that

j−1∑
k=1,k∈�

ak ≤ua� <

j∑
k=1,k∈�

ak .

Let X∗ =X+νj .
Otherwise (if e≥τ) no critical event occurs, and X∗ =X.

(6) Let h=min(τ,e). Simulate non-critical events in � by τ-leaping over
time h:

(a) Generate Poisson random variables rk ∼P(akh),k ∈�.

(b) Let X′ =X∗ +
∑
k∈�

rkνk .

(7) Update time t′ = t+h. If xm(t′)>0, set Tm = t′ and stop. Otherwise
go back to step 1 with t = t′.

We determine the τ-leaping step length τ by applying the τ-leaping
condition [Equation (1)] to the non-critical events. The rate at which xi

decreases by one is xi(1−xi/N)+xiµi. [xi cells of type i are dying with rate
xi, and the probability that the new born cell is of the same type is xi/N .
Meanwhile xi cells of type i mutate to type (i+1) cells at rate xiµi.] The
rate that xi increases by one is xi(1−xi/N)+xi−1µi−1. [N −xi cells whose
types are not i are dying with rate N −xi, and the probability that the dying
cell is replaced by a type i cell is xi/N . Meanwhile xi−1 cells of type (i−1)
mutate to type i cells at rate xi−1µi−1.] Because mutation events usually
occur slowly (µi �1), we ignore them here. For a similar reason, we ignore
selection here. Then xi increases or decreases by one with rate (N −xi)xi/N .
This rate may be assumed to be approximately constant in the time interval
[t,t+τ] when τ is small. Let

X+
i (τ) :=�{s∈[t,t+τ) :Xi(s)−Xi(s−)=1}

and
X−

i (τ) :=�{s∈[t,t+τ) :Xi(s)−Xi(s−)=−1}
be the numbers of events that increase and decrease type i cells in the time
period [t,t+τ), respectively. Then we have

E

[
|Xi(t+τ)−Xi(t)|

∣∣∣Xi(t)=xi(t)
]

= E

[
|X+

i (τ)−X−
i (τ)|

∣∣∣Xi(t)=xi(t)
]

≤ E

[
X+

i (τ)
∣∣∣Xi(t)=xi(t)

]
+E

[
X−

i (τ)
∣∣∣Xi(t)=xi(t)

]
= E

[
P(τ(N −xi)xi/N)]+E

[
P(τ(N −xi)xi/N)

]
≤ 2τxi.

Thus, Equation (1) is satisfied as long as τ ≤ε/2. In all of our numerical
examples, we choose ε=0.04 so that the leaping step length is τ =0.02.
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Table 1. Parameters used in Figure 1

(a) (b) (c)

Population size (N) 103 104 106

Mutations to wait (m) 20 3 3
Mutation rate (µ) µi =10−3 µi =10−4 µi =10−6

Fitness (1+s) 1+si = (1+0.01)i 1 1

3 RESULTS AND DISCUSSION

3.1 The performance of the hybrid algorithm
3.1.1 Accuracy In the first experiment, we examine the accuracy
of our new hybrid method by comparison with the exact method for
small N , and with an asymptotic result for large N . The parameters
are shown in Table 1. For cases (a) and (b) of Table 1 with N =103

or 104, the estimated probability density functions using the hybrid
method are indistinguishable from those produced using the exact
method (Fig. 1a and b). For case (c) with N =106, the exact method
is too slow to produce many samples, so we compare the hybrid
method with an asymptotic result given in Schweinsberg (2008),
which states that for a constant mutation rate and neutral evolution,
if lim

N→∞µN =A, then

P(µ3/4T3 > t)→exp

(
−A

∫ t

0

1−e−2s

1+e−2s
ds

)

(Schweinsberg, 2008: Theorem 3 or case µ∼AN−1 on p. 1451).
Figure 1c shows that the hybrid method and the asymptotic
approximation produced nearly identical results. N =104 is
apparently too small for the asymptotic approximation to be reliable,
as the approximation produced quite different (much shorter)
waiting time compared with the exact and hybrid algorithms in
Figure 1b.

3.1.2 Computational efficiency We compared the computational
efficiency of the hybrid and exact methods, by simulating 100
samples using both methods and measuring their computational
time and average step sizes. The range of population size N is from
103 to 106. Other parameters are fixed at µi =µ=1/N , m=4 and
1+si = (1+0.01)i. The results are shown in Table 2. As N increases,
the time taken by the exact method increases much faster than by
the hybrid method . For the exact method, the average step size is
of order O(N−1), while for the hybrid method it remained nearly
constant.

3.2 A variable population size Moran model
To model the growth of a benign tumor (adenoma), we develop
a Moran model of variable population size, with the total
population size growing deterministically. The evolutionary process
is described by a birth–death process. Three kinds of events are
possible in the system:

(1) A type i cell mutates into a type (i+1) cell, with rate am
i =µixi

and state-change vector νi =ξ i+1 −ξ i.

(2) A type i cell dies with rate ad
i =xi and state-change vector

νi =−ξ i.

(a)

(b)

(c)

Fig. 1. Estimated probability density function of the waiting time Tm

generated by the hybrid method in comparison with the exact simulation
(a and b) and asymptotic result (b and c). The density functions are estimated
using kernel density smoothing in R, with 2×105,2×105 and 105 samples
for (a), (b) and (c), respectively. The parameters used are listed in Table 1.

Table 2. Time (in seconds) taken and average step sizes of the exact and the
hybrid methods for simulating 100 trajectories

N =103 N =104 N =105 N =106

Time Exact 6 111 1595 19 414
Hybrid 5 19 46 83

Step size Exact 3.13e-003 3.67e-004 4.46e-005 5.45e-006
Hybrid 0.0108 0.0104 0.0102 0.0101

Average Tm 412.9 827.6 1326.9 2056.7

The mutation rate µi =µ is chosen to satisfy µN =1. The number of mutations to cause
cancer is m=4 and the fitness is 1+si = (1+0.01)i .
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Fig. 2. Probability density function of waiting time T3 under the original
Moran model sampled by the exact method and under the variable population
size Moran model sampled using both the exact and hybrid methods. The
population size is Ñ(t)=N =1000. The mutation rate µi =10−3 and there
is no selection (si =0). The densities are estimated using kernel smoothing
with 105 samples.

(3) A type i cell is born with rate ab
i = Ñ(t)(1+

si)xi/
∑

k (1+sk)xk and state-change vector νi =ξ i.

Here Ñ(t) is not the real population size but the real population
size N(t) fluctuates closely around Ñ(t). To see this, note that when
N(t)< Ñ(t), the total birth rate [which equals Ñ(t)] will be larger
than the total death rate [which equals N(t)], so that N(t) will
increase. Otherwise, N(t) will decrease. Note that even if Ñ(t)=N
is a constant, the new model still differs from the original Moran
model. In the latter, the real population size is strictly constant, where
in the new model it fluctuates around Ñ(t). There are 3m event types
in the new model compared with m2 in the original model. When m
is large, the new model is faster to simulate than the original Moran
model as determining the type of event requires fewer comparisons.

We note that a slightly different variable population size Moran
model was described by Durrett and Mayberry (2009), in which new
individuals are added into the population at a certain rate.

Two numerical examples are presented, to show (i) that the
variable population size Moran model approximates the original
model well when Ñ(t)=N and (ii) the real population size can be
controlled effectively by Ñ(t).

In the first example, we let Ñ(t)=N and use the exact algorithm
to simulate under the original Moran model, and both the exact and
the hybrid methods to simulate under the variable population size
Moran model. The estimated densities for the waiting time T3 are
indistinguishable among the three methods (Fig. 2). The variable
population size Moran model approximates the original model very
well.

In the second example, we demonstrate that Ñ(t) can effectively
control the population size. We let Ñ(t) grow logistically from 104

to 106 with Ñ(t)=KN0ert/(K +(N0ert −1)) with N0 =104, K =107

and r =0.001. Figure 3a gives one sampled trajectory, sampled every
100 days. We can see that Ñ(t) and the real population size N(t) are
indistinguishable. Figure 3b plots the step sizes for the exact and
hybrid algorithm. For the exact method, the step size is of order 1/N ,
so that the step size gets smaller as the population size increases.
For the hybrid method, the step size remains at the leaping step size
τ =0.02.

(a)

(b)

Fig. 3. (a) A trajectory simulated under the variable population size Moran
model with Ñ(t) changing according to a Logistic growth curve. Samples
are taken once every 100 days. Ñ(t) and the real population size N(t) are
indistinguishable on the plot. (b) The step lengths for the exact and hybrid
methods for the simulation of (a).

3.3 Traveling waves of genetic adaptation
Beerenwinkel et al. (2007) conducted computer simulations to study
the waiting time to m=20 mutations in a Wright–Fisher model
of growing population size. The model mimics a colonic adenoma
composed of 106 cells (∼1 mm3) initially that grows exponentially
to reach a size of 109 cells (∼1 cm3) in about 12 years. Based on the
data of Sjöblom et al. (2006), it is assumed that cancer will develop
as soon as a cell accumulates m=20 mutations in any of the 100
susceptible genes. Mutations occur in unmutated genes at the rate of
µg =10−7 per gene, with no back mutation. If any i of the 100 genes
experience mutations, the cell will be of type i. The fitness of a type
i cell is 1+si = (1+γ)i, where γ =0.01. Beerenwinkel et al. (2007)
used the Wright–Fisher model as it allowed fast simulation even for
large populations although the Moran model seemed more natural
for cancer progression. Here, we use the new hybrid algorithm to
simulate a similar process under the variable population Moran
model.

We use Ñ(t)=N0exp(αω̄t), where α=0.0015 controls the growth
rate and ω̄=∑i(1+si)xi/

∑
i xi is the average fitness of the

population.Asimulated trajectory is shown in Figure 4, which shows
a pattern of traveling waves of clonal expansion. This is because a
type i cell created by a new mutation in a population of type (i−1)
cells has greater fitness and is thus driven to fixation by natural
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Fig. 4. A sampled trajectory of the evolutionary process of cancer initiation.
The total population size is growing exponentially from 106 to 109 in about
12 years. Cell types with many mutations and thus high fitness are taking over
the population successively in a pattern of traveling waves. The mutation rate
is µg =10−7 per gene and there are 100 susceptible genes, so that a type i
cell mutates into a type (i+1) cell at rate µi = (100−i)µg. The fitness for
type i cells is 1+si = (1+γ)i, with γ =0.01. The parameters used here are
from Beerenwinkel et al. (2007).

Fig. 5. Probability density function of T20 for different population sizes (Ñ)
and selection coefficients (si), estimated using kernel smoothing from 105

samples. The parameters used are as follows: µi = (100−i)µg with µg =
10−5 and 1+si = (1+γ)i with γ =0.01.

selection, until the next mutation creates an even fitter type (i+1)
cell. This interesting phenomena is described earlier by Rouzine
et al. (2003) in a model of asexual evolution and has recently been
investigated analytically by Durrett and Mayberry (2009).

Figure 5 shows the probability density functions of T20, the
waiting time for 20 mutations. The model used is similar to that
in Figure 4, but here we fix Ñ in the variable population size Moran
model at 105 or 107. The selective benefit of each new mutation
is γ =0.01 or 0.001, and the mutation rate for each of the 100
susceptible genes is µg =10−5. While the waiting time is much
shorter for larger Ñ , selection has much greater impact on the waiting
time.

4 CONCLUSIONS AND PERSPECTIVES
We have developed a new hybrid algorithm for simulating the Moran
model of carcinogenesis through accumulation of mutations. We
use the algorithm to study the waiting time until m mutations for a
range of population sizes. For small population sizes, our algorithm
produces results nearly identical to those from the exact algorithm.
For large populations, the exact method is too slow but the hybrid
method still works accurately and efficiently. We implement a new
Moran model of variable population size, which can effectively
control deterministically changing population sizes. Our simulation
model is general, allowing for arbitrary mutation rates and selective
coefficients for different cell types. Those features of the algorithm
indicate that it may be useful for studying complex and realistic
evolutionary models of cancer initiation, which may be analytically
intractable.

Our new hybrid simulation algorithm may be extended to
accommodate more complex models of carcinogenesis. In particular,
the evolutionary model we have implemented assumes a well-
mixed tissue compartment without any spatial structure, in which
all cells are in direct reproductive competition with each other.
For certain types of cancer, it may be more realistic to model
cellular differentiation and spatial structure explicitly, with stem
cells generating somatic cells that undergo apoptosis in different
compartments.
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